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Abstract

A Steiner tree for a set S of vertices in a connected graph G is a con-
nected subgraph of G of smallest size that contains S. The Steiner interval
I(S) of § is the union of all vertices of G that belong to some Steiner tree for
S. A graph is strongly chordal if it is chordal and has the property that every
even cycle of length at least six has an odd chord. We develop an efficient
algorithm for finding Steiner intervals of sets of vertices in strongly chordal
graphs.
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1 Introduction

Terminology not given here can be found in [2] and [3). The graphs we consider
in this paper are not weighted. We begin with an overview of convexity notions
in graphs, since Steiner intervals, the subject of this paper, also give rise to graph
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convexities. For a more extensive overview of other abstract convex structures see
[17].

Let V be a finite set and M a collection of subsets of V. Then M is an
alignment of V if and only if M is closed under taking intersections and contains
both V' and the empty set. If M is an alignment of V, then the elements of M are
called convex sets and the pair (V, M) is called an aligned space. If S C V, then
the convex hull of S is the smallest convex set that contains S. Suppose X € M.
Then, z € X is an extreme point for X if X — {z} € M. A convex geometry
on a finite set is an aligned space with the additional property that every convex
set is the convex hull of its extreme points. This property is referred to as the
Minkowski-Krein-Milman property (M K M) property.

Let G = (V, E) be a graph and u, v vertices of G. Then the geodetic interval
between u and v, denoted by I,[u, ] is the union of all vertices that belong to
some u — v geodesic, i.e., a shortest u — v path. A set S of vertices in a graph is
g-convex if S contains the geodetic interval between every pair of vertices in S.
It is easily seen that the vertex set V' of a graph G together with the collection of
all g-convex sets of G is an aligned space, which we will refer to as the geodetic
convexity. The geodetic closure of a set S of vertices in a connected graph G,
denoted by I, [S), is defined as Iy[S] = Uy veslg[u, v]. It is clear that the convex
hull, of a set T" of vertices, with respect to the geodetic convexity can be obtained
by repeatedly applying the geodetic closure operation until a set is obtained whose
closure is the set itself. If the convex hull of T is obtained by iterating only once,
then T is called a geodetic set for its hull.

If S is a set of vertices such that I,(S] = V(G), then S is called a geodetic
set for G. The cardinality of a smallest geodetic set for G is called the geode-
tic number of G, and is denoted by g(G). The problem of finding the geodetic
number of a graph is NP-hard (see [1]). Apart from the geodetic interval several
other interval notions have been defined and studied, see for example [7] and [5].
These naturally lead to other graph convexities for which corresponding extreme
vertices of convex sets have been characterized. If P is a property possessed by
an (extreme) vertex, then an ordering vy, vs, .. ., v, of the vertices of a graph is
a P-ordering if v; has property P in the subgraph induced by {v;, vi41,...,vn}.
Let P be a property that characterizes extreme vertices with respect to some graph
convexity. Several papers in the literature deal with the problem of characterizing
those classes of graphs for which every LexBFS ordering and MCS ordering of an
arbitrary induced subgraph is a P-ordering, see for example [5] and [10].
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When finding the closure of a set S of vertices in G we connect all pairs of
vertices of S by shortest paths. Another way of “optimally” connecting a set S of
vertices in a connected graph G is by Steiner trees.

A subtree T of G is an S-tree if T contains all vertices of S. An S-tree of
smallest possible size (i.e., number of edges) is called a Steiner tree for S and its
size, denoted by d(S) or dg(S), is the Steiner distance of S. The Steiner interval
for S, denoted I(S) or I(S), is the collection of all vertices of G that lie on some
Steiner tree for S. Thus if S = {u,v}, then I(S) = I[u,v]. Steiner intervals in
graphs were introduced and studied in [12]. Since the problem of finding Steiner
distances of sets of vertices in graphs is NP-hard, it is likely that the problem of
finding Steiner intervals for a set of vertices is, in general, very difficult. Several
classes of graphs, for which Steiner distances can be found efficiently, exist. In a
survey by Winter [19] solutions to the Steiner problem for several of these classes
are discussed. Among these classes is the class of ‘strongly chordal’ graphs that
we are considering in this paper. It was shown that for this class of graphs the
Steiner problem can be solved in polynomial time, see [18]. In the same article it
is shown that the Steiner problem for chordal graphs is NP-hard.

Steiner intervals define another interesting class of graph convexities. For
an integer £ > 2, a set S of vertices in a connected graph is k-Steiner convex
(kSC) if for any set T of k vertices of S the Steiner interval for T is a subset
of S, see [13]. It is not difficult to see that the vertex set of a graph together
with the kSC sets form an aligned space, which we call the kS-convexity. The
extreme vertices with respect to the 35-convexity, called the 3-Steiner simplicial
(38 5) vertices have recently been characterized, see [13]. Their characterization
imply the characterization of extreme vertices of a graph convexity studied in
[5]. Moreover, those classes of graphs for which every LexBFS ordering and
every MCS ordering of an arbitrary induced subgraph is a 35S-ordering have
been characterized [14].

Steiner intervals of sets of vertices in a graph have been of interest in another
graph problem. A set S of vertices of G is a Steiner geodetic set if I(S) =
V(G). The smallest cardinality of a Steiner geodetic set for G is called the Steiner
geodetic number of G (also called the Steiner number in {4]), and is denoted by
sg(G). The problem of finding the Steiner intcrval of a set S of vertices in a
graph G is of interest when studying relationships between g(G) and sg(G). It is
incorrectly claimed in [4] that g(G) < sg(G). A counterexample to this claim is
given in [16] and in [15] it is shown that in general there is no relationship between
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9(G) and sg(G) in the sense that g(G)/sg(G) can be made as small or as large as
we wish for specific choices of G. It is thus natural to ask for which graphs this
inequality does indeed hold.

In [15] it is shown that for a distance hereditary graph G the inequality g(G) <
5g(G) holds. Moreover, it is shown that every distance hereditary graph has a
unique Steiner geodetic set; and its cardinality is thus an upper bound for the
geodetic number. The focus of this paper is on ‘strongly chordal graphs’ a subclass
of the ‘chordal graphs’. (For definitions see below.) In [9] it is shown that every
Steiner geodetic set of an interval graph is also a geodetic set; thereby implying
that g(G) < sg(G) for this class of graphs. Moreover, the results of [15] show that
this is also the case for the distance hereditary chordal graphs (i.e., the ptolemaic
graphs). Both these classes are contained in the class of strongly chordal graphs.
Moreover, it is also shown in [9] that this inequality does not extend to the class of
chordal graphs. It is posed as an open problem in [9] whether this result holds for
strongly chordal graphs. In order to better understand Steiner intervals in strongly
chordal graphs, we develop an efficient algorithm for finding Steiner intervals for
sets of vertices in this class of graphs.

A graph is chordal if every cycle of length at least four contains a chord
(i.e., an edge that joins two vertices which are not adjacent on the cycle). If
C : vvy... 951U, is a cycle of even length, then a chord v;v; is an odd
chord if i — j is odd. A graph G is strongly chordal if it is chordal and if every
even cycle of length at least 6 has an odd chord. A polynomial algorithm for solv-
ing the Steiner problem in strongly chordal graphs was developed in [18]. In [6],
several characterizations of strongly chordal graphs are given. A characterization
most useful for our purposes hinges on the notion of a “simple” vertex. A vertex
v in a graph G is simple if for every pair u,w € N(v), either N[u] C N[w] or
Nw] C Nu). A graph G has a simple elimination ordering if its vertices can be
ordered as (vq,v2, .. .,vp) such that for each i(1 < ¢ < p),v; is a simple vertex
of G; =< {v;,¥iy1,...,vp} >, the subgraph induced by {vi, Vit1,...,Up}. A
graph G is strongly chordal if and only if GG has a simple elimination ordering (see

[6D.
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2
Finding Steiner Intervals in Strongly Chordal Graphs.

For the remainder of the paper we assume that G is a connected strongly chordal
graph and S a set of vertices of G. Moreover, we assume that o = [v;, v, . .. ) Up)
is a simple elimination ordering of V(G). We develop an algorithm for finding
the Steiner interval for S in G. We observe first that we may assume thatv; € S.
If v, is not in S, then Ig(S) = Ig—_o,(S); for if T is an S-tree containing vy,
then F =< V(T)\ {1} > is connected, since < Ng(v) > is complete, and
F contains S. So any spanning tree of F' is an S-tree of smaller size than T. We
may also assume that Ng(v;) NS = @; otherwise, our problem reduces to finding
Ig—v,(8\ {v1}), since in this case Ig(S) = Ig—v,(S \ {v1}) U {v1}. For the
remainder of this section we will thus assume that v; € S and that Ng(v;) NS =

0.

Lemma 2.1. Let v; be a simple vertex of of G. Let v} be a neighbor of v, having
maximum degree in G and let S' = (S \ {v1}) U {v}}. Then

(a) I(S") € I(S)

(b) I(S) € I(8') U Naun).

Proof. (a) By the algorithm established in [18], there is a Steiner tree for S con-
taining v{. Hence S’ C I(S). Suppose v € I(S") \ §’. Let T be any Steiner
tree for S’ containing v. We show that the tree 7" obtained from T" by adding
v; and the edge vyv) is a Steiner tree for S. Suppose there exists an S-tree Ts
such that |E(Ts)| < |E(T")|. Since v, is simple in G, < Ng(v1) > is complete.
We may thus assume that v; is a leaf of Ts. If v; is not a leaf of T's, then fix
Zo in Nrg(v1) and delete all edges viz for x # zo and add zzo. This produces
a tree containing S where v, is a leaf. However, then T's — v, is an $’-tree and
|E(Ts —v1)| < |E(Ts)| < |E(T)|. This contradicts the fact that T is a Steiner
tree for §’. So I(S’) C I(S).

(b) Let v € I(S). If v € Ng[v1]U S, then v € I(S’) U Ng[v1]. So assume
dg(vy,v) > 2 and that v € I(S) \ S. Let T' be a Steiner tree for S containing v.
Arguing as in the proof of (a), we may assume that v, is a leaf of T. Let z be the
neighbor of v in T. Then v # z. If T = v}, then we let Ts = T. If = # ], then
Ng[z] € Ng[v,] and we let Ts be the tree obtained from T — z by adding v} and
all the edges uv] where uz € E(T). Arguing as in (a) we can show that Ts — v,
is a Steiner tree for S' that contains v. Hence I(S) C I(S') U Ng{v;]. O
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Let G, S and ' be as in the hypothesis of Lemma 2.1. Then I(S) can be
found by finding I(S’) and adding to this set all those vertices of Ng[v;] that
belong to I(S). So I(S) = I(S") U (Ng[n1] N I(S)). Since v1,v} € I(S), it
suffices to determine which v € N(v;) \ {v}} belong to I(.S). In what follows we
establish a series of lemmas that will help us to prove the following theorem.

Theorem 2.2. Let G, S, ', vy and v be asin Lemma 2.1. Letv € N(v;)\ {v}}.
Then v € I(S) if and only if v is adjacent with at least one vertex from each
component of < I(S'}\ {v{} >.

Proof. (ncccssity) Observe first that if T is a Steiner tree for S, then |V(T) N
N(v;)| = 1; otherwise, some Steiner tree for S contains at least two vertices of
N(v). Letz,y € V(T) N N(v1). If v} € {z,y}, say v{ = z, then < V(T) \
{y} > is a connected graph that contains .S and has order less than the order of T
This is not possible since T is a Steiner tree for S. If v & {z,y}, then < (V(T)\
{z,y})u{v}} > is a connected graph that contains S, since N[z)UN[y] C N[v}].
Once again, this contradicts the fact that T is a Steiner tree for S. Hence every
Steiner tree for S contains exactly one vertex of N'(v;). Thus if v € I(S)NN(v,)
and T is a Steiner tree for S containing v, then v, is a leaf of T" and vv; € E(G).
So T — vy is a Steiner tree for (S'\ {v1}) U {v}. Since N[v] C N[v}}, the tree T’
obtained from T" — v, by replacing v with v} must be a Steiner tree for S’. So the
vertices of T” are in I(S”). Thus v is adjacent with at least one vertex from each
component of < I(S’) \ {v}} >, since v is adjacent with at least one vertex from
each component of T — ». O

Proof. (sufficiency) We establish a series of lemmas.

Lemma 2.3. The number of components of J =< I(S’) \ {vi} > equals the
number of components of A =< I(S') N N(v}) >.

Proof. Let A, A,,. .., A,, be the components of A and let J;, J,. .., J, be the
components of J. Since I(S’) is connected each component of J has a vertex
adjacent with v{. Hence J has at most m components, so n < m. If A; and
A;(i # j) belong to the same component of J, then G has a cycle of length at
least 4 without a chord, which is not possible. Thus mm < n. The lemma now
follows. O

Let A;,J; (1 < i < m) be as in the proof of Lemma 2.3, and let S} =
(SNV(J))U {vi}. We may assume that A; is contained in J; for 1 < i < m.
Then a Steiner tree T" for .S’ can be obtained by finding a Steiner tree T} for S for
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all 4 and taking the union of these trees T;. Also if T" is a Steiner tree for S’, then
the edges in E(T") N (E(J;) U {v{z|z € V(A;)}) form a Steiner tree for S;. We
will prove the sufficiency of Theorem 2.2 by showing that if v € N(v;) is such
that v is adjacent with some vertex of A; for 1 < i < m, then there is a Steiner
tree T} for S} such that v} is a leaf of T} and such that v is adjacent with some
vertex y; of V(T}) N V(A;). A Steiner tree for S containing v can be obtained
from the union of the trees T} — v}, 1 < ¢ < m by adding the vertices v and v,
and the edges v1v and vy;, for1 <7 < m.

For the remainder of this section, we assume that A is connected. Let Hy =<
N¢(v1) >, Hi = A and H, the subgraph induced by all vertices of I(S’) at
distance 2 from v} in < I(S’) >. Soif x € V(H,), then dg(z,v}) = 2,z €
I(S’) and z is adjacent with a vertex of Hj.

Suppose H; has components Fi, Fa,...,Fx. Forl <i < kletHp, = {z €
V(H,)|zz € E(G) for some z € V(EF;)}.

Lemma 24. Let z € V(H3) and suppose x,y € V(Hy) are such that xz,yz €
E(G). Then zy € E(G).

Proof. Since z € V(H,), d(v},2) = 2. So vjz € E(G). Since vizzyv; is a
4-cycle and G is strongly chordal, we now have zy € E(G). D

Lemma 2.5. If z,y € Hp, then zy € E(G) and z and y have a common
neighbor in F;.

Proof. Let 2,y € Hf,. By definition N(z; F;) = N(z) N V(F;) and N(y; Fi) =
N(y) N V(F;) are both nonempty. If N(z; F;) N N(y; F;) # 0, then the result
follows from Lemma 2.4. If N(z; F;) N N(y; F;) = 0, let P : z122...3 be
a shortest path in F; from N(z; F;) to N(y; F;); such a path exists since F; is
connected. By our choice of P, | > 2, zzy,yz; € E(G) and zz; € E(G)
for2 <t <landyz; € E(G)forl < s < l. So P followed by z;yvizz:
if zy ¢ E(G) (or zyyzz; if zy € E(G) is a cycle of length at least 5 (or 4,
respectively) without a chord which is not possible. Hence z and y must have a
common neighbor in F;. The lemma now follows from Lemma 2.4. O

Thus Hp, induces a complete graph in G. For the remainder of the paper let
Hy; be the subgraph of G induced by the vertices in Hy and Hj.

Lemma 2.6. Let v; € Hp, be such that degp,, (vi) > degn,, (y) forally € HF,.
Then Ny, |y € N, [v) forally € Hp,.
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Proof. Assume, to the contrary, that there is a y € Hp, and hy € Ny, [y] \
Ny, [vz']' Since degHon (vi) 2 degn,, (y), there is an hy € Ny, [vi] \ Ny, [y]
By Lemma 2.5, v;y € E(G), and v; and y share a common neighbor z which lies
in F;. By assumption h,v; and hyy are not edges of G, and since dg (v}, z) = 2,
v1z € E(G). So vihyyzv;hev] is a 6-cycle without an odd chord (see Figure 1).
This is not possible in a strongly chordal graph. The lemma now follows. O

Vi

Figure 1: A 6-cycle without odd chords

Lemma 2.7. Let H' be the subgraph of H, induced by those vertices y such that
Nag(y)NV(Hy)=0. Then V(H') C S.

Proof. Lety € V(H'). Let T be a Steiner tree for S’ containing y. We may
assume that v] is in T for if the unique vertex v of Hy that belongs to T is not v},
then we can replace v with v, i.e., we delete v and add v{ as well as the edges
v) z for all z such that vz € E(T'). We show that there exists a Steiner tree 7 for
S’ in which degr (y) = 1.
Case 1 vjy € E(T). Since v} is the only vertex of T' in Hy, N7(y) C V(H;) U
{v1}. Soif yz € E(T) for z € Nz(y) \ {v}}, we can delete yz and add vz to
-obtain a new tree containing S’ where the degree of y is less than in T. We con-
tinue in this manner until v} is the only neighbor of y and let 7" be the resulting
tree. Thus y € S; otherwise, T’ — y is a tree that contains S’ and has fewer edges
than T'. This contradicts the fact that T is a Steiner tree for 5.
Case 2 yv] ¢ E(T). Then there is a v| — y path in T. Moreover, this path is
unique; otherwise, T has a cycle. For all z € Nr(y) \ {v}} such that x does not
lie on the v} — y path in T", remove the edge yx and replace it with v}z to obtain
atree T'. Then |E(T")| = |E(T)|. Also degr:(y) = 1, since there is a unique
v} —ypathinT. AsinCase 1,y € $'. O
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Let B be the intersection graph for the collection of sets Hp, , Hp,, ..., Hr,,
i.e., the vertices of B are Hp,,...,Hp, and Hp, Hp; € E(B) if and only if
Hp, N Hg; # 0. Suppose B has components Cj, . .., C;.

Lemma 28. For 1 < s < t, Cs is a complete graph. Moreover, if V, =
U{HF,|HF, € V(Cs)}, then V, contains a vertex y, that is adjacent with ev-
ery other vertex of V.

Proof. Suppose C; is not complete. Then there exist vertices Hr, and HF; such
that de, (Hp,, Hr;) = 2. Let Hp, Hp, HF; be a path of length 2 in C;. Let
v; € HF, be such that degp,, (v;) > degr,, (y) for all y € Hp,. Since both H,
and Hp, induce complete graphs, it follows from Lemma 2.6, that v; is adjacent
with every vertex of Hr, and Hg,. Sov; € Hp, N Hp,. Also if v; € HF, is such
that degp,, (vi1) > degn,, (y) for all y € Hp,, then, by Lemma 2.6, Ny, [y] €
NHm [‘Ul] for all Yy € Hp,. So NHm ['Ui] - ]Vyo1 [‘U;], and NHN [’U(] - NHo; [‘Ui].
Thus N, (vi] = Npo, [vi]. Similarly if v; € Hp; is such that degp,, (v;) 2
degHm (y) forally € HFJ. , then NHm [’Uj] = NHm [v,] = NHm [’U,']. So Hp,. r\HpJ.
is nonempty. But then Hr, Hr, € E(B), contrary to our assumption. The first
part of the lemma now follows. For the second part of the lemma let Hp, be a
vertex of C; and v; € Hp, be such that degy,, v; > degn, y forally € HF,.
Then v; € Hp, for all j such that Hr; € C, and N, [y] C Ny, [v;] for all
y € V. The second part of the lemma follows with y,=v;. O

Lemma2.9. Ify, is chosen as in the Proof of Lemma 2.8, then y, is adjacent with
every v € Ng(v1) such that vz € E(G) for some x € V.

Proof. Suppose vz € E(G) for some z € V,,  # y,. Since, by Lemma 2.6,
Ny, [2] € N, [ys), we have vy, € E(G). O

Lemma 2.10. Let H' be as in Lemma 2.7 and suppose U C V (H,) is such that
V(H)YU{y]l <i<t} CU. Then < U > is connected.

Proof. Let Cy,Cs, .. ., C, be as described prior to Lemma 2.8. Suppose By, B2, . - .

are the components of H'. Let H} be the graph with vertex set {C1, Co, . . -, Ci}u
{Bi1,Bs,...,B,}and edge set {C;Cj|some vertex of V; is ad- jacent with some

vertex of V}, 1 < i < j < t} U{C;Bj|some vertex of V; is adja- cent with some
vertexof Bjfor1 <i<tand1<j <r}.
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Since H, is connected, so is Hj. Moreover, by Lemma 2.6, if C;B; € E(H}),
then y; is adjacent with every vertex of B; that has a neighbor in V;. Also if
CiC; € E(H)), then y;y; € E(G). Since y; is adjacent with every vertex of V;
(1 £i<t)yandasy; €V, the graph C! =< UNV; > is connected. Since
CiC; € E(H)) if and only if there is an edge from Cjto Cj for 1 <i < j <t
and as C;B; € E(Hj)for1 < i < tand1 < j < rif and only if a ver-
tex of C; (namely y;) is adjacent with a vertex of B3;, the subgraph induced by
U = (Ui=, V(C))) U (U5, V(By)) is connected.

Using arguments similar to those used in Lemma 2.3, we can show that H” =<
I(S)\ (V(H") U {v1}) > has t components H{,Hy,...,H}', such that H
(1 < i < t) contains the vertices of exactly one V, (1 < s < t). We may as-
sume that the components H}' and sets V, have been indexed in such a way that
Vs CV(H)forl < s <t Let S =8N (V(H]')U{v}}). Then S¥ must
contain at least two vertices of S’. Recall if T is a Steiner tree for S’, then any
spanning tree of < (V(H;') U {v{}) N V(T) > is a Steiner tree for S’. More-
over, a Steiner tree for §’ can be obtained by finding a Steiner tree T}’ for S/ in
< V(H)U{v1} > for1 < i < t, and then identifying these T}"’s in v} and
finally adding the vertices of H' and all edges of the type v{z where z € V(H’).

Let y; be as in the proof of Lemma 2.8. Suppose Ty, is a Steiner tree for S’ that
contains y; and let T}’ be a Steiner tree for S}’ in < (V(H) U {v}}) NV (T},) >
for1 <4<t Theny;isin T Let U = Ui_, (V(H,) N V(T)))u V(H'). By
Lemma 2.10, < U > is connected. By the above, there is a Steiner tree for S’
with vertex set 7 = V(H') U (Ui, V(T")). Since U C T \{v}{} andas < U >
is connected, < T \{v{} > is connected. Let T' be any spanning tree for < 7
\{v1} > and let 7" be T" together with v} and any edge v}z where z is in U. Then
T’ is an S’-tree and T” is a Steiner tree for S’ since each T is a Steiner tree for
Siin< V(H)U {v{} >. Ifv € N(v,) \ {v}} is adjacent with some vertex
of H,, then v is either adjacent with a vertex of H' or with a vertex of some V,
(1 £ s < t). Ineither case v is adjacent with a vertex of U. In the former case
this follows from the fact that V(H’) C U and in the latter case this follows from
Lemma 2.9. So T together with v and v, and the edges v, v and vz for some z in
U is a Steiner tree for S. This completes the proof of Theorem 2.2. O

‘We now describe an algorithm that determines, for a strongly chordal graph G
and set S of vertices of G, the Steiner interval for S. Let o = [vq,v2,...,v,) be
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a simple elimination ordering of V(G).

Algorithm To find the Steiner interval I(S) of S. (Step 2 finds a Steiner tree for
S and Step 3 finds all other vertices that belong to some Steiner tree for S.)

1. I{S) « S;
Forj=1,2,...,p
CHECK (v;) — 0;
1+—1;

G1<—G.
2. Whilei < pdo

() If v; & I(S)
Git1 < Gi — v
i « i + 1; and repeat Step 2

(b) If v; € I(S) and Ng, (v;) N I(S) # 0
Giy1— Gi —vi;
i « 1 1; and repeat Step 2

(c) If v; € I(S) and Ng,(v;) N I(S) = 0 let v; € Ng,(v;) be such that
degg,vi > degg,v for all v € Ng, (v;);
I(S) — I(Syu{v;};
CHECK (v;) « Ng,(vi) \ {vi};
Giy1 < Gi — i3
i « i+ 1; and repeat Step 2

otherwise go to Step 3.
3. Whilei > 1do
(a) {CHECK (v;) =0
i «— i — 1; and repeat Step 3

() i. If CHECK (v;) # 0, then for each z € CHECK (v;) if z is
adjacent with a vertex from each component of < Ng,(v;) N
I(S) >, then ADD(z) = T;; otherwise, ADD(zx) = F.
ii. I(S) — I(S)U{z € CHECK(v;)|lADD(X) =T}

iii. 7 « 7 — 1; and repeat Step 3
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otherwise go to Step 4.

4. Output I(S) and stop.

The correctness of this algorithm can be proven by induction on the order of
the graph and using Theorem 2.2. In particular after passing through Step 3 for a
given i, I(S) N V(G;) is the Steiner interval for SNV(G;). .

The algorithm can be executed in O(|V||E|) time for a connected strongly
chordal graph G = (V, E). As pointed out in [18] Step 2 has complexity O(|V|?).
Since the components of the subgraphs in Step 3 can be found in O(maz{|V|, | E|})
time, Step 3 can be performed in O(|V'|| £]) time. So the algorithm has complexity
O(IVII&]).

3 Closing Remarks

In this paper we developed an efficient algorithm for finding the Steiner interval
of a set of vertices in a strongly chordal graph. The problem of determining a
relationship between the geodetic and Steiner geodetic number of these graphs
remains open as does the problem of determining a procedure for finding a Steiner
geodetic set in a strongly chordal graph.
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