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Abstract

In [10], Fink and Jacobson gave a generalization of the concepts
of domination and independence in graphs which extends only par-
tially the well-known inequality chain v(G) < i(G) < B(G) < T(G)
between the usual parameters of domination and independence. If a
k-independent set is defined as a subset of vertices inducing in G a
subgraph of maximum degree less than k, we introduce the property
which makes a k-independent set maximal. This leads us to the no-
tion of k-star-forming set. The corresponding parameters sfx(G) and
SF«(G) satisfy sfx(G) < ix(G) < Bi(G) < SFi(G) where ix(G) and
B:(QR) are respectively the minimum and the maximum cardinality
of a maximal k-independent set. We initiate the study of sfx(G) and
SFx(G) and give some results in particular classes of graphs as trees,
chordal graphs and K -free graphs.
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1 Introduction

In a simple graph G = (V, E) of order n(G), the neighborhood of a vertex
veVis Nw) ={ue€V|u € E} and the degree d(v) of v is the
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order of its neighborhood. If S is a subset of vertices, its neighborhood is
N(S) = U,esN(v), and G[S] is the subgraph induced by the vertices of S.
The closed neighborhoods of v and S are respectively N[v] = N(v) U {v}
and N([S] = N(S)US. If T is another subset of vertices, N7(v) is the set of
the neighbors of v in T, dr(v) = |[Nr(v)|, and Np(S) = UyesNr(v). The
corona of two graphs G and Gs is the graph G = G 0G5 formed from one
copy of G and |V(G)| copies of Go where the i*! vertex of G is adjacent
to every vertex in the i*P copy of G. A graph is chordal if every induced
cycle has length three.

In {10} Fink and Jacobson generalized the concepts of independent and
dominating sets. We say that a subset S of V is k-independent if the
maximum degree of the subgraph induced by the vertices of S is less or
equal to k — 1. The subset S is k-dominating if every vertex of V — S
is dominated by at least k vertices of S. The property for a subset of V
to be k-independent (k-dominating) is hereditary (superhereditary). A k-
independent set S of G is maximal if for every vertex v € V' \ S, SU {v}
is not k-independent. A k-dominating set S is minimal if, for every vertex
v € 5, S\{v} is not k-dominating in G. The lower k-independence number
i (G) is the minimum cardinality of a maximal k-independent set in G
and the k-independence number B.(G) is the maximum cardinality of a k-
independent set. Similarly, the k-domination number v,(G) and the upper
k-domination number T'y(G) are respectively the minimum cardinality of a
k-dominating set and the maximum cardinality of a minimal k-dominating
set of G. A graph G is well-covered if i(G) = B(G) and well-k-covered if
ix(G) = B(G).

For £k = 1, the l-independent and l-dominating sets are the classical
independent and dominating sets. It is well kown that an independent set
is maximal if and only if it is also dominating. So we can say that the
domination, which is defined even for non-independent sets, is the property
which makes an independent set maximal. Moreover every set which is
both independent and dominating is a minimal dominating set of G. This
observation leads to the well known inequality chain:

71(G) £11(G) £ B1(G) <TW(G) forall G (1).

The k-independence and k-domination defined above generalize only par-
tially the previous properties. If a k-independent set S of G is also k-
dominating, then it is a maximal k-independent set and a minimal k-
dominating set of G. But a maximal k-independent set of G is not neces-
sarily k-dominating. For instance, if G is the 1-corona of a cycle C, V(C)
is a 3-independent set which is not 3-dominating. So all the inequalities of
(1) do not necessarily extend when 1 is replaced by k. It has been proved
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that for every positive integer k, every graph G contains a set which is both
k-independent and k-dominating [5]. For such sets S, ix(G) < |S| < Bi(G)
and 7, (G) < |9] < Tk(G). Therefore ix(G) < Tx(G) and v,(G) < Bi(G)
for every G and every k. But there exist graphs satisfying ix(G) < 7x(G)
or T'(G) < B,(G) for some k (see for instance [6]).

Our purpose is to completely extend (1) and for that, to study which
property makes a k-independent set maximal. Our result will be related to
another generalization of domination and independence given by Haynes,
Hedetniemi, Henning and Slater [12]. For graphs G and H,aset SC V' is
an H-forming set of G if for every v € V' \ S, there exists a subset R C S,
where |R| = |V(H)|—1, such that the subgraph induced by RU{v} contains
H as a (not necessarily induced) subgraph. A set S of V is H-independent
set if the subgraph induced by S does not contain any subgraph isomorphic
to H. P,-forming and P;-independent sets are the classical dominating and
independent sets.

For any parameter u associated to a graph property P, we refer to a set
of vertices with Property P and cardinality u(G) as a u(G)-set.

2 k-star-forming sets

Let S be a k-independent set of G. From the definition of the k-independence,
S is maximal if and only if for each vertex v € V' \ S, A(G[SU {v}]) > &,
i.e., either v has at least k neighbors in S or v has a neighbor u in § such
that ds(u) = k — 1 (or both). If S is not required to be k-independent, we
consider the following property P.

Definition A subset S of vertices of G has Property Py if for every v €
V'\ S, either ds(v) > k or v has a neighbor v in S such that ds(u) > k- 1.

In other words, S has Property Py if for every v € V' \ S, there exist &
vertices u1,--- ,ux in S such that G[{v,uy,-- ,ur}] contains a star Kix
as a subgraph. If it is the case, v is said to be k-star-dominated by S.
With the terminology of Haynes et al., S has Property Py if and only if
it is a K7 x-forming set. To be a Kj x-forming set is a superhereditary
property and a K x-forming set is minimal if for every vertex v € S,
S\ {v} is not K, x-forming. We call a K, ,-forming set, a k-star-forming
set and we denote by sf(G) (resp. SF«(G)) the minimum (resp. maximum)
cardinality of a minimal k-star-forming set. In the particular case k = 2,
and since Ky 2 = P3, 2-star-forming sets and sfa(G) are respectively called
in [12) P3-forming-sets and y{p,}(G)-
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From what precedes, a k-independent set is maximal if and only if it is k-
star forming. Moreover, if a k-star-forming set § is also k-independent, then
for all v € S and all neighbors u of v in S, dg\ (4} (v) < k and dg\ (4} (u) <
k—1so that S\ {v} is not k-star-forming. Hence Py is exactly the property
to associate to the k-independence to generalize the relationship between
independence and domination and the inequality chain (1). Therefore we
can state

Theorem 2.1

1. A k-independent set is maximal if and only if it is k-star-forming.

2. A k-independent and k-star-forming set is a minimal k-star-forming
set.

3. sfe(G) < ik(G) < Br(G) < SFi(G) forall Gand all k  (2).

It is interesting to compare the two new parameters sf; and SFy to the
previous ones <y, and I'x. Let the square G2 of G be defined by V(G?) =
V(G) and two vertices are adjacent in G? if they are at distance at most
two in G.

Theorem 2.2 For every graph G and every k, 7,(G?) <sfx(G) < 7,(G).

Proof The second inequality comes from the fact that any k-dominating
set is k-star-forming. To establish the first one, let S be a sfx(G)-set and
v any vertex in V' \ S. The star K ; of G that contains v with k vertices
of S becomes in G? a clique Ky on the same vertex set. Hence in G2, v
has k neighbors in S and $ is a k-dominating set of G2. a

For k > 2, the difference v, (G)—sfx(G), and even the ratio v, (G)/sfx(G),
can be arbitrarily large. This can be seen on a star Kj , with p > &k > 2,
for which «, (K1) = p and sfi.(K ) = k. However sfi(G) and v, (G) may
be equal and there exist upper bounds on -, (G) which remain sharp for
sfr(G). This is checked in the next theorem with the bound of Cockayne,
Gamble and Shepperd.

Theorem 2.3 Let G be a graph of order n and minimum degree 4, and k
an integer with 2 < k < 4. Then sf,(G) < kn/(k + 1) with equality if and
only if G is the disjoint union of cliques Kg+1.

Proof The inequality comes from v,(G) < kn/(k+1) for 2 < k < § which
was established in [3]. If this bound is sharp on sfi(G), the extremal graphs
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belong to the family of graphs satisfying v, (G) = kn/(k+1). These graphs
have been determined in [8]. They are the Kjy-coronas JoK) where J is
any graph. Let G = JoK), with J connected. Let S be the union of V' (J)
and of k — 2 vertices in each pendant clique K. If |V (J)| > 1, each vertex
of V(G)\ S is adjacent to a vertex of J of degree at least k —1 in S. Hence
S is a k-star-forming set and sfy(G) < (k— 1)|V(J)| = (k- 1)n/(k+1) <
kn/(k +1). Therefore, for each connected component of G, |V(J)| =1 and
the proof is complete. ]

On a similar way, the sharp upper bound on 4;(G) established in [1],
ik(G) < n — A + k — 1, remains sharp as a bound on sfx(G) as shown for
instance by the star K for which sfx (K .) = (K k) = k.

Contrarily to what happens with the small parameters, SF;(G) may be
smaller or larger than I'x(G). That SF¢(G) may be larger than I';(G) is
clear from (2) since there exist graphs with T'x(G) < B, (G) for some k. Let
us consider the graph G obtained from k > 2 disjoint stars C; =~ Ky, with
centers ¢; and leaves u; 1, - - , uix by adding a new vertex = and the k edges
z¢;, 1 <i < k. Thenn = k2 +k+1and since k < A, ['x(G) < n. Moreover
uk_,V(C;) is a minimal k-dominating set of G. Therefore I'x(G) = k* + k.
On the other hand, let S be a k-star-forming set of G. If C; C S for some
i then S\ {u;,1} is a k-star-forming set too and S is not minimal. Hence
every minimal k -star-forming set has at most k vertices in each star C;
and SF.(G) < k% +1 < Tk(G) (actually, V(G) \ {c1,- - , ¢k} is a minimal
k-star-forming set and SF (G) = k% +1). Note that the same graph G also
provides an example for the opposite inequality since I'r11(G) = K+1<
k% + k = SFx41(G).

Since every (k- 1)-star-forming set is a k-star-forming set for every graph
G and positive integer k, the sequence sfi(G) is non-decreasing as was the
sequence 7, (G). Moreover, since the vertex set V is the only (A + 1)-star
forming set but is not a minimal A-star-forming set, every graph G satisfies

+G) = s£1(G) < $62(G) < ... <sfa(G) < sfasa(G) = |VI.

Note that the property shown in [10] that v,(G) > ¥(G) + k — 2 for all
G with A > k > 2 has no counterpart with sfx. If G = K,0K) is obtained
by adding a pendant vertex at each vertex of a clique Kp, then A = p and
sfa(G) = v(G) = p. In this example, all the large inequalities of the chain
above are equalities.
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3 k-star-forming sets in particular classes of
graphs

It is known that the well-covered trees are P; and the coronas JoK; where J
is any tree. They satisfy v(T') = i(T) = B(T) = ['(T). Since sf;(G) = v(G)
and SF(G) = I'(G) for every graph, sfy,(T") = B(T) or i(T) = SF1(T) or
sf1(T') = SF1(T') if and only if the tree T is well-covered. To generalize this
result, we use the characterization of well-k-covered trees, given in [9].

Definition A tree belongs to the family 7}, where & is an integer > 1, if
A(T) < k-1 or if its vertex set is partitioned into an induced forest X and
stars K i (called Stars) such that

(i) the centers ¢, ¢, - ,¢p of the Stars have degree exactly k in T}

(i1) the vertices of X and their neighbors in the Stars have degree less
than k in T';

(iii) for each i, at most one neighbor z of c; has degree at least k in T or
has a neighbor y # ¢; of degree at least k (or both).

The partition of T is necessarily unique. We can note that by (ii), if
k=1landn>1lork=2andn>2then X = . The trees of F; are the
well-covered ones. The trees of F; are Py, P and the trees obtained by
attaching a path of length 2 at each vertex of any tree J. For k > 1, the
trees in Fj satisfy ix(T") = B, (G) = n — p where p is the number of Stars
Kk in the partition of T'. It is shown in [9] that a tree is well-k-covered if
and only if it belongs to F.

Theorem 3.1 A tree T satisfies sfy(T) = B,(T) or ix(T) = SFx(T) or
sfx(T") = SFx(T) for some integer k > 2 if and only if it is well-k-covered,
that is belongs to Fy.

Proof If sfx(T) = B(T) or ix(T) = SFi(T') or sfx(T) = SFi(T) then, by
Item (3) of Theorem 2.1, T' is well-k-covered. and thus belongs to Fi by
[9).

Conversely let T be a tree of F; and p the number of Stars of its unique
partition. If A(T) < k, that is if p = 0, then sfx(T) = i (T) = B,(T) =
SF(T) =n. If p > 0, let S be a k-star-forming set of T. Then S contains
all the vertices of the forest X by (ii). Let ¢ be the center and uy, ug, -+, ux
the leaves of a Star of T. Suppose ¢ ¢ S and u; ¢ S. Then c¢ has a neighbor
in S, say up, of degree at least £k — 1 in S. By (iii), and since dr(uz2) > k,
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u; and its neighbors different from c have degree at most k — 1 in T, in
contradiction to u; ¢ S. Therefore if u; ¢ S, then ¢ € S. Suppose now
uy ¢ Sand up ¢ S. Let u] be a neighbor of u; in S of degree at least k —1
in S. Since ug ¢ S, 4} # ¢. Then dr(u}) > k and by (iii), the degrees of
ug and of all its neighbors different from c are less than k. This contradicts
S is a k-star-forming set not containing up. Therefore S contains at least
k vertices in each Star. Moreover if S is a minimal k-star-forming set

then it contains exactly k vertices in each Star for if {u;,---,ux} C S,
then ¢ ¢ S. Hence every minimal k-star-forming set has order n — p and
sfx(T") = SF(T), which completes the proof. O

Recall that the total domination number v,(G) is the minimum car-
dinality of dominating set whose induced subgraph contains no isolated
vertex. Every total dominating set is clearly a 2-star-forming set. Thus
sf2(G) < 7,(G) for all G. In [12], Haynes, Hedetniemi, Henning and Slater
gave an example of a family of graphs G for which v,(G) is arbitrarily larger
than sfy(G), and proved that every tree T satisfies «y,(T') = sf2(T). As a
consequence, we get the following

Corollary 3.2 Let T be a tree. Then v,(T) = 85(T) or «,(T) = SFo(T) if
and only if T € F»(T).

The following theorem extends to chordal graphs the property v,(T) =
sfo(T) for any tree T.

Theorem 3.3 Every connected chordal graph G satisfies sfy(G) = 7,(G).

Proof It is sufficient to prove that sf2(G) > v,(G). Let S be a sf(G)-set
containing the minimum number of isolated vertices and I the set of isolated
vertices of S. If I #£ (), let T be the set of vertices of V' \ S having at least
two neighbors in I. Since S is 2-star-forming, every vertex in V' \ (SUT)
has at least one neighbor in S\ I. Let z € I. If Np(z) = 0, let y be a
neighbor of z in V' \ (SUT). If Np(z) is a clique, let y be a neighbor of
z in T. In both cases, (S \ {z}) U {y} is a 2-star-forming set containing
less isolated vertices than S, a contradiction. Hence every vertex z of I
has at least two non-adjacent neighbors in 7. This implies in particular
|T'| > 2 and |I| > 2. Let y; € T. We construct a path alternating between
T and I as follows. Let y, be a neighbor of y; in I, y3 a neighbor of y2
in T'\ N[y1], y4 a neighbour of y3 in I'\ {2}, y5 (if y4 is not adjacent to
1) a neighbor of y4 in T\ Nfys], a.s.0. while the current vertex y; has
no neighbor in {y1,y2, - ,¥i—3}. Since G is finite, the process stops at a
vertex y, adjacent to some vertex y; with ¢ < p — 3. Then, yiyit1--- yp¥i
is an induced cycle of G longer than three, contradicting the hypothesis
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that G is chordal. Hence I =), S is a total dominating set of G, and thus
7:(G) < sfa2(G). O

To complete the comparison between «,(G) and the k-star-forming num-
bers, we can wonder wether there exists an index k such that 7,(G) < sfy(G)
for every graph G. The answer is negative as shown by the following ex-
ample which generalizes the family satisfying v,(G) > sf2(G) given in (12].

The integer k& > 2 being given, let X be a set of |X| > k? vertices. For
each subset Y i,..5, = {¥i,, sy -, i, } Of k vertices of X, we consider a
set Zji,...i, of ¢ > 2|X| independent new vertices and join every vertex
of Zi,i,...i; to every vertex of Y ;,...,. The set X is a minimum k-star-
forming set of the resulting graph G and sfx(G) = |X|. To dominate G
without taking the g vertices of a set Z,,...;,, we need to take a set 4 of at
least | X| — k + 1 vertices of X. To make the dominating set total, we must
add at least [|A|/k] vertices from some sets Z. Hence v,(G) > |X| - k +
14+ m;—""’—l] > | X| = sfx(G). Moreover, the difference ,(G) — sfx(G) can
be made arbitrarily large. However, Theorem 3.4 gives a class of graphs in
which v,(G) < sfi(G).

Theorem 3.4 If G is a connected K 1,k-free graph with &£ > 2, then v, (G) <
sfx(G).

Proof If k = 2, then G is complete and sfo(G) = 7,(G) = 2. For k > 3, let
S Dbe a sf(G)-set and I the set of isolated vertices of S. If I = (), then S
Is a total dominating set and we are done. So we can assume that I # ().
Since G is K x-free, every vertex v in V'\ S has less than k neighbors in I ,
and since S is k-star-forming, u has at least one neighbor in S\ I. By the
connectedness of G, every vertex x of I has at least one neighbor in V \ S.
Hence there exists a set Y C V' \ S such that every vertex of I has at least
one neighbor in Y and |Y| < [I|. The set (S\I)UY is a total dominating
set of G of order at most |S|, which completes the proof. a

4 Star-irredundance

Irredundance has been defined as the property which makes a dominat-
ing set minimal [4]. Two possible definitions of the k-irredundance have
already been given (13, 7]. In the second one, the property characteriz-
ing a k-irredundant set was choosen as that which makes a k-dominating
set minimal. To completely generalize the classical scheme maximal inde-
pendent set - minimal dominating set - maximal irredundant set from the
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initial definition of the k-independence, we should consider the concept of
k-irredundance by the property which makes a k-star forming set minimal.
This gives

Definition A subset S of vertices of a graph G is k-star-irredundant if for
every vertex y € S

(i) ds(t) <k-1 Vte Nsly]
or

(ii) 3z € Ny\s(y) such that ds\(y}(z) =k — 1 and dg\(y} (2)<k-2Vze
Ns\(} (@)
or

(iii) 3¢ € Ns(y) and = € Ny\s(t) such that ds\(y} (t) =k —2,ds\(y} () <
k—1and d,g\{y}('w) <k-2Vwe NS\{'y,t}(x)-

This notion seems to be too complicated to lead to interesting results
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