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Abstract

If D is a digraph, J its minimum degree and ) its edge-connectivity,
then A < 4. A digraph D is called super-edge-connected or super-A if
every minimum edge-cut consists of edges adjacent to or from a vertex
of minimum degree. Clearly, if D is super-A, then A = 4. A digraph
without any directed cycle of length 2 is called an oriented graph.
Sufficient conditions for digraphs to be super-edge-connected were
given by several authors. However, closely related results for oriented
graphs have received little attention until recently. In this paper we
will present some degree sequence conditions for oriented graphs as
well as for oriented bipartite graphs to be super-edge-connected.
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1. Introduction and terminology

We consider finite digraphs without loops and multiple edges. A digraph
without any directed cycle of length 2 is called an oriented graph. For a
digraph D the vertex set is denoted by V(D) and the edge set (or arc set)
by E(D). We define the order of D by n = n(D) = |V(D)|. If uwv is an
edge from u to v in a digraph D, then we write u — v and say u dominates
v. If X and Y are two disjoint subsets of V(D) such that every vertex of
X dominates every vertex of Y, then we say that X dominates Y, denoted
by X — Y. For a vertex v € V(D) of a digraph D let d*(v) = df(v) its
out-degree and d~(v) = dp(v) its in-degree, respectively. The degree of a
vertex v of a digraph D, denoted by d(v) = dp(v), is the minimum value
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of its out-degree and its in-degree. The degree sequence of D is defined
as the nonincreasing sequence of the degrees of the vertices of D. The
minimum oul-degree and minimum in-degree of a digraph D are denoted
by §* = 6*(D) and 6~ = 67(D) and § = §(D) = min{6+(D), 5~ (D)} is its
minimum degree.

A digraph D is strongly connected or simply strong if for every pair u, v
of vertices there exists a directed path from u to v in D. A digraph D is
k-edge-connected if for any set S of at most k—1 edges the subdigraph D—§
is strong. The edge-connectivity A = A(D) of a digraph D is defined as the
largest value of k such that D is k-edge-connected. A digraph D is called
super-edge-connected or super-A if every minimum edge-cut is trivial, that
means that every minimum edge-cut consists of edges adjacent to or from
a vertex of minimum degree. Clearly, if D is super-A, then A(D) = §(D).

For two disjoint vertex sets X and Y of a digraph D let (X,Y) be the
set of edges from X to Y. For other graph theory terminology we follow
Chartrand and Lesniak 3].

Sufficient conditions for digraphs to be super-edge-connected were given
by several authors, for example by Balbuena and Carmona (1], Carmona
and Fabrega [2], Fiol [4, 5], Hellwig and Volkmann [6], Soneoka [7] and
Volkmann [8]. However, closely related results for oriented graphs have
received little attention until recently. In this paper we will present some
degree and degree sequence conditions for oriented graphs and oriented bi-
partite graphs to be super-edge-connected. Examples will demonstrate that
the received results are best possible in some sense.

2. Super-edge-connected oriented graphs
We start with a simple but useful observation.

Lemma 2.1 Let D be an oriented graph of edge-connectivity A and min-
imum degree § > 2. If D is not super-A, then there exist two disjoint sets
X,Y C V(D) with XUY = V(D) and |(X,Y)| = A such that | X|,|Y| > 26.

Proof. Since D is not super-), there exist two disjoint subsets X,Y C
V(D) with X UY = V(D) such that |[(X,Y)| = A = & and |X|,|Y]| > 2.
By reason of symmetry we only show that |X| > 24. If we suppose to the
contrary that |X| < 26 — 1, then we deduce that

1 X1(1X] - 1)
2

1X]6 < |X|6% < > d*(z) < +AL|X|6-1)+6.

z€X
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This implies that |X| < § and thus

1 X1(X1 - 1) 8(1X1-1)
2

<
+A< 5

1X16 < |X]6F < ) d¥(z) < + 9,

ze€X

and hence we obtain the contradiction |X| < 1. O

Corollary 2.2 (Fiol [4] 1992) If D is an oriented graph of order n and
minimum degree § > [(n + 1)/4], then D is super-A.

Let D be an arbitrary digraph of order n, edge-connectivity A and degree
sequence dy > dy >...2d, =021 If6 > |n/2] +1orif d < [n/2] and

k
> (di + dngi-s) > k(n—2) + 26 +1
i=1
for some integer k with 1 < k < 4, then Volkmann (8] has proved that D
is super-A. The following weaker condition leads to super-edge-connected
oriented graphs.

Theorem 2.3 Let D be an oriented graph of order n, edge-connectivity A
and degree sequence dy > dp > ... 2 dp =06 > 1. If 6§ > [(n+1)/4] or if
§<[(n+1)/4] -1 and
k
> (di + dnyiczs) 2 k(n —k—1)+26+1

i=1

for some integer k with 1 < k < 24, then D is super-A.

Proof. Suppose to the contrary that D is not super-A. Then, by Lemma
2.1, there exist two disjoint sets X,Y C V(D) with XUY = V(D) and
|(X,Y)| = 4 such that | X|,|Y| > 2. This implies that § < [(n+1)/4] —1.

Now let S ¢ X and T C Y be two k-sets with 1 < k < 24. Since there
are exactly § edges from X to Y, we deduce that

Yatw) < BEZY Lisx) - jsp +6

vES
k1
k(|X|—§—§)+6.

Zd‘(v)sk(ll’l—g—%) +6

veT

Similarly we obtain
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and thus in total

> d(w) Sk(n—k-1)+2. (1)

veSUT

Now we choose S and T to contain the k vertices in X and in Y of highest
degree, respectively. Then S UT contains the k vertices of highest degree
but not the 24 — k vertices of lowest degree in D. This implies that

k
D d®) 2D (di + dni-2s)-

veSuUT i=1

Combining the last inequality together with (1), we obtain a contradiction
to our hypothesis. O

The following family of examples will demonstrate that the degree se-
quence condition in Theorem 2.3 is best possible in the sense that

k
Y (di + dngicas) 2 k(n— k- 1)+ 26

i=1
for some & with 1 < k < 2§ does not guarantee that the oriented graph is
super-A.

Example 2.4 Let p > 2 be an integer, and let 7/ and T} be two p-regular
tournaments of order 2p + 1 with vertex sets V(T}) = {z;,z,,... yT2p+1}
and V(T2) = {y1,42,..., y2p+1} such that, without loss of generality,

{z1,22,...,2p} — Topy

and yap41 = {y1,92,.. ., Yp}. 1 = T{ — Zopy1 and To = T — yop41, then
let T be the oriented graph consisting of the disjoint union of 7} and T
together with the edge sets

Sl = {371'!/1,5821‘/2, vee axpyp}: SZ = {yp+1xp+17yp+2xp+2, v ay2px2p}

and arbitrary further edges from T to 7. Then T is of order 4p with
0(T) = dp(v) = p for all vertices v € V(T). It follows that

26
D (di + dnyizas) = 4p° = 28(T)(n(T) — 26(T) — 1) + 26(T).

i=1

However, since the set S is a non-trivial minimum edge-cut of the oriented
graph T, we notice that T is not super-A.
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Corollary 2.5 Let D be an oriented graph of even order n, minimum
degree § > 2 and edge-connectivity A. If there are |n/2] disjoint pairs of
vertices (v;, w;) with

d(v;) +d(w;) >n—26 for i=1,2,...,26 -1

and
d(v) +d(w;) >n—26+1 for ¢=26,26+1,...,|n/2],

then D is super-).

Proof. If § > [(n — 1)/4], then D is super-A by Corollary 2.2. If
§ < [(n—1)/4] — 1, then from the |n/2] pairs of vertices choose 2§ pairs

(v, wh), (v, wh),. .., (vhs, why) containing the 20 vertices of lowest degree
of v; and w;. This leads to

25 25

Y (it dnyicas) 2 D (d(v}) +d(w))

=1 i=1

> 26(n-26)+1
= 26(n—26—1)+20+1

Now Theorem 2.3 with k = 2§ yields the desired result. O.

Example 2.4 shows that Corollary 2.5 is best possible in the sense that
the conditions

dv;) +d(w;)) >n—-20 for i=1,2,...,26
and
d(v;) +d(w;)) >n—25+1 for i=26+1,26+2,...,|n/2]
do not guarantee that the oriented graph D is super-A.

Corollary 2.6 Let D be an oriented graph of odd order n, minimum degree
d > 2 and edge-connectivity A. If there are |[n/2] disjoint pairs of vertices
('Ui,wi) with

dv;) +d(w;)) 2n—-26+1 for i=1,2,...,26 -3
and
d(vi) + d(w;) >n—26+2 for i=26-2,20-1,...,|n/2],

then D is super-\.
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Proof. If § > [(n — 1)/4], then we are done by Corollary 2.2. If § <
[(n —1)/4] — 1, then from the n/2] pairs of vertices choose 26 — 1 pairs
(v, w), ('uz,wz) . (vhs_1,whs_,) containing the 26 — 1 vertices of lowest
degree of v; and w;. This leads to

25—-1 281
Do (ditdnpiczs) > (d(@)) + d(w))
i=1 i=1

> (26— 1)(n-26+1)+2
= (26-1)(n—(26-1)—1)+26+1,

and Theorem 2.3 with k£ = 2§ — 1 yields the desired result. O.

3. Super-edge-connected oriented bipartite graphs

Lemma 3.1 Let D be an oriented bipartite graph of edge-connectivity A
and minimum degree § > 2. If D is not super-), then there exist two dis-
joint sets X,Y C V(D) with X UY = V(D) and |(X,Y)| = A such that
| X],1Y| > 46 —1.

Proof. Since D is not super-), there exist two disjoint subsets X,Y C
V(D) with X UY = V(D) and |(X,Y)| = X such that |X|,|Y]| > 2. We
only show that |X| > 46—1. If we suppose to the contrary that | X| < 46 -2,
then we obtain

1Xl6 < |XI6* <D dH(a)
z€X
I X|? |X1(46 ~ 2)
4

4
It follows that |X| < 26 and thus

IA

+4< + 4.

X6 < |X[6* <) d¥(z)
z€X
X2 25|X |

4

IA

+6< ——
This leads to | X| < 2, a contradiction to Lemma 2.1. O

Corollary 3.2 If D is an oriented bipartite graph, then D is super-A when

8(D) > [ﬂc’?si]
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Theorem 3.3 Let D be an oriented bipartite graph of order n, edge-
connectivity A and degree sequence dy > dy > ... 2 dp =90 > 2. If
6> [(n+3)/8] orif § < [(n+3)/8] -1 and

45-1 :
D (di + dnyiv1-48) 2 20(n — 46) + 26 + 1,
i=1

then D is super-A.

Proof. Suppose to the contrary that D is not super-A. According to
Lemma 3.1, there exist two disjoint sets X,Y C V(D) with XUY = V(D)
and |(X,Y)| = A such that |X|,|Y| > 46 — 1. This implies that § <
[(n+3)/8] — 1.

If V/ and V” is a bipartition of D, then we define by X' = X nV’,
X'=XnV"Y' =YNnV'and Y’ =Y NV". We assume, without loss of
generality, that | X”| > |X’|. Now we distinguish two cases.

Case 1. Assume that |X’| > 26 — 1. Since |X| > 46—1 and [X"] > | X'|,
there exist subsets S’ C X’ and S’ C X" such that |S’| = 26 — 1 and
|S”| =24. If § = S’ U S”, then it follows that

S dt(w) < 26(26 - 1) +26(1X'| — 26 +1) + (26 - 1)(1X"| — 26) + 6
veS
= 26(|X|-20)+6—|X"|+26
< 26(]X]| - 26) + 6. (2)
Case 2. Assume that |X’| = 26—t for 2 <t < 2§. Now let ' = X’ and
S" C X" such that |S”| =26+t —1. If § = §’US”, then we conclude that

Y odtw) < (2-t)@6+t-1)+ (28— t)(X"|-26-t+1)+6
veS

(26 — t)| X"+ 8

28] X"| — t|X"| + & + 26| X'| — 26| X|

25(|X| — 26) + & + 2t6 — | X"

26()X| — 26) + 6.

Hence we see that inequality (2) is also valid in this case.
Similarly we can choose T C Y with |T'| = 46 — 1 such that

IA I

D" d=(v) < 28(|Y| - 26) + 6. (3)
veT
Adding (2) and (3), we obtain
> d(v) < 25(n — 45) + 26. (4)
veSUT
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Now we choose S and T to contain the 46 — 1 vertices in X and in Y of
highest degree, respectively. Then S UT contains the 46 — 1 vertices of
highest degree. This implies that

46-1
Z d(v) > Y (di + dnsiti—ss).
veSUT i=1

Combining the last inequality with (4), we obtain a contradiction to our
hypothesis. O

The next examples demonstrate that the degree sequence condition in
Theorem 3.3 is best possible in the sense that

46—1
D (di + dnyivi-s6) > 26(n — 45) + 26

i=1

does not guarantee that the oriented graph is super-\.

Example 3.4 Let p > 2 be an integer, and let B} and B} be two p-regular
bipartite tournaments of order 4p with bipartition

X' = {zl) Z2y... 1x2p}’ X" = {y2p+l)y2p+2’ v 1y4p}

and

Y ={y,92,.. .92}, Y' = {Zop+1,Tops2,..,Tap}
such that, without loss of generality, {:1:1,:::2,...,:1:,,} — Ygp and T4p —
{y1,92,.-.,%p}. If By = B| —y4p and By = B} — Z4p, then let B be the
bipartite tournament consisting of the disjoint union of B; and B, such
that X'U (Y’ —z4p) and Y” U (X" ~ y4p) are the partite sets of B together
with the edge set

S= {$1y1,$2y2, e ?zpyp}
and all further possible edges from By to B;. Then B is of order 8p — 2
with §(B) = dp(v) = p for all vertices v € V(B). It follows that

46-1
Z (di + dntit1-45) = p(8p—2)

i=1

]

25(T)(n(T) — 46(T)) + 28(T).

Since the set S is a non-trivial minimum edge-cut of the bipartite tourna-
ment B, we note that B is not super-\.
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Corollary 3.5 Let D be an oriented bipartite graph of even order », min-
imum degree § > 2 and edge-connectivity A. If there are |n/2| disjoint
pairs of vertices (v;, w;) with

20n+1
46 -1

fori=1,2,...,|n/2], then D is super-A.

d(v;) + d(w;) = 26

Proof. If § > [(n + 3)/8], then we are done by Corollary 3.2. If § <
[(n+ 3)/8] — 1, then from the |n/2] pairs of vertices choose 40 — 1 pairs

(”i’wi)’ (vévwé)’ seey (U-’t&—l,wllw—l)
containing the 46 — 1 vertices of lowest degree of v; and w;. This leads to

46~1 46—-1

> (i + dntisi—as) 2 3 (d(v]) + d(w}))
=1 i=1
> (46-1) ( 2:;‘:“11 - 25)

25(n — 48) + 26 + 1.

and thus D is super-A in view of Theorem 3.3. O

Example 3.4 shows that Corollary 3.5 is best possible in the sense that
the existence of |n/2| disjoint pairs of vertices (v;,w;) with
26n

wo1 %

d(v;) +d(w;) =

fori=1,2,...,|n/2] does not guarantee super-edge-connectivity of an ori-
ented bipartite graph.

The next result is a variation of Theorem 3.3 and its proof is similar.

Theorem 3.6 Let D be an oriented bipartite graph of order n, edge-
connectivity A and degree sequence dy > dy > ... > d, =30 > 2. If
6> [(n+3)/8] orif§ < [(n+3)/8] —1and

2%
Z(di + dnit1-48) 2 k(n — 2k) +26 + 1

i=1

for some integer k with 1 < k < 26 — 1, then D is super-).
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Proof. Suppose to the contrary that D is not super-A. According to
Lemma 3.1, there exist two disjoint sets X,Y C V(D) with XUY = V(D)
and [(X,Y)| = X such that |X|,|Y| > 46 — 1. This implies that § <
[(n+3)/8] - 1.

If V! and V” is a bipartition of D, then we define by X’ = X n V",
X'=XnV"',Y =YNV' andY'=YNV".

Case 1. Assume that |X'|,|X"”| > k. Let S’ C X’ and S” C X" such
that |S’| = |§”| =k and S = S’ U §”. 1t follows that

S dtw) <K +k(X| —k+|X"|—k)+5=k(X|—k)+6. (5
veS

Case 2. Assume that [X'| =k —tfor 1 <t < k. Now let &' = X’ and
§" C X" such that |S”| =k +¢and S =S US”. It follows that

dodtw) < (k+t)k-t)+(k-)(X"|-k—t)+5
vES

]

k(| X| — k) + 6 + kt — t| X"
k(|X| — k) + 6.

Hence we see that inequality (5) is also valid in this case.
Similarly we can choose T' C Y with |T'| = 2k such that

IA

D d7(0) k(Y| k) +8. ®)
veT
Adding (5) and (6), we obtain
> dw) < k(n—2k)+26. (7)
veESUT

Now we choose S and T to contain the 2k vertices in X and in Y of highest
degree, respectively. Then S UT contains the 2k vertices of highest degree
but not the 46 — 1 — 2k vertices of lowest degree in D. This implies that

2k

Z d(v) > Z(di + dntiv1-a6)-

vESUT i=1

Combining the last inequality with (7), we obtain a contradiction to our
hypothesis. O

Corollary 3.7 Let D be an oriented bipartite graph of order n, mini-
mum degree § > 2 and edge-connectivity A\. Then D is super-A when there

are |n/2] disjoint pairs of vertices (v;,w;) for i = 1,2,..., |n/2] with
d(v;) + d(w;) 2 %‘}- - 26.
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Proof. If § > [(n + 3)/8], then D we are done by Corollary 3.2. If
§ < [(n+ 3)/8] — 1, then from the |n/2] pairs of vertices choose 46 — 2
pairs (v}, w}), (vh, wh), ..., (Vis_2, Wis_o) containing the 46 — 2 vertices of
lowest degree of v; and w;. Thus we obtain

46-2 46-2

> (di + dngivr-as) = D (@) + d(w)))

i=1 i=1

(45— 2) (%‘3 - 25)

(26 — 1)(n — 46 + 4)
(26 ~ 1)(n — 2(26 — 1)) + 46 — 2
> (26—-1)(n—2(26—1))+25+1

v

and Theorem 3.6 with k = 26 — 1 leads to the desired result. O

In the case that n is even and § < [(n + 3)/8] — 1, we observe that

20n+1 >n-l~4
4-11~- 2 °

This implies that Corollary 3.7 is better than Corollary 3.5 if n is even.
Since Corollary 3.5 is best possible, this is also true for Corollary 3.7 in the
case that n is even.

If the order n of an oriented bipartite graph is odd, then we can relax
the condition in Corollary 3.7 slightly.

Corollary 3.8 Let D be an oriented bipartite graph of odd order n, mini-
mum degree § > 2 and edge-connectivity A. If there are |n/2] disjoint pairs
of vertices (v;, w;) with

d(v,-)+d(w,~)2312'—3-26 for i=1,2,...,46 — 4
and
d(vi)+d(w,-)zf—2t§—26 for i =46—-3,46 —2,...,|n/2],

~ then D is super-J.

Proof. If § > [(n + 3)/8], then we are done by Corollary 3.2. If § <
[(n+ 3)/8] — 1, then from the |n/2] pairs of vertices choose 4 — 2 pairs
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(v, wy), (vg, wh),. .., (Vis_p, Whs_o) containing the 46 — 2 vertices of lowest
degree of v; and w;. Thus we obtain

46-2 46-2

D (it dnrivioas) = D (d(v]) + d(w))
i=1

i=1

v

n+3
(46 — 2) (T—%’) +2
= (260-1)(n—-2(26-1))+20+1

and Theorem 3.6 with k = 20 — 1 leads to the desired result O.
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