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Abstract

Let G be a simple graph, and let p be a positive integer. A
subset D C V(G) is a p-dominating set of the graph G, if every
vertex v € V(G) — D is adjacent with at least p vertices of D. The
p-domination number v,(G) is the minimum cardinality among the
p-dominating sets of G. Note that the 1-domination number v1(G)
is the usual domination number ¥(G).

In 1985, Fink and Jacobson showed that for every graph G with
n vertices and m edges the inequality v,(G) > n — m/p holds. In
this paper we present a generalization of this theorem and analyze
the 2-domination number 72 in cactus graphs G with respect on its
relation to the matching number ao and the number of odd or rather
even cycles in G. Further we show that 72(G) > a(G) for the cactus
graphs G with at most one even cycle and characterize those which
fulfill v2(G) = a(G) or rather 12(G) = o(G) + 1.
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1. Terminology and Introduction
We consider finite, undirected and simple graphs G with vertex set V(G)

and edge set E(G). If multiple edges are allowed, we will specify the graph
as a multigraph, otherwise we will call it only graph. The number of vertices
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|[V(G)| of a graph G is called the order of G and is denoted by n = n(G).
The size m = m(G) of a graph G is the number of edges |E(G)|. If R
and S are subsets of the vertex set V(G) of a graph G, then we denote by
(R,S)e = (R, S) the set of edges in G with one end in R and the other in
S. The number of edges in (R, S) is denoted with mg (R, S) = m(R, 5).

The open neighborhood N(v) = Ng(v) of a vertex v consists of the
vertices adjacent to v and d(v) = dg(v) = |[N(v)] is the degree of v. The
closed neighborhood of a vertex v is defined by N[v] = Ng[v] = N(v)u {v}.
A vertex of degree one is called a leaf and its neighbor is called a support
vertez. An edge incident with a leaf is called a pendant edge. We denote
with L(G) the set of leaves of a graph G. For a subset S C V(G), we define
N(8) = Ng(5) = U,es N(v), N[S] = Ng[8] = N(S)U S, and G[9] is the
subgraph induced by S.

A block of a graph G is a maximal subgraph of G without cut vertices.
If every block of a graph is complete, then we speak of a block graph. We
write K, for the complete graph of order n, and K, ; for the the complete
bipartite graph with bipartition X,Y such that |X| = p and |Y| = q. The
corona graph G o K of a graph G is the graph constructed from a copy of
G, where for each vertex v € V(G), a new vertex v’ and a pendant edge
vv’ are added.

The subdivision graph S(G) of a graph G is the graph obtained from
G by replacing each edge uv of G by a vertex w and edges uw and vw.
In the case that G is the empty graph, we define S(G) = G. Let SS, be
the subdivision graph of the star Kj;. A bipartite graph G is called p-
semiregular if its vertex set can be bipartitioned in such a way that every
vertex of one of the partite sets has degree p.

A set of pairwise not incident edges of a graph G is called matching. A
matching My with maximum number of edges is a mazimum matching and
the number «o(G) = | My is called the matching number of G. Let M be
a matching of a graph G. A path is said to be M-alternating if its edges
belong alternating to M and not to M. A vertex and an edge are said to
cover each other if they are incident. A vertez cover in a graph G is a set
of vertices that covers all edges of G. The minimum cardinality of a vertex
cover in a graph G is called the covering number of G and is denoted by
B(G) = B. A set of pairwise non-adjacent vertices of G is an independent
set of G.

Let p be a positive integer. A subset D C V(G) is a p-dominating set of
the graph G, if |N(v) N D| > p for every v € V(G) — D. The p-domination
number v,(G) is the minimum cardinality among the p-dominating sets
of G. Note that the 1-domination number 7, (G) is the usual domination
number v(G). A p-dominating set of minimum cardinality of a graph G is
called a ,(G)-set.
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In [1], [2], Fink and Jacobson introduced the concept of p-domination.
For a comprehensive treatment of domination in graphs, see the mono-
graphs by Haynes, Hedetniemi and Slater (3], [4].

Recently, Volkmann showed in [6] that, if T is a nontrivial tree, then
72(T) > B(T)+1, and he characterized all such trees with v2(T) = 8(T)+1.
This implies that

(T) > A(T) +1 2 ao(T) + 1.

Applying the well-known identity 8(G) = ao(G) of Konig [5] for every bi-
partite graph G, we observe that, for a nontrivial tree T, v2(T) = 8(T) +1
if and only if v2(T") = co(T) + 1. As an extension of the inequality v2(T") >
ao(T) + 1 for nontrivial trees T, we show in this paper 72(G) > ao(G) +1
for all connected cactus graphs G without cycles of even length and for all
cactus graphs G of odd order and one even cycle.

2. Generalization of a Theorem of Fink and Jacobson
In (1], Fink and Jacobson presented the following theorem.

Theorem 2.1 (Fink, Jacobson [1], 1985) If G is a graph with n vertices
and m edges, then

m
1(G) 2 n— ;

for each p > 1. Furthermore, if m # 0, then 7,(G) = n - o if and only if
G is a p-semiregular graph.

We will now give a generalization of this theorem introducing a new
parameter p,, which represents the minimum number of edges that can be
removed from a graph G such that the remaining graph is bipartite.

Theorem 2.2 Let G be a graph of order n and size m. If yu, = po(G) is
the minimum number of edges that can be removed from G such that the
remaining graph is bipartite, then

—Ho

m
1(G) 2 n -
Additionally, if m # 0, then 7,(G) = [n — 23#] if and only if G contains

a p-semiregular factor H with m(H) = m — y, — r, where 7 is an integer
such that 0 < r < p—1and m — g, — r =0 (mod p).
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Proof. Let V = V(G) and let D be a v,(G)-set. Let K = (D,D)U (V —
D,V — D). Since G — K contains no odd cycles, it follows that |K| > p,.
As every vertex in V — D has at least p neighbors in D, it follows

m m(D,V-D)+|K| 2 p|V - D| + |K|

= p|V-=Dl+p = pln—7(G)) + pos
and consequently we obtain

7(G) > n - m_ Ko

Now assume that m # 0. Suppose first that 7,(G) =n— Eﬁpﬂ for an
integer 7 with 0 < » < p—1. Since m—p, > 0, it follows that v,(G) < n—1
and thus V — D can never be empty. Let H be the p-semiregular factor of
G such that the vertex sets D and V — D are both independent sets and
every vertex in V — D has exactly degree p. Since D is still a p-dominating
set of H, we obtain

lH) = p(G) =n - Bbe =l (2B, )

It follows that m(H) =m — p, — .

Conversely, assume that G has a p-semiregular factor H with m(H) =
m — p, — 7 for an integer r such that 0 <r <p—land m —p, — 7 =0 (
mod p). Let S be the partition set in H of vertices of degree p. Then
|S] = m(H)/p and V — S is a p-dominating set of H. This implies

7P(H)5|V_s|=n_|s|=n_T§THl

and thus, together with Theorem 2.1, V' — § is a vy,(H)-set. Since V — S is
also a p-dominating set of G, we obtain

WO <V =5l == T o T eTr

and so0 1,(G) =n - E‘F =[n— m—;ﬁ-ﬁ] follows. O

Observation 2.3 Let G be a connected graph and let T be a spanning
tree of G with partition sets A and B. Since T contains no cycles, it is
obvious that u,(G) < mg(A, A) + mg(B, B). Let now K be a set of edges
of G such that |K| = po(G) and G — K is bipartite and let A’ and B’
be the partition sets of G — K. Then G — K is connected and every edge
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e € K belongs either to (4’, A") or to (B', B'), otherwise it would contradict
the minimality of yo(G). Conversely, every edge e € (A’,A’) U (B', B')
belongs to K. This shows that yo(G) = |K| = me(A', A') + mg(B', B').
It follows that there is a spanning tree with bipartition sets A’ and B’ and
Lo(G) = mg(A', A’) + mg(B', B') and consequently

Bo(G) =
min{mg(A4, A) + mg(B, B) | A, B partition sets of a spanning tree of G}.

Lemma 2.4 Let G be the subdivision graph of a connected multigraph H
and n = n(G). Then 72(G) = ao(G) when 7 is even and a(G) < 72(G) <
09(G) + 1 when n is odd.

Proof. It is evident that the sets A := V(H) and B := V(G) \ V(H) form
a bipartition of G where all vertices in B are of degree 2, that is, G is a
2-semiregular simple graph. Since A is a 2-dominating set,

m(G)
2

holds and thus Theorem 2.1 implies that A is a 42(G)-set. Then it is clear
that ao(G) < 12(G).

Let M be a maximum matching of G and suppose that 2(G) > ao(G).
It follows that there has to be a vertex u € A such that u ¢ V(M). If n is
even, this implies that there is another vertex v # u such that v ¢ V(M). If
n is odd, assume that there is another vertex v # usuch that v ¢ V(M). Let
 be the first vertex in a path P from u to v in G such that z ¢ V(M) and let
P, be the part of the path P from u to z. It follows that z € B, otherwise
would P, be of even length and either z should be in V(M) or there would
be a vertex before z in P, that does not belong to V(M) (remember that
every vertex in B has degree 2). But then (M \ E(Py;))U(E(Puz)\ M) isa
matching in G with one more edge than M and we obtain a contradiction.
It follows that v2(G) = ag(G) when n is even, and that 72(G) < ao(G) +1
when n is odd. O

72(G) < |A] =n(G) -

Corollary 2.5 Let G be the subdivision graph of a connected multigraph.
If G has odd order and 72(G) = ao(G) + 1, then G contains an almost
perfect matching.

Proof. Since 72(G) = ao(G) + 1, following the proof of Lemma 2.4, this

implies that A = (V(M) N A) U {u} and B = V(M) N B and the proof is
complete. [
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3. Cactus Graphs

Since for cactus graphs G the parameter p,(G) equals the number of
odd cycles v,(G) in G, we obtain the following corollary from Theorem 2.2.

Corollary 3.1 Let G be a connected cactus graph of order n, size m and
v, cycles of odd length. If p > 1 is an integer, then

m-—v,

1(G) 2 n -

and, if m # 0, then 7,(G) = [n— "'—;"ﬁ] if and only if G has a p-semiregular
factor H with m(H) = m — v, — r for an integer » with 0 <r <p—1 and
m — v, —r =0 (mod p).

Corollary 3.2 Let G be a connected cactus graph of order n, size m and
ve cycles of even length. If p > 1 is an integer, then

p-1n—-ve+1
> .

(G) 2

Proof. This follows directly from Corollary 3.1 and the well known iden-
tity m = n + ve + v, — 1 for cactus graphs. (I

Theorem 3.3 If G is a connected cactus graph of order n with v, cycles
of even length, then

(1) 2(6) 2 00(C) +1- %],
and if n and v, are both odd, then
(2) 2(G) 2 a0(G) +2- [%].
Proof. Corollary 3.2 implies

n+1—ve

) n(@) > 2
Using the fact that ag(G) < %, it follows from (3) that

1-v,
2

and thus (1). If n is odd, then ao(G) < 252, and we deduce from (3) that

712(G) 2 a0(G) +

2-v,

12(6) 2 a0(G) + =
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This leads to (2) when v, is odd, and the proof is complete.

In the following figures we present examples which show that Theorem
3.3 is best possible.

Figure 1

The cactus graph in Figure 1 is of even order n = 10s + 4 with an odd
number v, = 2s + 1 of cycles of even length such that v = 45+ 2 and
ap = 53+ 2 and therefore equality in (1).

Figure 2

The cactus graph in Figure 2 is of odd order n = 10s — 1 with an even
number v, = 2s of cycles of even length such that 4o =4s and ap =55 -1
and therefore equality in (1).
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Figure 3

The cactus graph in Figure 3 is of even order n = 10s with an even
number v, = 2s of cycles of even length such that 4o = 4s+ 1 and ag = 5s
and therefore equality in (1).

Figure 4

The cactus graph in Figure 4 is of odd order n = 10s + 5 with an odd
number v, = 2s + 1 of cycles of even length such that v, = 45 + 3 and
ap = 55+ 2 and therefore equality in (2).
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Theorem 3.4 Let G be a connected cactus graph of order n and size m
and let v, = ve(G) and v, = v,(G). Then the following holds.

1) If nis odd and v, < 1, then 12(G) = ap(G)+1 and 72(G) = ao(G) +1
if and only if G has a 2-semiregular factor H with m(H) = m—v,—ve.

2) If n is even and v, = 1, then 72(G) > ao(G) and 72(G) = a(G) if
and only if G has a 2-semiregular factor H with m(H) = m — v,.

3) Ifnis even and v, = 0, then 12(G) > ap(G)+1 and 72(G) = 0p(G)+1
if and only if G has a 2-semiregular factor H with m(H) = m—v,—1.

Proof. 1) Let n be odd and v, < 1. From Theorem 3.3 follows directly

72(G) > ag(G) + 1. Assume now that 72(G) = ap(G) + 1. Then Corollary
3.2 leads to

(@) +1 = 1(C) 2 [—‘—

This implies 72(G) = [2=%+1], which is the same as n — B3, if v, =0,
and the same as n— %’1, if v, = 1. It follows that vo(G) = n— ==~
and so, by Theorem 2.2, G contains a 2-semiregular factor H with m(H) =
m— v — Ve.

Conversely, assume that G contains a 2-semiregular factor H such that
m(H) = m — v, — ve. It is easy to see that H is the subdivision graph
of a particular multigraph. Since H is bipartite, at least v, edges from
E(G) \ E(H) belong to pairwise different odd cycles of G and hence, as
ve < 1, H consists of at most two components, in such a case is one of
them odd and the other one even. Thus, Lemma 2.4 leads to ap(H) <
v2(H) € ap(H) + 1. According to (1) and (2), we obtain

(@) +1 2 aoH)+1 2 12(H) 2 72(G) 2 a(G)+1

and hence 72(G) = ao(G) + 1.

2) Let n be even and v = 1. From Theorem 3.3 follows directly that
72(G) > ap(G). Suppose that 12(G) = ao(G). Then, again Corollary 3.2
yields

20(C) = 12(G) 2 [#] =23 a(0)

This leads to the fact that v2(G) = n — Z3%2. Hence, applying Theorem
2.2, G has a 2-semiregular factor H with m(H) = m — v,.

Conversely, assume that G has a 2-semiregular factor H with m(H) =
m — v,. As above, H is the subdivision graph of a particular multigraph.
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Since H is a bipartite cactus graph, the set E(G) \ E(H) contains exactly
one edge of every odd cycle in G and thus H is connected. It follows with
Theorem 3.3 and Lemma, 2.4 that

ao(G) 2 ao(H) = 72(H) > 72(G) = ao(G),
which implies ag(G) = 72(G).

3) Let n be even and v. = 0. Theorem 3.3 implies that v(G) >
ao(G) + 1. Assume first that 72(G) = ao(G) + 1. Then, applying once
more Corollary 3.2, it follows

2 aO(G) + 1’

20(G)+1 = 1(G) > [”“"’e] _ n+2

2 2

which implies that y2(G) = n + %=+1 and thus G has a 2-semiregular
factor with m(H) =m — v, — 1.

Suppose now that G has a 2-semiregular factor with m(H) = m—v,—1.
With the same arguments as above, H consists of exactly two components.
If v2(H) = ao(H), then it follows, together with (1),

a0(G) 2 ao(H) = 72(H) 2 72(G) > ao(G) + 1,

which is a contradiction. Therefore, regarding Lemma 2.4, H has two odd
components H, and Hy with y2(H;) = ao(H;)+1 for at least one i € {1,2}.
If, say, v2(H1) = co(H,), then vo(H2) = ao(Hz) + 1 and thus, together
with (1),

ao(G) +1 ao(H) +1 = Cto(Hl) + ao(Hg) +1

>
= 7(H)+1(H) = v(H)
> 72(G) > a(G)+1,

which means that v2(G) = ao(G) + 1. Let now vo(H;) = ao(H;) +1 for i =
1,2. Let uv be an edge in G such that H + uv is connected (there has to be
such an edge since there are v, different edges in E(G)\ E(H) which belong
to pairwise different odd cycles of G). Let u € V(H;) and v € V(Hy). Let
M] be a maximum matching in H; and suppose that u € V(M]). Let
D and V(H;)\ D be a bipartition of H; such that D is a ~;(H, )-set and
V(H1)\ D consists of vertices of degree 2. Since v2(H;) = ap(H1)+1, there
is a vertex € D such that z ¢ V(M]). As H, is a connected bipartite
graph and since M is an almost perfect matching in H, (see Corollary 2.5)
and every vertex in V(H;)\ D has degree 2 in Hj, it follows that there is an
Mj-alternating path P from z to v. Then M; = (M]\ E(P))U (E(P)\ M})
is also a maximum matching of H; with v ¢ V(M;). Analogously, there
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is a maximum matching M, of H; such that v ¢ V(M2). It follows that
M = M; U M3 U {uv} is a matching in G and so, with (1),

a(G)+1 2 ao(H)+2 = 12(H) 2 7(G) 2 a(G)+1,
which implies that 72(G) = ao(G) +1. O

Corollary 3.5 Let G be a connected unicyclic graph of order n.
1) If n is odd, then 72(G) > ao(G) + 1 and 72(G) = ao(G) + 1 if and
only if there is an edge e € E(G) such that G — e is the subdivision
graph of a unicyclic multigraph.

2) Ifn and the unique cycle of G are both even, then 72(G) > ao(G) and
72(G) = ao(G) if and only if G is the subdivision graph of a unicyclic
multigraph.

3) If n is even and the unique cycle of G is odd, then 72(G) > o(G) +1
and 72(G) = ag(G) + 1 if and only if there are two edges e, f € E(G)
such that G—{e, f} is the subdivision graph of a unicyclic multigraph.

Proof. Since a 2-semiregular unicyclic graph is a subdivision graph of a
unicyclic multigraph and vice versa, the statements 1) - 3) follow directly
from Theorem 3.4. O
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