Efficient Search for Symmetric
Boolean Functions under Constraints
on Walsh Spectrum Values*

Sumanta Sarkar and Subhamoy Maitra
Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, INDIA,

Email: {sumanta.r, subho}@isical.ac.in

Abstract

In this paper we present an efficient exhaustive search strategy
on symmetric Boolean functions having the Walsh spectrum values
constrained in a range at certain points. Exploiting the structure
in Walsh spectrum of a symmetric Boolean function and its rela-
tionship with Krawtchouk matrix, we extend the concept of folded
vectors and pruning introduced by Gathen and Roche in 1997. The
strategy is applied to search for highly nonlinear symmetric Boolean
functions and nonlinear symmetric resilient and correlation immune
functions. We also experimentally justify that our method provides
further efficiency than the search strategy presented by Gathen and
Roche.
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1 Imntroduction

A standard model of stream cipher, called Nonlinear Combiner Model (22,
23, 6], combines LFSR sequences using a nonlinear Boolean function. While
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selecting the Boolean function one has to maintain some constraints for
crytographic purposes. The function should be balanced to maintain the
pseudo-randomness of the generated key-stream. Moreover, the function
should be highly nonlinear since a function with low nonlinearity is weak
with respect to the linear approximation attack [6]. Further, to reduce the
vulnerability to the correlation attack we have to choose the combining
function with correlation immunity of high order [22, 23). High algebraic
degree is one of the necessary conditions for high linear complexity [6, 19].
So far there have been lots of research to achieve Boolean functions with
good cryptographic properties together.

The advantage of studying symmetric Boolean functions is that the sizc
of this class is much less as compared to the general Boolean functions. The
total number of distinct n-variable symmetric Boolean functions is 2"*!,
whereas that of general Boolean functions is 22°. Moreover, an n-variable
symmetric Boolean function can be expressed by an (n + 1) length binary
vector (called its value vector) which requires less amount of memory to
be stored. However, symmetric functions with good cryptographic prop-
erties have not yet been exhibited and its use in stream cipher is still not
encouraging. Even then, the study on symmetric functions with certain
cryptographic properties is continuing mainly due to their nice combina-
torial properties (3, 18, 13, 10, 21, 24, 8, 17, 20, 12, 1, 25, 4, 5] related to
binomial coefficients and Krawtchouk polynomials.

An interesting question was raised in {3] on the existence of nonlin-
ear, resilient, symmetric Boolean functions. The existence was later shown
in [10] giving the example of nonlinear 1-resilient symmetric functions on
even number of input variables 4t2 — 2 as well as 2-resilient nonlinear sym-
metric functions on odd number of input variables 42 — 1 (¢ > 2, integer).
Later in [8] the problem has been studied independently, where the au-
thors could study the resiliency of nonlinear symmetric functions till 128
variables with a nice search technique. Apart from the classes presented
in [10], another class of 2-resilient nonlinear symmetric functions has been
identified in [8] for input variables n = Fy;42F5;43 + 1, where i > 2 and
i # 1mod 3 and {F;} is the Fibonacci sequence (Fg = 0, F; = 1 and
Fiyea = Fi+ Fiy,, 1 > 0). Clearly this will provide 1-resilient nonlinear
symmetric functions on n — 1 many input variables. In [25], it has been
claimed that new classes of nonlinear resilient symmetric functions have
been discovered. However, we find that these are only the classes presented
in [10, 11} (see Section 4 for detailed discussion). The correspondence be-
tween the work [8] and the resiliency of symmetric Boolean functions can
be found in good details in [1].

In (8], an efficient search method to get balanced nonlinear symmetric
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Boolean functions has been proposed. In this paper we extend their strategy
to search nonlinear symmetric Boolean functions having constrained Walsh
spectrum values at certain points. Since resiliency and nonlinearity directly
depend on Walsh spectrum values, by choosing the range of the Walsh
spectrum values properly, our strategy can be exploited to search resilient
or correlation immune symmetric functions more efficiently than [8].

The organization of the paper is as follows. We start with some pre-
liminary discussion in the next section. Our contribution in expediting the
exhaustive search for symmetric Boolean functions with constrained Walsh
spectrum values are presented in Section 3. The initial idea presented in
Subsection 3.1 is taken from (8], but we make substantial inroad in extend-
ing the idea which is presented in Subsections 3.2, 3.3. In Subsection 3.3.2,
we use these techniques to search efficiently for highly nonlinear symmetric
functions. Section 4 begins with some theoretical results related to exis-
tence of nonlinear resilient symmetric functions. A sufficient condition on
the non existence of nonlinear symmetric 2-resilient functions is presented
in Theorem 1 for even number of input variables relating the elements of
Krawtchouk matrix. Using this, a sufficient condition on the non existence
of nonlinear symmetric 3-resilient functions on any number of input vari-
ables (even or odd) is shown (see Corollary 2). Based on these theoretical
results and the efficient search ideas, in Subsection 4.1 we compare our
results with [8) in searching symmetric nonlinear 2-resilient functions. Ex-
perimental evidences show that in searching 2-resilient nonlinear symmetric
functions on n variables, our method is of time complexity O(2%) that is
asymptotically better in comparison to O(2%) presented in [8].

We could check the 2-resilient nonlinear symmetric functions till n = 261
variables. This is a noticeable improvement than the search of 2-resilient
functions till n = 128 variables presented in [8]. Note that in Section
7 of an earlier draft version [9] of the published paper (8], the enumera-
tion of 2-resilient nonlinear symmetric function till n = 500 variables has
been claimed using a different method (though this is not claimed in the
published paper [8]) which does not exploit folding and pruning. This [9,
Section 7] has been studied only for a special case when the Walsh spectra
values are zero at the points of weight < m (for m-resilient functions), i.e.,
the technique can not be exploited to efficiently search nonlinear symmetric
functions with nonzero Walsh spectra values. The main motivation of our
paper is to study the efficiency of searching nonlinear symmetric Boolean
functions having constrained Walsh spectra value and hence our experiment
of enumerating 2-resilient functions is not to compete with any technique
that only finds such functions, but to study the experimental time com-
plexity of our improved strategy using folding and pruing in comparison to
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that of (8].

‘We have also searched till n = 128 variables for unbalanced nonlinear
symmetric correlation immune functions. We could find correlation immune
functions of order 3, but there are no order 4 functions till n = 128. In [20],
these functions have been studied only till n = 20 variables.

2 Preliminaries

Denote the set of n-variable Boolean functions f: {0,1}" — {0,1} by B,.
One of the standard representation of a Boolean function f(zi,...,z,) is
by the output column of its truth table, i.e., a binary string of length 2%,

f=1f(0,0,...,0), f(1,0,...,0), f(0,1,...,0),..., F(1,1,...,1)].

Any Boolean function f has a unique representation as a multivariate
polynomial over GF(2), called the algebraic normal form (ANF),

flzy,.. . zn) = a0 + E a;Ti + E Qi TiT; + ...+ 812, nT1T2. .. Tn,
1<ign 1<i<j<n

where the coefficients ag, e;,a;j,...,a12..n € {0,1}. The algebraic degree,
deg(f), is the number of variables in the highest order term with non zero
coefficient. A Boolean function is affine if there exists no term of degree
> 1 in the ANF and the set of all n-variable affine functions is denoted by
A(n). An affine function with constant term equal to zero is called a linear
function.

Definition 1 A Boolean function is called symmetric if its output depends
only on the Hamming weight (the number of 1’s) of the input vectors.

Thus a Boolean function f € B, is symmetric if f(a) = f(B), where
wt(a) = wt(B) for a,f € {0,1}". It is clear that one can represent an
n-variable symmetric Boolean function f(zi,...,Zy) in a reduced form by
n-+1 bits string 7ey such that res(i) = f(x1,...,2,) when wt(zy,...,2,) =
i. The notation re; is well known as the value vector of a symmetric
Boolean function.

Walsh transform is a very useful tool in analyzing Boolean functions.

Definition 2 Let z = (z1,...,2,) and w = (w1, ...,wy) both belonging to
{0,1}" and - w = w1 + ... + Towy. Let f(z) be a Boolean function on
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n-variables. Then the Walsh transform of f(z) is an integer valued function
over {0,1}" which is defined as Wy(w) = Zze{o,l}..(—l)f(z)*'"“.

Definition 3 A Boolean function f is balanced iff W;(0) = 0.

A Boolean function f is m-th order correlation immune iff Wy(w) = 0,
for all w with 1 < wt(w) < m.

A Boolean function f is m-resilient if it is m-th order correlation im-
mune and balanced as well. The necessary and sufficient condition for f to
be m-resilient is that Wy(w) = 0, for all w with 0 < wi(w) < m.

Further the nonlinearity of f is given by

1
_ on—1
() =21 - 5 max (W)l

The Walsh spectrum of symmetric Boolean functions have very nice com-
binatorial properties related to Krawtchouk polynomia.ll[21]. Krawtchouk
polynomial (15, 14] of degree i is given by Ki(z,n) = 1 _o(~1)(5) (25
It is known that for a fixed w, such that wt(w) = k, Z",t(x)=i(—l)“'" =
Ki(k,n). Thus it can be checked that if f € B, is a symmetric func-
tion with value vector re; = (fo,...,fa), then for wt(w) = k, Wr(w) =
® o(=1)% K;(k,n). It is also known that for a symmetric function f € By
and o, 8 € {0,1}", Wy(a) = Wy(B), if wt(a) = wt(B). Thus it is enough to
calculate the Walsh spectrum for the inputs of n+1 different weights. Keep-
ing this in mind, given a symmetric Boolean function f € By, we denote
rwj (i) = Wy(w), such that wt(w) = 1. Thus rwy can be seen as a mapping
from {0,...,n} to Z. It is clear that if we want to determine all the Walsh
spectrum values for f it is enough to multiply ((-1)%,...,(=1)%) with the
the matrix K (n), where the (i, k)-th element is K;(k,n). The matrix K (n)
is referred as Krawtchouk matrix [7). Let us now revisit a few important
existing results in this area [15, 14].

Proposition 1

1. Ko(k,n) = 1,K;(k,n) =n— 2k,

2. (i + 1) K41 (k,n) = (n ~ 2k)Ki(k,n) - (n — i + ) Ki_1,a(k,n),
3. Ki(k,n) = (-1)*Kn_i(k,n),

4 (DKilk,n) = (7)Ki(i,n),
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5. Ki(k,n) = (-1)'K;(n - k,n),
6. (n— K)Ki(k +1,m) = (n — 20)Ki(k, n) — kKi(k — 1,n),
7. (n—i+1)Ki(k, n+1) = (3n—2i—2k-+1)K;(k, n) ~2(n—k) Ki (k, n—1).

As example, let us present the Krawtchouk matrix for n = 14,15. For
brevity, we write the top-left %-th part of the matrix, the rest can be ob-
tained using property 3 and 5 of Proposition 1. The matrix for n = 14 is
as follows.

11 1 1 1. 1 1 1]
14 12 10 8 6 4 2 0
91 65 43 25 11 1 -5 =7
364 208 100 32 -4 -16 -12 0
1001 429 121 -11 -39 -19 9 21
2002 572 22 -88 -38 20 30 0
3003 429 -165 —-99 27 45 -5 -35
| 3432 0 -264 0 72 0 -40 0

Here is the matrix for n = 15.

1 1 1 1 1 1 1 1
15 13 11 9 7 5 3 1

105 77 53 33 17 5 =3 =7

455 273 143 57 7 -15 -17 -7
1365 637 221 21 -43 -3 -3 21
3003 1001 143 -99 -77 1 39 21
5005 1001 -143 -187 -11 65 25 -35
| 6435 429 -429 -99 99 45 —45 -35

Detailed discussion on Krawtchouk Polynomial and Walsh spectrum of a
symmetric function can be found in [5]. We now present the following
known technical result that will be used frequently in this paper.

Proposition 2 Let lin = (liny,...,lin,) = (0,1,0,1,...) be the n-variable
linear symmetric function and add = (addy, . . ., add,) be another n-variable
symmetric function. Then the function f = (lin®add) follows the inequality
|We(w)| < W where wt(w) = k < n iff

n
1S (-1) add; Ki(k, n)| <
i=0

4 &
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Proof: We have

n
| Z(_I)(liniQadd;)Ki(k’ n)| <W

i=0
ff | i {(—1)"™ (1 - 2add:) } Ki(k,n)| < W,
(since (—1)® =1 — 2a, for a € {0,1})
iff | 7 2(—1)"m add; Ki(k,n)| < W
(since Y0 o(=1)" K;(k,n) =0 for k < n)
iff | 0 o (—1)add: K, (k,n)| < ¥ n

i=0

Corollary 1 The function f = (lin @ add) is balanced iff
ELO(—l)iaddiKi(O,n) =0.

Proof: This follows easily by putting ¥ =0 and W =0 in (1). ]

3 Search with constrained Walsh spectrum

We start this section with the idea presented in [8] towards searching bal-
anced symmetric Boolean functions on n variables. Then we extend the
idea towards the search of symmetric Boolean functions where there are
constraints at certain Walsh spectrum points.

3.1 Method proposed in [8]

In [8], Gathen and Roche made an exhaustive search for n-variable non-
linear balanced symmetric Boolean functions f till n = 128 variables.
Since the search was for n-variable nonlinear symmetric balanced func-
tions f, they concentrated on searching n-variable symmetric functions
add = (addy, . . .,add,) such that f = (lin ®add) becomes balanced, where
lin = (ling,...,liny) = (0,1,0,1,...) is the n-variable linear symmetric
Boolean function. From Corollary 1, it is clear that the search for the
balanced symmetric functions in (8] was the search for the patterns add
satisfying 37 o(—1)*add;K;(0,n) = 0, i.e., they considered the following
search problem if one notes that Ki(0, n) = (}).
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Problem 1

Find the n-variable symmetric function add such that

Z:;o( - l)iaddi (7:) = 0.

The trivial search space consisting of all the symmetric functions would be
2"*1. The concept of searching over the folded symmetric functions [8] re-
duced the search space down to 3/ %1 for the initial search. This is described
below.

First consider the n odd case. As K;(0,n) = K,,_;(0,n) (by Proposition

1 property 3), Problem 1 can be written as Ej (—1)'(add;—add,—;)(}) =
0, ie,

n-1

< . n
S (-1 ( ) =0, )
i=0 !
where M; = add; — add,,_;. So in this case instead of searching the full
pattern add, initial search can be restricted over the folded patterns M =
(Mo,...,M#). As M; € {-1,0,1} for 0 < i < 231, the search space

size over all folded patterns is 3*F . It is worth noting that 3% << ontl
(asymptotically smaller).

Similarly if we consider n even and addy = 0, then Problem 1 can be
written as

31
§<—1)‘H(i‘) -0, (3)

where P; = add; + add,,_;. Also in this case the search can be executed
over the folded patterns P = (Fo,...,Pz-1). Again as P; € {0,1,2} for
0 <14 < 3 — 1, the search space is of size 3%.

Remark 1 If addy = 1, then in the function add’ = (1 ® add) we have
add’% = 0. So if we perform the search over add’ we will get the folded
patterns which were already found in the case of add. Thus after getting the
folded patterns for addy = 0, complementing them we can get the folded
patterns for addy = 1. It is easy to verify that complement of a folded
pattern P can be obtained by interchanging the places of the 0’s and 2’s
keeping the places for the 1’s unchanged.
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3.1.1 Pruning

The search in [8] has been made efficient further by an interesting pruning
idea for odd n. The search is initiated from M o1 At the r-th step down
one needs to check whether

M) = - [T UML)

e, | D0 (—1M(%)] < Tima (-1 (7)), i,

S D<) @

i=r i=0

since the maximum value that |M;| can take is 1. So if (4) is not satisfied,
then the sub pattern (M,.,..., M +1) can not be a part of the folded pattern

(Mo, ..., My1) satisfying (2), in which case the remaining 3" possibilities
(Mo, ...,M;_,) can be pruned from the search tree.

The pruning idea for even n is quite similar. The necessary condition
for the sub pattern (P,,..., Pg_1) to be part of a pattern (Po,.--»Pg-1)

satisfying (3) is .
PAERIWIE 23 (5): (5)

i=r i=0
For this search, the idea of pruning works very efficiently. By empirical
evidence in [8), it is claimed that the number of steps required is of the
order 2% which is much less than 3/31.

3.1.2 Unfolding

After getting the folded pattern the symmetric function add can be ob-
tained by unfolding the folded pattern. Unfolding from the pattern M =
(Mo,...,M%) is as follows.

[ ] M.' =0— addi = addn_,- =0or add,'.= a.ddn_i = 1;

e M;=1-add; =1 and add,,—; =0;

L d Mi =-1—- add,; =0 and addn_,- =1.

When we unfold the pattern M, number of symmetric functions obtained
is 2° where s = # of 0’s in M.
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The unfolding for P = (P, ... y Py _1) is as follows.

L4 P,'=0—>a,dd,-=addn_,-=0;
o P,=1— “add; =1 and add,_; = 0" or “add; = 0 and add,_; = 17;
L] Pi =2 add,, =1 and addn_i =1.

When unfolding the folded pattern P, the number of symmetric functions
obtained is 2¢, where ¢ is the number of 1’s in P. In [8, Algorithm 5.1), the
search was for all folded patterns for odd =, satisfying (2).

The function add is XORed with the linear function lin to yield the
balanced function. Note that we only count the functions in complement
free manner, i.e., if we count a symmetric function then we will not count
its complement.

During the search (with pruning), one can keep track with the number
of steps it requires to yield the folded patterns (some steps will not really
produce a feasible folded pattern as they may die without reaching a com-
plete folded pattern). One can set a COUNTER initialized to 0, and each
time during the search the COUNTER is increased by 1 as one component
of the folded vector chooses one option from 3/%1 possible options. Thus
the COUNTER value at the end of the search will reveal the search effort
given for a particular n.

Example 1 As example, for n = 34, we can find following folded vectors
P for the add patterns:

00000022012112100 (four 1’s), 00000022010222100 (two 1’s),
00000022012110110 (five 1’s), 00000022010220110 (three 1’s),
00000000000001210 (two 1’s).

For each of the patterns we can get 2° many unfolded vectors where t =
number of 1’s in P. Thus we can get (24 +2% + 25 + 23 4-22) = 64 many add
patterns and when XORed with lin, (lin & add) will provide the total class
of nonlinear balanced symmetric functions for n = 34. The total search
effort required to find the folded patterns is COUNTER = 4221 =~ 2'2,

For n = 35, as it is odd we always get the trivial (all zero) folded pat-
tern 000000000000000000.  After unfolding, this pattern will provide 217
many (complement free) nonlinear balanced symmetric functions. In addi-
tion to that, we get two more folded patterns
11111111117017100 (three 0’s), 111111111111117100 (two 0’s),
where 1 denotes —1. Thus we will get 2% + 22 = 12 more such functions.
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The total search effort required to find the folded patterns is COUNTER
= 886 = 210. Once again note that we enumerate the symmetric functions
in complement free manner.

3.2 Searching nonlinear symmetric functions with con-
strained value at a single point in the Walsh spec-
trum

The idea of [8] can be extended beyond finding balanced function. Suppose
we want to search some nonlinear symmetric function f = (lin ® add) on
n variables, where lin and add are as described in the Subsection 3.1, with
some constraint at a point w with wt(w) = k such that its Walsh spectrum
value at that point lies in the range [-W, W], W > 0. So by Proposition 2,
it is enough to consider the following search problem.

Problem 2

Find the n-variable symmetric functions add such that

|Z?=o(_1)iaddiKi(k, n)| < "_X.

Now instead of searching for the full pattern add, we can search over
the folded pattern of add to reduce the search space.

CASE la. n odd, k even.
By Proposition 1(3), K;(k,n) = Kn—i(k,n). Thus,
|0 o(~1)iadd;K;(k,n)| < % is equivalent to

n—1

| D M (k)] < ©

1=0

where M; = add; —add,,—; fori =0to 1 . For each add; we have options
0 or 1. So in this case, the size of the search space is 2"*!. However,
for each M; we have three options {-1,0,1}, in whlch case the size of the

search space becomes 3°F . It is worth noting that 3% << ontl,
CASE 1b. n odd, & odd.
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By Proposition 1(3), Kj(k,n) = —K,_;(k,n). Therefore,
| imo(—1)'add; K;(k,n)| < ¥ is equivalent to

n 1

;Z -1)'P,K;(k,n)| < — (7)
i=0
where P; = add; + add,_; for i = 0 to 251. Here the options for each P,

are {0,1,2} and the search space size is also 3+.

CASE 2a. n even, k even.
Consider addz = 0. By Proposition 1(3), K;(k,n) = Kn—;(k,n).
Therefore, | 37 o(—1)*add; Ki(k,n)| < ¥ is equivalent to

IS ES (~1)iPK(k, n)| < %, where P; = (add; + addy_;) for i = 0 to
% — 1. For this the search space size is 3%.

CASE 2b. n even, k odd.
Consider addz = 0. By Proposition 1(3), Ki(k,n) = —K,_i(k,n).
Therefore, | 37 (—1)’add; K;(k,n)| < ¥, is equivalent to

IZI_O (-1)*M;K;(k,n)| < ¥, where M; = (add; — add,,_;) for i = 0
to § — 1. In this situation the search space size is 3% too.

Remark 2 For n even, we generally consider addy = 0 as it is already
discussed in Remark 1 in Subsection 3.1. This means that when we con-
struct f = (lin®add), then the value fz will be the same as liny . Further,
for even n and odd k, K5 (k,n) =0 and hence the value of add » does not
participate in Walsh s‘pectmm computation. However, for even n and even
k, Ku(k,n) # 0 in general. From the discussion in Remark 1, it is clear
that the patierns with addy = 1 will be taken care of by the complement
patterns of the cases when addvix = 0. We only search the patterns which
are complement free and thus it is enough to consider addy = 0 only.

After getting the folded patterns of add of the form P or M, the full
patterns of add can be obtained by unfolding P or M and the exact function
[ is then obtained by XORing add with linear function lin.

So far we have seen the initial search space being reduced to 3(%1.
Slightly modified idea of pruning introduced in [8] can be used to prune the
folded patterns while considering the Problem 2.
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Let us discuss this idea of for odd n. For k even, we have to search for
the folded pattern M = (Mp, ..., M Lé-_x) satisfying (6), i.e.,

Z:—O( 1‘MK(kn)|§ 27.' g
pral
| T (-1 MKk, m) < %

|, (~1) MKk, m)] <

IZ( 1)'M:K,

i=r

-1)M;Ki(k,n)| — |2,_0( 1)iM;Ki(k,n)| < %, ie,
+|Zt=0( l)tMK (k n)l: 1.e.,

+ 250 (-1 MiKi(k,n), e,

kn)l<K+ZIK(k ),

i=0

(8)

since maximum value that |M;| can take is 1. Clearly, if the sub pattern
(My,...,.M 2t ) does not satisfy (8), then it cannot be in any of the folded

pattern (Mg, .,-1) which satisfy (6). So at once we can prune all the

3" patterns from the sea.rch space which contain (M,,..., M ..—1) as a sub
pattem.
For k odd, we have to search for the patterns P = (Fp,..., PL;_l ) sat-

isfying (7). Necessary condition for a sub pattern (Fr,...
part of these pattern P would be

HE

i=r

,Pn-1) to be a
=

) w r—1
P (k,n)| < 5 +2i2_“;|1<,-(k,n)|.

(9)

So the same idea of pruning can be applied here also. The even variable
case is very much similar.

Example 2 Here we consider n =35 and W =0 for Problem 2. First for
k =0, we get the folded patterns

111111111117017100, 111111111111117700, 000000000000000000.

The search effort is COUNTER = 886 < 2.

For k =1 we get the folded patterns

000000000000000000,
000000020222221000,
000000020011012100,
000000000211212200,
111111111111110011,

000000000211210000,
000000000000001100,
000000020222222100,
000000010111110120,
020202029202022011,

The search effort is COUNTER = 6915 < 213.
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For k = 2 we get the folded patterns

101011110100111011, 1T11111110100001011, 111T111101017011011,
101011110100110111, 111111110100000111, 111711101017010111,
T111117010T11014111, T11171170100001111, T0T011110100111117,
IMTATITATITITITAT, 1T1T1T1T1T1T1T001T, 1T1T1TITIT1T1TI11T,
110010011110011110, 110010010010011110, 110010010010010010,
110010011001101070, 1100700100100111T0, 110010011001100170,
000000011111011100, 000000000000001100, 000000011111011700,
000000011111010000, 000000000000000000 .

The search effort is COUNTER = 8314 < 24,

Following Example 2, one can check that the values of the COUNTER
(i-e., search effort) differs according to different values of k, which is clear as
the efficiency of pruning depends on the values K;(k,n) we are considering
and that is different for different columns. It will be clearer if one looks
at the Krawtchouk matrix. The distribution of the numbers in the column
k = 0 of the Krawtchouk matrix is nicely set, the bigger numbers are at
the middle of that column. As we are considering the folded vectors, those
bigger numbers will be associated with the values at the end of the folded
vectors. That is why starting the search method by growing the folded
vector from the end provides a good chance to prune early. For pruning
in the other columns (say k = 1,2) it is not as good as the case k = 0.
However, the pruning is always very effective as in this case the exhaustive
search space for folded patterns is as large as 318 > 228,

Example 3 Now we present a practical example for large n = 101, k = 2
and W =0 in Problem 2. We find four folded patterns as follows:

110010010010010010010010010010010010010010010010010,
11T 1111111 111111111111111111111111100000,
000000000000000000000000000000000000000000000000000

The search effort is COUNTER = 431044816 < 229 that is much less than
351(> 289) which highlights the advantage of pruning. The ezact time taken
by a C program in Fedora Core 8 operating system is 58 seconds on a PC
having 8.6 Ghz Intel Xeon and / GB RAM.
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3.3 Searching nonlinear symmetric functions with con-
strained Walsh spectrum values at more than one
points

From the earlier discussions we find that we need to concentrate on the
cases n even or odd and k even or odd, i.e., four cases.

Suppose we are searching for nonlinear symmetric functions f = (lin @
add) where lin and add are as described in Subsection 3.1, such that
Wy(w;) € |[-W;, W), for wt(w;) = kj, where k;’s are either all odd or
all even. Then by Proposition 2, it is enough to consider the following
search problem.

Problem 3

Find the n-variable symmetric functions add such that

| o (—1)'add:Ki(kj,n)| < 5,

Jor k;’s either all odd or all even.

Let us first analyze this problem for odd n in the following two cases.

CASE la. All k;’s are even.
By Proposition 1(3), K;(kj,n) = Kn_i(kj,n). So Problem 3 can be written
as

n—1
2
. W;
| D (-1 MKk )| < 52, (10)
i=0

for all given k;’s, where M; = add; — addn_; for i =0,...,25%. Note that
the search space size over the folded pattern M = (Mo, ..., M P )is 3%“ .

CASE 1b. All k;’s are odd.

By Proposition 1(3), Ki(kj,n) = —Kn—i(k;,n). Problem 3 can be written
as n 1
W,
> (-1 V' PKi(kjm)| < <2, (11)
i=0

for all given k,’s, where each P; = (add; + add,_;) for i =0,...,23%. So

. n¥1
the search space size is now 3%,
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Next consider n even and addy = 0 (for addy = 1, refer to Remark 2).

CASE 2a. All k;’s are even.
By Proposition 1(3), Ki(k;,n) = K,_i(k;j,n). So Problem 3 can be written
as

-1 W,

| Y- (1 Pl m)l < =2, (12)
i=0

for all given k;’s, where each P; = (add; + addy,_;) for i =0,...,2 —1. So

the search space size is now reduced to 3%.

CASE 2b. All k;’s are odd.
By Proposition 1(3), K;(kj,n) = —Kn-i(kj,n). So Problem 3 can be
written as

-1 W
| 20 (-1 Miki(ks,m) < =2, (13)
i=0

for all given k;’s, where M; = add; — add,—; for i = 0,....,53 -1 The
required search space size is now 3%.

We can also apply same idea of pruning as described in Subsection 3.2
to expedite the search process. Let us discuss it for odd n and even
k;'s. The necessary condition for a sub pattern (M,,...,M 1;_1) to be

part of a pattern M = (Mo,...,M_n;_x ) which is a solution to (10) is
(S (—1)iMKi(kj,n)] < 22+ Y7=2 |Ki(ks,n)], for all kj's. So once

i=0
the sub pattern (M,,..., M 2s1 ) violates this condition we can discard all
the 3" patterns from the search tree, which contain (M,,..., M a1 ) as a

sub pattern. The idea of pruning is quite similar in case of even variables.

Example 4 As ezample, we consider n = 101,k; = 2,ky = 4, W; =
0, Wa = 0. We get the following folded patterns:

000000000000000000000000000000000000000000000000000

The search effort is COUNTER = 5076601 < 223 which takes 1 second on
the same platform as explained in Example 5.

The folded patterns that we find from this search need to be unfolded
to get the full patterns for add which are next to be XORed with the linear
function lin to produce the exact function f. While unfolding, there may
be many options corresponding to a folded pattern. This is to note that for
odd n, the symmetric functions generated from all zero folded pattern will
have Walsh spectrum values zero at even weight input points.
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3.3.1 Searching nonlinear symmetric functions with constrained
Walsh spectrum values at both odd and even weight points

Suppose we are searching for a nonlinear symmetric function on n variables
f = (lin ® add), where lin and add are as described in Subsection 3.1,
such that Wy(w;) € [-W;, W;], given wt(w;) = k; taking both odd and
even values. Then by Proposition 2 this search problem can be written as
follows.

Problem 4

Find the n-variable symmetric functions add such that
lz?-:o(_l)iaddiKi(kj!n)‘ < ."_‘2/2‘_,

with k;’s taking both even and odd values.

Let ke,,..., ke, are even and ko,,- .- ,ko, are odd with the corresponding
bound on Walsh spectrum values respectively are W, for 1 < i <l and
W,, for 1 < i < p. Then search for solutions for Problem 4 can be divided
into two search problems. Note that in Problem 4, both of the two cases of
Problem 3, i.e., all even k; and all odd k; have been considered altogether.
So first search for the patterns which are the solutions of Problem 3 con-
sidering k; = ke;, for 1 < j < 1. Next find the patterns which are also
solutions of Problem 3 but considering k; = k,,, for 1 < j < p. Obviously
the patterns which are the solutions in both of the cases are the required
patterns for add. Let us discuss this search problem for odd n. First we
consider Problem 3 with k; = k., for 1 < j <, which is exactly CASE
1a, i.e., we have to search for the folded patterns M = (Mo, ..., M Lﬁ—_},)
such that

n=1

T .
| S (1) MiKi(ke,,m)| <
1=0

W,
2 b

(14)

forallj,1<j<l

Next we consider Problem 3 again with k; = k,;, for 1 < j < p, which
is CASE 1b. We search for the folded patterns P such that

n—1

- i W,
|§=:o(—1) PiKi(koy, )| S — (15)
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for all j, 1 < j < p. So our desired symmetric functions for add satisfy
both of (14) and (15) in two different kinds of folding.

The most interesting issue here is one can find the exact functions add
not by unfolding but by solving the patterns M = (M,,... ,Mu_;_}_) and

P=(P,..., P%-_x ). For this we present the following technical result.

Proposition 3 Let ag,a; € {0,1}. The equationsag+a; =z,a0—a; =y
are solvable iff (x +y) is 0 mod 2.

Proof: Solutions of these two equations are ag = £}¥ and a; = Z5¥. No

w
ap and a; belong to {0,1}, iff (z + y) and (z — y) are either 0 or 2. ]
Based on Proposition 3, we consider the folded patterns

M = (M,,... ,M..T_;) and P = (Po,...,P#) and directly solve them
(when possible) to get the exact function add.

For even n, it is clear that we will obtain folded patterns of the type P
for all even k;’s. On the other hand folded M patterns will be obtained for
all odd k;'s. The rest treatment is similar to the odd n case.

Here also the same idea of pruning can be applied. Following same
argument we can say that if the sub pattern (M,,..., M &;_x) does not
satisfy

n—=1

R W., =

| (-1) MiKi(ke,,n)| < S + Y Kilke;,m), (16)
i=r i=0

for 1 < j <!, then it cannot be a part of any M = (Mg,...,M&F)
which satisfies (14). So all 3" patterns containing (M,, ..., M_a-_n) as a sub

pattern can be pruned from the search tree. Similarly if the sub pattern
(Pry-- - Pl;_x ) does not satisfy

n-1

-5 ) Wo- r—1
IZ(_I)q)iKi(kOj!n)l < 2J + 2Z|Ki(koj)n)|’ (17)

i=r i=0

for 1 < j < p, then it cannot be a part of any P = (B,... ,Pp_;_x) which
satisfies (15). So all the 3" patterns containing (Pr,...,P% ) as a sub
pattern can be pruned from the search tree.

Example 5 We now apply our strategy to search for balanced nonlinear
symmetric functions on 101 variables having some constraints on the Walsh
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spectrum values. The constraints are at the input points of weights 1,2,3,4
in the ranges [—22°,220], [—28,25), [-220,220), [—29,29) respectively. We
could find only all zero folded pattern M for the constraints on even weight
points. The search effort is COUNTER = 60220 < 28. For the constraint
on odd weights, we get 202 folded patterns of the type P. The required
search effort is COUNTER = 4591342 < 223, Then after solving among the
patterns of the type M and P we could find 11 many nonlinear symmetric
functions. While solving these patterns we require 2 x 202 x 1 x 51 < 218
more addition/subtraction operations. As a whole it requires < 224 steps to
produce the required functions.

3.3.2 Searching symmetric functions with high nonlinearity

The bent functions attain the maximum possible nonlinearity 2"~! — 2%~
for even number of input variables n (Walsh spectrum values +2%) and
the value vectors of symmetric bent functions [21, 16] are characterized as
the n + 1 length substring of the infinite string (0011)*. These functions
are of degree 2. Further, we know from (17] that the highest nonlinearity
for n (odd) variable symmetric functions is 2"~ — 27 and once again
its value vector is the n + 1 length substring of the infinite string (0011)*.
These functions are of degree 2 and the Walsh spectrum of these functions
are 3-valued which are 0, +2"# . Characterization of the Walsh spectrum
values of degree 2 symmetric functions can be found in {1, Table 1].

Let us consider the search for n-variable nonlinear function f = (lin &
add), where lin and add are as described earlier, with nonlinearity greater or
equal to 2"~ 1 — -‘21, i.e., the maximum absolute value in the Walsh spectrum
is W. This problem is exactly framed as Problem 4, where we will consider
k;’s taking values from 0 to n — 1. After getting the P, M patterns, we
solve them according to Proposition 3. The patterns edd obtained as the
solutions are then XORed with the n-variable linear symmetric function

lin to get the function f.

Then the function f is tested for the column n (as Proposition 2 takes
care of all k < n, but not n) in the Krawtchouk matriz and the functions
whose Walsh value at that point are in the range [-W, W) are the symmetric
function with the given lower bound on nonlinearity.

Further, if one likes to get more constraints, say W; < W for some
specific points, then that can also be managed in a similar manner. For a
balanced function, we need that the Walsh spectrum value at all-zero point
will be zero.
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We now mention the experimental result for n = 101. For n = 101
the highest nonlinearity would be 21% — 250, Let us search for balanced
symmetric functions having nonlinearity > 2190 — w To achieve these
functions first we search for patterns considering Problem 3 for all even
weight k; ¢ {0,n} with W = 25! + 210 and further W = 0 for k; = 0.
We find only all zero folded vector M with search effort COUNTER =
838 < 2'0. After that we find patterns considering Problem 3 for all odd
k; < n with W = 25! + 210, In this case we find 2922935 < 222 many
folded patterns P with scarch cffort COUNTER = 4408153 < 223. Then
we unfold the patterns by solving P, M patterns. The unfolded patterns are
then XORed with the linear symmetric function lin and the new functions
are checked for the Walsh spectrum value at the point having weight n.
The functions we obtain finally are as follows:
010110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100101,
nonlinearity = 2100 — 250 — 204,

110110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100100,
nonlinearity = 2100 — 250 _ 202,

000110011001100110011001100110011001100110011001100
110011001100110011001100110011001100110011001100111,
nonlinearity = 2100 — 250 _ 9,

and the maximum nonlinear functions, n+1 length substring of (0011)*,
as explained in [17].

The total effort taken is less than 210 + 228 + 2 x 1 x 223 < 225,

4 Finding nonlinear resilient and correlation
immune symmetric functions

In (3], it was conjectured that nonlinear, resilient, symmetric Boolean func-
tions do not exist. This conjecture was disproved in [10], where the con-
struction of nonlinear 1-resilient symmetric functions on even number of
input variables 4t ~ 2 as well as 2-resilient nonlinear symmetric functions
on odd number of input variables 4¢2—1 (¢ > 2, integer) have been provided.

When n = 4t2 — 2, t > 2, the l-resilient nonlinear symmetric function
is the symmetric linear function complemented in the value vector at the
places k,k +1,n — k,n — k + 1, where k = 2t2 — t — 1, keeping rest of the
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positions unchanged. The smallest member of this class is available for n =
14 when k& = 5 and the value vector is (0,1,0,1,0,0,1,1,0,0,1,1,0,1,0).
When n = 4t2 — 1, t > 2, the 2-resilient nonlinear symmetric function is
given by the symmetric linear function complemented in the value vector
at the places k,k + 1,n — k — 1,n — k, where k = 2t2 — t — 1, keeping rest
of the places unchanged. The smallest member of this class is for n = 15
when k = 5 and the value vector (0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,1).

Recently, in [25], it has been claimed that a new class of nonlinear 2-
resilient symmetric functions have been discovered on n variables, where
n = 4t2 — 1, t > 2. However, we find that these are actually the classes pre-
sented in [10)]. In fact, there was a minor typographical error regarding the
construction of 2-resilient functions in [10], which has been corrected in [11,
Pages 144-146] and that happens to be the same recently rediscovered class
presented in [25].

Further, in [25], a class (claimed to be new) of l-resilient function has
been presented on n variables, where n = 4t2—2, t > 2. This 1-resilient non-
linear symmetric function is the symmetric linear function complemented
in the value vector at the places k—1,k,n—k—1,n—k, where k = 2t2—-¢—1,
keeping rest of the positions unchanged. If one considers the value vector
of the 2-resilient functions given in [10] for n 0odd and then by removing the
first element considers the value vector of (n —1)-variable function, then the
nonlinear, symmetric, 1-resilient function constructed in [25] is immediately
available.

In [8] the problem has been studied independently. They have exper-
imented till n = 128 variables. Apart from the classes presented in [10],
they have identified another class of 2-resilient nonlinear symmetric func-
tions for input variables n = Fyi42F2i+3 + 1 where 2 > 2 and 4 # 1 mod 3
and {F;} is the Fibonacci sequence (Fop =0, F1 =1 and Fi42 = F; + F,
i > 0). Clearly this will provide 1-resilient nonlinear symmetric functions
on n — 1 many input variables. The first (minimum) 7 in this series is 105.

4.1 Improvement in complexity over the method pro-
posed in [8] in finding 2-resilient functions

In [8), first the folded patterns corresponding to add = (addy, .. .,addy) are
considered such that Y0 o(—1)%add;(7;) = 0. That is, from such a pattern
add (neither all zero nor all one) one can get a balanced nonlinear symmetric
function f = (lin ® add) where lin = (lino,...,lin,) = (0,1,0,1,...), is
the n-variable symmetric linear function. In [8] each nonlinear symmetric
value vector add = (addy, - ..,add,) has been studied to calculate a term
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called “gap” (8, Theorem 2.2]. One can check that if gap > m+1, (m > 0)
then f = (lin @ add) is a nonlinear symmetric m-resilient function. So the
function edd with positive gap implies that the function f is balanced since
O-resiliency means balancedness. One should also refer to [2, Proposition
1] for the relationship between degree in Numerical Normal Form (NNF)
and the order of resiliency.

With our strategy 2-resilient nonlinear symmetric Boolean functions can
be found with much less computational effort than that of [8]. We search for
m-resilient nonlinear symmetric functions on n-variables, i.e., the motive
of the search is to find the functions f = (lin ® add) such that W;(w) = 0,
for all w such that wt(w) < m. It is clear that the search for m-resilient
symmetric functions can be performed by considering Problem 4 with the
parameters W; = 0 for 0 < k; < m. The folded patterns of the types
M, P are obtained and then solved according to Proposition 3. Finally the
patterns add obtained as the solutions are XORed with the linear symmetric
function lin and hence we obtain n-variable m-resilient symmetric functions
if at all they exist.

We now present the exact strategy in finding 2-resilient nonlinear sym-
metric functions till 261-variables.

4.1.1 7 odd

From (8] one can observe that there cannot be any 2-resilient nonlinear
symmetric function on n-variables when n is prime. Thus we will exclude
this case in the search. Next we present another important necessary con-
dition for existence of 2-resilient functions which reduces the search effort
to a significant level.

We start the search for nonlinear 2-resilient symmetric functions con-
sidering Problem 3, for W; = 0,W, = 0 and k; = 0,k; = 2. The folded
patterns we obtain in this case are of M type. Next considering Problem 3
once again with W, = 0 and k1 = 1, we obtain folded patterns of type
P. These M, P patterns are solved according to Proposition 3. The solu-
tions add are then XORed with lin to get nonlinear 2-resilient symmetric
functions on n variables. The following result helps in reducing the search
further.

Lemma 1 Let n be an odd integer, M = (Mo,...,M%), where M; €
{-1,0,1} and P = (Po,...,P,_;;_a), P; € {0,1,2}. Let the solution to the

equations Z:_:;;l(—l)‘MiK,-(O,n) = 0 and Ez(—l)*MiKi(Zn) =0 be
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the all zero pattern M only. Then to find 2-resilient nonlinear symmetric

functions, it is enough to search for the patierns P = (P, ... ’PLE—‘) with
n-—1 .
the constraints P; € {0,2} satisfying Y ;.25 (—1)*P;K;i(1,n) =0.

Proof: It is clear that 2-resilient functions can be obtained by solving given
M and P patterns according to Proposition 3. As the components of the
M patterns are all equal to zero, according to the Proposition 3, a pattern
P having 1 as any one component P; can never give a solution and hence
P patterns having only 0 and 2 as the components may produce 2-resilient
symmetric functions. n

Given Lemma 1 the search space size for finding folded patterns re-
garding Problem 3 considering all odd k;, now reduces to 2% down from
3%, As P, =1 for any i can not provide a valid solution with the given
M pattern, we have to only search for the patterns P where P; € {0,2}
for all i such that 0 <z < 1‘—’22 This result provides a theoretical bound

on complexity which is 2%F as opposed to the theoretical value 3 given
in [8, Page 358]. The theoretical bound in [8] is only due to folding. Our
better theoretical bound is due to folding and further characterization of
symmetric resilient functions. Later we also show that using pruning tech-
nique we achieve better empirical complexity compared to the empirical
complexity presented in [8, Page 358].

We have searched till n = 261 for odd n’s and found that only all zero
M patterns as solutions. Note that our search is complement free. So
using Lemma 1, the search space for folded P patterns for Problem 3 can
be restricted to 225 for odd = till 261. Above this the pruning idea will
also work to provide a faster search.

As an example, let us mention the search effort for n = 105. Finding
patterns M for Problem 3 with the parameters Wi = 0, Wz = 0 and k; =
0, k2 = 2 requires the search effort COUNTER = 202757 and we got only
all zero M pattern. Then to find P patterns for Problem 3 for W; = 0 and
k; = 1, the required search effort is COUNTER = 115874. Here we consider
P; € {0,2} as P; cannot be 1 to have a valid solution. The length of both
M and P patterns is 53. Then solving them according to Proposition 3,
we found only one 2-resilient nonlinear symmetric function. The solution
step requires 53 x 2 many addition/subtraction steps. Thus our total search
effort is < 2!8 which is significantly better than the initial 26926322 many
comparisons (224 < 26926322 < 2%5) in pruning plus analyzing 2% many
unfolded choices (for the folded all zero pattern of length 53) to calculate
gap as explained in (8.
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To experimentally analyze our computational effort, we consider the
cases for odd n, 129 < n < 261, (n not prime as there cannot be any 2-
resilient functions). We collect both of the COUNTER values for searching
M, P patterns; add them and further add the number of steps to solve
them. We denote this value as ¢,. We list the [fg-] and then note the
maximum (respectively minimum) value of [;;Egr] in the range which is 30
(respectively 11) for n = 129 (respectively n = 261). Further the value of

is decreasing in that range with n. That is the reason we can experimen-
tally estimate the complexity for searching 2-resilient nonlinear symmetric
function on odd number of variables n as O(2% ), where we get the functions
by first finding the folded vectors of type M, P and then solving them to
get the unfolded functions. Our strategy is significantly better than (8], as
in [8] finding the the folded patterns corresponding to the balanced func-
tions requires O(2%) time complexity.

4.1.2 n even

We have already noted in [8, Theorem 2.6] that there is no nonlinear bal-
anced symmetric function on (p—1)-variables, where p is a prime and hence
there is no 2-resilient symmetric nonlinear function on (p + 1)-variables. In
our search we will exclude these two cases.

Theorem 1 Let n be even and P = (Py,...,Py_1), where P; € {0,1,2}.
If the solution to the equations

3-1 3-1

20 (-1)'PK;(0,n) =0 and Y2 (=1)*P,K;(2,n) = 0 is the all zero
vector P only, then there is no nonlinear symmetric 2-resilient functions
on n-variables.

Proof: We know that add; + add,_; can take the values from {0,1,2}.
We assume that the solutions to the equation Zi%:;l(—l)"PiK,-(k,n) =0
for”k = 0,2 provides only the all zero vector for P. Thus the solution to
;i;l(—l)"(addi + add,—;)K;(k,n) = 0 for k = 0,2 provides only the all
zero vector as a solution for (addp + add,,add; + add,_1,...,addy_, +
add;..;.l). This means add; + add,—; = 0, ie., add; = add,_; = 0. If
we consider addg = 0, then add is the all zero function and hence f =
(lin ® add) would be simply the linear symmetric function. So in this case
we cannot have nonlinear symmetric 2-resilient functions on n-variables.

On the other hand, if we consider addy =1, then we have
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Yio(-1)iaddiK(2,n) = —-K3(2,n) = ;%5 ";) # 0. Thus, in this
case lin ® add cannot be a 2-resilient function as the Walsh spectrum value
at input points of weight 2 is not zero. [ |

Corollary 2 Let n be even and P = (Py,...,P3_1), where P; € {0,1,2}.
If the solution to the equations

S22 (-1)'PK:(0,n) = 0 and 2N (—1)iP.K;(2,n) = 0 és the all zero
vector P only, then there is no nonlinear symmetric m-resilient (m > 3)
Sfunctions onn or n+ 1 vaeriables.

Proof: By the previous theorem it is clear that for an even variable n with
the given conditions there can not be any nonlinear 2-resilient symmetric
functions. So there can not be any nonlinear m > 3-resilient symmetric
functions on n-variables.

Under the assumption of the only all zero solution on vector P, for even
n the linear symmetric function and its complement are the only 2-resilient
symmetric functions. Thus there can not be any nonlinear 3-resilient sym-
metric function on (n + 1) variables. Consequently no m-resilient (m > 3)
nonlinear symmetric function on (n + 1)-variables exists. [ |

To find the 2-resilient symmetric functions we first consider Problem 3
with W, = 0,W, = 0 and k; = 0,k = 2 to get P patterns. If we find only
all zero vector P after the search then we immediately conclude that there
is no 2-resilient nonlinear symmetric function following Theorem 1. Our
experiment shows this is what that happens till n = 260.

If it at all happens that one gets some non zero vector P, then the
Problem 3 with W, = 0 and k; = 1 should be considered to get M patterns.
After that one may solve P and M patterns according to Proposition 3.
The solutions are then XORed with the symmetric lincar function to get
all 2-resilient symmetric functions on n-variables. In our experiments we
do not require to consider Problem 3 for W) = 0 and k; = 1 any more till
n = 260.

To give an idea of the computational effort, we present the case for
n = 212. Considering Wi = 0, W, =0 and k; = 0,k = 2 for Problem 3,
the search effort is COUNTER = 6220967502 < 233. The time taken by a
C program in Fedora Core 3 operating system is 37 minutes and 50 seconds
on a PC having 3.6 Ghz Intel Xeon 4 GB RAM.

We experimentally analyze our computational effort for even n, 128 <
n < 260, (n and n—1 not prime as there cannot be any 2-resilient functions).
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We calculate the COUNTER values to find the pattern P and as we only
find all zero vector P in all the cases, following Theorem 1 we do not need
for searching M patterns further. We denote this COUNTER value by ¢y;
calculate [;;%] and then note the maximum (respectively minimum) value

of [%] in the range which is 97 (respectively 49) for n = 128 (respectively

n = 260). Further the value of % is decreasing in that range with n.
So we can experimentally estimate the complexity for searching 2-resilient
nonlinear symmetric function on odd number of variables n as O(2%). So
we see for the even n case also, our strategy is significantly better than [8],
as in [8] finding only the the folded patterns corresponding to the balanced
functions requires O(2%) time complexity.

In [9, Section 7], the nonlinear symmetric 2-resilient functions have been
studied till 500 variables. However, the technique used there seems un-
suitable for searching nonlinear symmetric Boolean functions when Walsh
spectra values are nonzero. Our experimental result in this section is not
to show on how much we can enumerate for nonlinear 2-resilient symmetric
functions but to explain better search complexity than [8]. Note that in
the following section we present the enumeration strategy for unbalanced
symmetric nonlinear correlation immune functions. Since these functions
have nonzero Walsh spectrum value at the zero point, the strategy of [9,
Section 7] can not be applied directly and we explain how our extension of
folding and pruning strategy over [8] works in this scenario.

4.2 Unbalanced 3-rd order correlation immune nonlin-
ear symmetric functions

The question of discovering 3-rd order unbalanced correlation immune non-
linear symmetric Boolean functions was raised in [20] and this was studied
only till 30-variables in that paper. Here we use our technique to extend
this till 128-variables. The motive of the search is to find the n-variable
functions f = (lin @ add) such that W;(w) =0 for 1 < wi(w) < 3, So this
problem is actually Problem 4 with the parameters 1 < k; < 3 with the
corresponding W; = 0.

As shown in Subsection 3.3.1, we consider Problem 3 and first search
for folded patterns with the constraint W; =0, Wy =0and k; = 1,k; = 3.
Further we search for folded patterns for the same problem with W, = 0
and k; = 2. The pattcrns obtained from these two searches are then solved
to find the patterns add which are then XORed with the linear function
symmetric function to produce nonlinear symmetric functions with 3-rd

188




order correlation immunity. Below we mention only the number of 3-rd
order correlation immune functions starting from 10-variables, by the pair
(n,c) where n means the number of variables and ¢ means the number of
such functions (up to complementation). The list is as follows: (10, 1), (14,
1), (15, 1), (16, 4), (20, 2), (21, 2), (22, 2), (24, 1), (26, 3), (27, 1), (28, 1),
(32, 3), (33, 2), (34, 2), (35, 1), (36, 2), (38, 1), (39, 2), (40, 3), (44, 4), (45,
1), (48, 1), (49, 1), (50, 2), (51, 1), (52, 1), (56, 3), (57, 1), (58, 1), (62, 1),
(63, 3), (64, 6), (68, 1), (69, 1), (70, 1), (74, 1), (75, 2), (76, 1), (80, 4), (81,
3), (82, 2), (86, 1), (87, 1), (88, 1), (92, 1), (93, 1), (94, 1), (96, 1), (98,
1), (99, 2), (100, 4), (104, 1), (105, 1), (106, 1), (110, 1), (111, 1), (116, 1),
(117, 1), (118, 1), (120, 2), (121, 1), (122, 1), (123, 1), (124, 1), (128, 1).

In [20), it is mentioned that there is no 4-th order Correlation Immune
n-variable nonlinear symmetric Boolean function for 6 < n < 20. We have
checked the 3-rd order correlation immune functions and found that none of
them are 4-th order. It reveals that indeed there is no 4-th order correlation
immune nonlinear symmetric functions till 128-variables.

5 Conclusion

In this paper we make a systematic study in searching nonlinear symmetric
functions with constraints on Walsh spectrum values. We concentrate on
the folded structure of the value vectors of symmetric functions that have
been exploited in [8] and explore it further using the relationship between
Walsh spectrum of a symmetric Boolean function and Krawtchouk poly-
nomial. Experimental results reveal the advantage of our technique over
the method presented in [8]. We have also come up with some theoretical
results that provide better understanding in studying nonlinear symmetric
resilient functions.
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