A Multilevel Cooperative Tabu
Search Algorithm for the Covering
Design Problem

Chaoying Dai, (Ben) Pak Ching Li
Department of Computer Science, University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada
Michel Toulouse
CIRRELT, Université de Montréal
Montréal, Québec H3C 3J7, Canada

Abstract

We propose a multilevel cooperative search algorithm to com-
pute upper bounds for Cj(v,k,t), the minimum number of blocks
in a t - (v,k,\) covering design. Multilevel cooperative search is a
search heuristic combining cooperative search and multilevel search.
We first introduce a coarsening strategy for the covering design prob-
lem which defines reduced forms of an original ¢ — (v,k,) problem
for each level of the multilevel search. A new tabu search algorithm
is introduced to optimize the problem at each level. Cooperation
operators between tabu search procedures at different levels include
new re-coarsening and interpolation operators. We report the results
of tests that have been conducted on 158 covering design problems.
Improved upper bounds have been found for 34 problems, many of
which exhibit a tight gap. The proposed heuristic appears to be a
very promising approach to tackle other similar optimization prob-
lems in the field of combinatorial design.

1 Introduction

At — (v,k,)) covering design is a pair (X,S), where X is a set of size
v, called points, and S is a set of k-subsets of X, called blocks, such that
every t-subset of X is contained in at least A blocks of S. Let Ci(v,k,t)
denote the minimum number of blocks in any ¢ — (v, k,) covering design.

JCMCC 68 (2009), pp. 33-65

A t — (v,k,}) covering design is optimal if it has Cy(v,k,t) blocks [18].
The covering design problem is the problem of determining the value for
Ci(v, k,t).

The covering design problem has a long history. Many theoretical pa-
pers have been written on this problem. This is also a problem that has
several important applications in cryptography [22], data compression (9],
and lottery design [6]. However, the covering design problem is extremely
difficult to solve, solutions exist only for a small set of parameters. For most
parameters, only upper bounds for Cy(v, k, t) are known. One research di-
rection to improve upper bounds for Cy(v, k,t) investigates methods that
construct explicitly covering designs. Constructive methods include de-
terministic constructive methods such as dynamic programming techniques
[14], implicit enumeration methods such as Branch-&-Cut [16] and heuristic
search methods (19, 20]. The object of the present research is the introduc-
tion of a new heuristic method for computing upper bounds for the covering
design problem.

Our heuristic is a multilevel cooperative search [21, 26], a multi-search
technique that can cope efficiently with non-trivial characteristics in some
optimization problems. Multilevel cooperative search combines cooperative
search (5, 15] and multilevel search [1, 27]. In a cooperative search, several
search procedures are run concurrently and independently while optimizing
the same cost function. Cooperation is based on operators which allow a
particular search procedure to use attributes of solutions found by other
search procedures to guide its own search steps. Multilevel search applies
multigrid/multilevel methods for numerical approximation [3] to discrete
optimization problems. In the initial phase of a multilevel search, the source
problem is coarsened into a smaller problem, for example, by reducing the
number of decision variables. A best solution (elite solution) is computed
for the coarsened problem. Next, a search heuristic for the source problem is
initialized with a solution interpolated from the elite solution. This scheme
can be applied recursively, coarsening the domain of a coarsened problem
P; in order to find a good solution to initialize search at level ¢, thus the
name multilevel. The recursively coarsened problems are interpreted as a
hierarchy of approximations of the source problem.

Multilevel cooperative search algorithms make use of the hierarchy of
coarsened problems approximating the source problem to partition the
search space for the multi-search. Together, the coarsened problems and
the source problem are solved concurrently, for example, as in our case,
using one independent sequential search procedure per level. In the present
multilevel cooperative search algorithm, a new tabu search heuristic com-
putes, at each level, upper bounds for Cy(v, k,t). This tabu search heuristic

34

optimizes a simple integer cost function, which models the problem of find-
ing covering designs as a combinatorial optimization problem. This cost
function arises directly from the definition of the covering design problem
[19]. It is characterized by large plateaus in which solutions “close” to each
other in the neighborhood structure of search methods have similar cost.
Plateaus are problematic to local search heuristics because of the lack of
effective gradient in the neighborhood.

Three cooperation operators complement the neighborhood structure
and short-term memories of tabu search to provide search directions in the
search space of this cost function. The “interpolation” operator restarts
the tabu search procedure at level ¢ whenever it seems to be wandering in
a plateau of the cost function. This re-initialization is based on an elite
solution computed at the adjacent level i + 1. We also apply cooperation
to identify regions of the search space where overall cost-improving solu-
tions can be made, particularly at the level of the source problem. For this
purpose, we introduce two new cooperation operators for multilevel cooper-
ative search: a multilevel re-coarsening operator and a direct interpolation
between the source problem and the top most problem of the hierarchy
(level 1).

Our re-coarsening strategy exploits a characteristic of the covering de-
sign problem seen as a subset problem: b, the number of blocks in subsets
representing feasible solutions, is very small compared to the whole set of
() blocks. Therefore, as attributes of the solutions that can be applied
to re-coarsen problems, we use blocks of elite solutions from several lev-
els. More precisely, let Ey, Ey, ..., E;—1 be respectively the elite solution of
levels 0,1,...,i — 1. The “multilevel re-coarsening” operator copies blocks
from EB; = EqUE,U---UE;_; inaset A; C (}) that defines the coarsened
problem at level i. In particular, set A; is kept very small such that coars-
ened problem P, is almost exclusively defined in terms of elite solutions
from the other levels. The “direct interpolation” operator restarts tabu
search for the source problem with solutions computed by tabu search at
level I. Direct interpolation is a very successful strategy to initialize search
such that improving solutions are found by tabu search. We credit this op-
erator for the most significant overall cost improvements of this multilevel
cooperative search algorithm.

The main contributions of this research are the following: A new heuris-
tic method, a multilevel cooperative search, is introduced for computing
upper bounds for C,(v,k,t). The search method for this heuristic is a
new tabu search heuristic, which in our tests, outperformed the optimized
simulated annealing code [20]. Contributions are made to the design of mul-
tilevel methods for re-optimization, re-coarsening and interpolation. The

35

direct interpolation operator is quite significant in terms of the originality
of the approach, its impacts on the performance of the present multilevel
cooperative search algorithm and the possibilities for generalization to other
multilevel methods and other problems. Our multilevel cooperative search
algorithm is a useful development among constructive methods. Numerical
results indicate that this is by far the best search heuristic for computing
upper bounds on Cy(v, k, t).

The subsequent sections of this paper are organized as follows. Sec-
tion 2 provides some background on the covering design problem. Section
3 introduces a mathematical programming model for computing covering
designs and a coarsening algorithm to reduce the size of problem instances
in this model. Section 4 describes our tabu search algorithm for covering
designs. Section 5 describes the multilevel cooperative search algorithm.
Section 6 reports experimental results. Finally, we conclude in Section 7.

2 Background on covering design

The study of covering designs began around the end of the 1930’s. Turan
(see [6]) was one of the first researchers to study covering designs. Since
then, many researchers have studied covering designs from various direc-
tions. One such direction is the determination of Cy(v,k,t) by means of
computer programs. Because the exact value of Cy(v, k,t) has been com-
puted only for small set of values for v, k, t and A, most research on cov-
ering designs has focused on determining the upper and lower bounds for
Cx (v, k,t). In this section, we briefly describe some important results about
the lower bounds and upper bounds for Cj (v, k, t).

The Schénheim lower bound (Lj(v,k,t)) [24] provides a lower bound
for Cy (v, k,t) given by:

La(v, b, 8) = [3 [Z: i [z::ii,\w H < Ch(v, ky2).

k
This bound is a very good general lower bound for Cy(v,k,t). For many
values of v, k, and ¢ where C) (v, k,t) is known, Ly (v, k, t) attains the value
Ci(v, k,t) [17].

In 1963, Erd8s and Hanani [8] conjectured that for fixed values of ¢ and
k, where t < k. .
k,t
tm SO0

()

36

This result was shown to be true in 1985 by R6dl (23], using probabilistic
methods. This result implies that Cy(v, k,t) = (1+ o(l))%i%.

Various techniques have been used to construct covering designs [14].
One of the earliest constructions involved using finite geometries to con-
struct covering designs. For example, it has been found that the hyper-
planes of the affine geometry AG(t,q) form an optimal (¢, ¢*~!,t) covering

design with 9-:_;]"1 blocks. Another common approach is to use recur-
sive techniques for constructing covering designs from smaller covering de-
signs [19]. For example, if S is a t — (v — 1,k, X) covering design and S,
isa (t—1)— (v— 1,k — 1,)) covering design, then a t — (v, &, A) covering
design can be constructed by taking all blocks from Sz, adding a new point
v to each of these blocks, and including all blocks from ;.

Exact search methods have also been used to construct covering designs.
Bate {2] developed a backtracking algorithm to exhaustively search for gen-
eralized covering designs to determine Ci(v,k,t). In 2003, Margot [16]
used integer programming techniques, branch-and-cut and isomorphism re-
jection to design an algorithm for computing Ci(v,k,t). However, such
algorithms are effective for only a few set of parameters.

Recently, neighborhood based search heuristics (local search, tabu search,
simulated annealing) have been developed to compute upper bounds on
Cx(v,k,t) [19, 20]. An elaborated version of the simulated annealing al-
gorithm in [20] has been coded and is publicly available. This program
is extensively used for seeking improved upper bounds to covering design
problems.

3 Problem formulation & coarsening

The problem of finding covering designs is formulated as an integer pro-
gramming problem. Next, a coarsening strategy is described for this for-
mulation.

3.1 Problem formulation

Let (%) denote the set of all k-subsets in X. Assume b is an integer strictly
smaller than the best known upper bound for Cy(v,k,t). The search for
a covering design with b blocks is guided by a cost function in () integer

decision variables. A decision variable d; models a block s € (),f). The

37

domain of each decision variable is the set {0,1,...,b} of integers. The
value of decision variable d; represents the number of times block s is
included in a solution S.

Let ()t() denote the set of t-subsets and assume ¢ < k. Then, there are

() members in (¥). The cost c(S) of a set S of b blocks is defined in terms
of the difference between A and the number of times a ¢-subset is covered
by blocks in S. This difference is summed over all the ¢-subsets:

o8) = > max{0,A- > di(ycCs)} 1)

ve(?) se (%)

When ¢(S) = 0, all ¢-subsets are covered at least A times, indicating a
t — (v, k, A) covering design with b blocks has been discovered. The integer
programming formulation is:

min Eye(’f) max{0, A — Ese(f) ds(y C s)}
subject to: (2)
ds € {0,1,...,b}

s di=0

The cost function in (2) is the reformulation of a discrete optimization
model for covering designs introduced in [19]. In this paper, we will re-
fer equivalently to a set S of b blocks as a feasible solution to the above
mathematical program. Similarly, the search space S of integer vectors, as
defined in (2), is expressed in terms of sets of blocks in (%) as follows:

S={Sc (f)||5|=b}. (3)

3.2 Coarsening strategy

We describe a coarsening strategy for problem instances of the above model.
Our coarsening strategy generates a hierarchy of increasingly smaller prob-
lems by reducing the size of the initial set of blocks (}) into a nested
sequence of increasingly smaller sets A;, Az,...,A; such that A; C A;_; C
-« C A C A = (),f) Each set A; defines a search space S; = {S C
A;||S} = b} and a problem P; which is to minimize ¢(S), S € S;. Since

38

Aiy1 C A, 81,82,...,8 is a hierarchy of increasingly smaller search spaces
where

SICS-1C---C& CS=S. (4)

Each solution S € &; is also a solution of §;_1,S;—2,...,S0.

A single data structure, an integer array M of size (}), stores the sets
Ap to A;. All entries of M are initialized to “0”. Then, |A;| entries in M
are selected randomly and are assigned the value “1”. Next, |A2| entries
among those with value “1” are selected randomly and assigned value “2”.
This same action is applied to set A; in order to compute set A;y; until
|A;| entries of M are assigned value .

The number of blocks in set A; is based on the coarsening factor cf.
This coarsening factor is function of the total number of blocks (Z) in the
source problem, the number of levels (I + 1) and the cardinality of the
smallest set A;. The coarsening factor cf is computed as follows:

() = (4 x (¢ +1)

of G+ xi

(5)

A block s belongs to set A; if M[s] > i. The number of blocks that
belong to A; is

8 i
Ad = Sl 2 9) = - i+ 1) x 4+ LT D scep)
i=1

We also define an exclusive partitioning of set ()k() A block s belongs
strictly to A; if M[s] = i. The number of blocks that belong strictly to 4;

is S, (M) =) = | 4d] + (1 =) x ef.

4 Tabu search for covering design

Tabu search (10, 11] is a well known search heuristic technique which has
been applied to a broad range of combinatorial optimization problems [12].
Our tabu search heuristic extends the tabu heuristic in [19] with two new
tabu lists and a diversification phase.

39

4.1 Neighborhood structure

A solution S’ € S is a neighbor of S (denoted as S’ € N(S)) if S’ has b— 1
identical blocks with S and one block s’ € S’ differs from a block s € S by
exactly one point. For each block s € S, there are v — k points not in S.
Therefore, the size of the neighborhood N (S) is relatively small:

IN(S)| =bx k& x (v—k). &)

Since NV (S) is small, tabu search evaluates neighborhoods exactly. Given
a current solution S, the best neighbor is selected by applying the following
transition rule:

5 =min{c(5") | §' € Ni(5)}. (8)

To speed-up computation, the neighborhood of each solution S € S and
the cost of each neighbor is stored in tables [20). Computing the cost of a
neighbor is reduced to reading a few entries in these tables. The mapping
function in [25] is used to rank the (}) blocks and to index the tables.

Note, each tabu search procedure at each level i has a different neigh-
borhood structure A;. The neighborhood of solution S € S; is defined

as:
_ [0, S¢S
Ni(S) = { S, 8 € 8;and S’ € Np(S). ®)

It follows from relations 4 and 9 that if § € S;, then the neighborhood of
Sin §;_1,8i-2,...,80 is such that

Ni(S) € Nia(S) € --- € No(S). (10)

4.2 Tabu lists

The application of transition rule (8) is a transformation (s’ — s) of the
current solution S that brings a block ¢’ in S and removes from S a block
s. Two tabu lists prevent short term cycling. A first tabu list prohibits
the reversal of recent transformations. It prohibits the opposite transfor-
mation (s — s') by storing transformation (s — s’) in the tabu list. In
order to control situations where (s’ — s){(s — t)---(t — §')(s' — 3), the
transformation (s’ — s) is also stored in this first tabu list.

In plateaus of the cost function, some same blocks have tendency to
swap in and out from the current solution. A second tabu list disallows

block s’ from leaving S for a predefined number of iterations after enter-
ing S. This second tabu list greatly improves the performance of our tabu
search heuristic compared to the tabu search heuristic in [19]. However,
because this tabu list imposes strong limitations on the exploration of the
search space, it is kept very short. Furthermore, the second tabu list su-
persedes the first one. That is, if s’ is prohibited from leaving S following
a transformation s’ — s, then the opposite transformation s — s’ cannot
occur (See [4] for an application of tabu search with multiple tabu lists).

The length of the two tabu lists is set randomly inside a certain range.
This range is determined by an input parameter ¢. For example, the length
of a tabu list can be selected randomly to be one of the values in the range
t—2tot+ 2. The first tabu list is less constraining on the search, we
usually set ¢;, which determines the range of this tabu list, as twice the size
of t2, which determines the range of the second tabu list.

4.3 ‘Termination criterion

The tabu search procedure terminates after completing a predefined number
of iterations without improving the best solution.

4.4 Diversification phase

For levels 0 to ! — 1, once the termination criterion is partly satisfied (i.e.,
once the number of tabu search iterations without improving the best solu-
tion reaches half the value of the stopping criterion, line 7 in Figure 1), the
cost of the current best solution £ is compared with the cost of the initial
solution (line 8). If ¢(E) < ¢(sol-init), an improving solution has been
found, search continues until the termination criterion is fully satisfied. If
c(E) £ c(sol_init), it is assumed an improving solution is not likely to be
found. Then, tabu search initiates its diversification phase (lines 10 and
11).

During the diversification phase, tabu search executes a predefined num-
ber of iterations rs with the following transition rule:

S = min{c(S")|S’ € Ni(S) and M[s'] = i}. (11)

The condition M|s’] = i ensures that for each transformation (s’ — s), the
block s’ entering in the current solution S belongs strictly to A;. During
the diversification phase, blocks entering S cannot be removed from S.
This limits the number of iterations during this phase to less than b 4

41

1. Once the diversification phase is completed, tabu search applies the
same transition rule as before the diversification phase (line 2) until the
termination criterion is fully satisfied (line 1).

If the cost of the best solution E found by tabu search after the di-
versification phase is greater than the cost of the initial solution (line 12),
a decision must be made about which solution between E and the initial
solution is returned by tabu search. The ezplore parameter guides this
decision. The elite solution E is returned if ¢(E) < ¢(sol_init) + explore
(line 12), otherwise, the initial solution is returned (line 13).

Note, the input parameter diversify in Figure 1 is a Boolean controlling
the activation of the diversification phase. When this parameter is turned-
off, the heuristic in Figure 1 is an independent tabu search heuristic for
computing covering designs. We call this heuristic “one level tabu search”.

tabu_search(sol_init,stoptabu,diversify,rs, M, i, explore)
0. E =S5 = sol_init; stop = 0;

1. while (tabu search stopping criterion not satisfied) do
2. §=min{c(5") | &' e Mi(S)};

3 update tabu lists;

4. if (¢(S) < ¢(E)) then

5. E =S, stop = 0;

6 else stop = stop + 1;

7 if (stop = ﬂ’1’5‘ﬂl§cdi'uersi fy) then

8 if (c(E) £ c(sol_init)) then

9

c(E) = oo
10. for (g =0;9 < rs;q+ +) do
11. S = min{c(S")|S’ € N;(S) and M[s'] = i};

12. if (diversify&(c(E) > (c(sol-init) + explore))) then
13. FE = sol.nit;
14. return E;

Figure 1: Tabu search heuristic for computing covering designs

4.5 Search behavior of the one level tabu search

This is a brief analysis of the search behavior for our one level tabu search.
For illustration, assume A = 1 and let ug(s) be a function returning the
number of t-subsets covered exclusively by a block s € S (a t-subset is
covered exclusively by a block s € § if it does not appear in any other
block of S). Let s, s’ be a pair of blocks such that s € S, s’ € S and blocks

42

s, s’ differ by exactly one point. We can express the cost of each neighbor
S’ € N(S) in terms of ¢(S) and the difference between the number of ¢-
subsets covered exclusively by s € S and the number of ¢-subsets covered
exclusively by s’ € §\ s:

c(S') = c(S) + us(s) — us(s'). (12)

By selecting the best neighbor, transition rule (8) exchanges in S the pair of
blocks s, s’ minimizing the term (us(s) —us(s’)). Usually, blocks that cover
exclusively few t-subsets are quickly removed from S. On the other hand,
blocks that cover exclusively many t-subsets tend to form a stable sub-
collection of blocks that cannot be removed from S. Once blocks with low
us(s) have been removed from S, the search becomes very much driven by
the blocks in S, the set of blocks s’ which differ by exactly one point with a
block s € S. For example, to minimize the cost differential us(s) — us(s’),
the block s in the transformation s — s’ selected by the transition rule
must cover exclusively a number of i-subsets similar to the number of ¢-
subsets covered exclusively by the block s’. Tabu search iterations execute
transformations involving pairs of blocks s,s’ where the cost differential
us(s) —ug(s’) is either zero, a small positive or a small negative value. This
yields the characteristic plateaus in the exploration of the cost function.

To scape from such plateaus, the current solution must be subjected to
stronger perturbations than simply accepting small cost increasing transi-
tions as in transition rule (8). For example, we can re-initialize the search
randomly or re-initialize the search in a new region of the search space by
selectively perturbing the decision variables. In this study, cooperation op-
erators perturb the set S, i.e., the set neighbors of the current solutions.
For example, re-coarsening replaces blocks in A;, which impacts the neigh-
borhood of solutions at level 7. Interpolations bring elite solutions to lower
levels where there are more blocks, adding blocks to S. Cooperation op-
erators create conditions for the search to move away from plateaus, this
without destroying the information contained in current solutions.

5 Multilevel cooperative search algorithm

This section details our multilevel cooperative search strategy for the cov-
ering design problem. Figure 2 gives an overview of the algorithm. Lines
1 to 4 is the initialization phase. Line 1 is the coarsening of the source
problem instance. In line 3, a first initial solution S; is computed for each
level i by selecting randomly b blocks among the blocks in set A;. In line 4,
a first elite solution E; is computed by the tabu search procedure at each

43

corresponding level.

The while loop of line 6 is the main loop of the algorithm, it controls the
muitilevel search. Variable j (lines 5 and 13) is the loop index. In each iter-
ation, tabu search procedures are run concurrently at all levels. Each tabu
search procedure is initialized with a new solution at each loop iteration.
An iteration of the main loop starts or ends with the execution of a coop-
eration operator. Iterations of the main loop are synchronized, iteration
J + 1 starts only once operations at all levels are completed for iteration j.
Three consecutive loop iterations involving only re-coarsening operations
are performed (lines 7 and 8) for each iteration where interpolations are
executed (lines 9 and 10). We name re-optimization phase the iterations of
the main loop where only re-coarsening operations are executed. Figure 3
gives the pseudo-code of the re-coarsening operations and synchronization
of the tabu search procedures during the re-coarsening phase (sub-routine
search_re-coarsening). We name interpolation phase the iterations of the
main loop were interpolation operations are executed. In this phase, tabu
search at level i is initialized with an elite solution from level i + 1. It
is also during this phase that direct interpolation operations are executed.
Computation involved during interpolation phases is described in Figure 6
(sub-routine interpolation_search). After every 4 iterations of the main
loop, the search at level [is restarted (line 12).

Multilevel cooperative search algorithm()
coarsening phase;
for (i=14i>0;i—-)
generate a solution S; by selecting randomly b blocks in A;;
E; = tabu_search(S;, stop-tabu, false, 0, M, 1, explore);
j=1
while (none of multilevel termination criteria is satisfied)
if (mod 4 # 0)
search_re-coarsening(j, Er, stop_tabu, rs, M, explore);
if (j mod 4 = 0)
10. interpolation_search(j, Er, stop_tabu, rs, M, explore);
11. if ((j mod 4 = 1)&(j # 1))
12. Ep = restart_search(j);
13, 74+ +
Figure 2: Main procedure of the multilevel cooperative search algorithm

©ONG T W

5.1 Re-optimization phase .

The purpose of the re-optimization phase is, for tabu search procedures at
levels 1 to I, to re-optimize coarsened problems P, to P, after they have been
re-defined by re-coarsening operations. During the re-optimization phase,
for each iteration j of the main loop, tabu search at level i is initialized
with E? =1, the elite solution at level i of iteration 7 — 1 in the main loop
(lines 3 and 4 in Figure 3). E/~! is a solution that has been visited at least
once in previous iterations. For this reason, the search strategy during
re-optimization phases fit the description of an intensification in promising
regions of the search space.

search_re-coarsening(j, Eg, stop-tabu, rs, M, explore)

1. if (jmod4=1)then E/™' = Ep

2. for(i=0;i<l~1;i++) do

3. fork(E; = tabu_search(Ef =1 stop_tabu, true,rs, M, i, explore));
4. E; = tabu_search(E,j -1 stop-tabu, false,0, M, !, explore);

5. joint();

6. for(i=0;i<l~1;i++)do

7 re-coarsening(E;);

Figure 3: Search.re-coarsening procedure

During our investigation, we observed that re-optimization based on
repeated initializations of tabu search with E} ~1 works better than a re-
optimization strategy based on a single call to the search procedure. This
could be explained in part by the flatness of the cost function. Solutions
often have more than one best neighbor (at least for the lowest levels).
Our tabu search heuristic breaks tights randomly. This, together with the
length of tabu lists set randomly and independently at each level and at
each iteration of the main loop, ensures the same search does not repeat sys-
tematically even when tabu search is re-initialized with the same solution.
There is a second and more general rational justifying this re-optimization
strategy. Covering designs have a large symmetry group. Consequently,
if a problem has a solution with cost 0, the number of covering designs is
potentially large. When solutions are plentiful but difficult to find, it is
often better to intensify search in a small region of the search space (where
there might be a covering design) than to apply a same number of search
steps to explore the whole search space.

In Figure 3, the Boolean input parameter diversify is set to true for
levels 0 to {—1 (line 3) (it is set to false for level [, line 4). The diversification
phase in tabu search also helps to prevent that the search repeats systemat-

45

ically. Diversification provides the re-coarsening operator with new blocks
that update the sets A; to A;, changing the content of E'f ~1 the set of
blocks which differ by exactly one point with a block in solution E} -1

In Figure 3, line 3, fork is a parallel programming primitive instructing
the operating system to create an independent computing thread. There
are [+ 1 independent threads including the thread for the master program,
each thread runs one tabu search procedure. The joint operation of line 5
is a synchronization primitive forcing the master program to wait on line
5 until all tabu search procedures have completed before the execution of
the loop controlling re-coarsening operations (line 7).

5.1.1 Re-coarsening operator

Assume elite solution FE; is the current best known solution of problem P;.
Re-coarsening proceeds in two steps (Figure 4). In step 1, each block s € E;
is copied in A; by setting the value of M(s] to ! (line 5). In step 2, blocks are
removed from set A; (line 3). This proceeds as follows. The value of M|s]
for s € E; ranges from i to l. Given s € E; such that M[s] = g, a block
s’ € A; is selected randomly and the value of entry M[s'] is changed to g
(line 4). The purpose of this second step is to keep constant the cardinality
of sets A; to A;.

re-coarsening(E;)
E; = E;;
while (E’ #0)
randomly choose a block s € E
2. =E}\s;
if (M[s] # 1) then

3. randomly choose s’ € A; such that s ¢ E;,UE;_U---UE;;
4. M|s'] = Mls];
5 M(s) =

Figure 4: Re-coarsening operator

Figure 5 illustrates a re-coarsening operation. In this figure, elite so-
lution Ey at level 0 re-coarsen problems P, and P at level 1 and level 2
respectively. In Figure 5.a, elite solution Ey contains, among others, blocks
8, 10, 11 and 32, all belonging to set Ag. Blocks 8 and 11 belong strictly
to Ag and consequently have value 0 in M. Block 32 belongs strictly to
A; and has value 1 while block 10 belongs strictly to A and has value 2.

46

After copying Ej in set Ay (Figure 5.b), all the blocks of Ep belong strictly
to Az (Figure 5.c). To keep constant the cardinality of sets Ao to Az, the
value of block 18 at level 2 is changed to 1 and the value of blocks 6 and 48
is changed to 0 (Figure 5.c). Figure 4 provides a pseudo-code illustrating
the implementation of this re-coarsening operator.

0 6 8 10 11 18 32 48 ()1
M I 2 || 2 I‘ 0 |‘ 2 lo ll 2 || 1 [' 2 ‘ I 1 l
Level 2 ® Level 2
/ / z/ LC‘L@H/ / / Level 1
|// @ /// _‘ l e e e |
0 ()6 8 10 11 18 32 © 48 ()1
M l 2 || 0 ‘l 2 Il 2 I 2 || 1 \‘ 2 |‘ 0 | | 1 |

(d)
Figure 5: Example of a re-coarsening operation

Each re-coarsening operation copies an elite solution E;_; into sets A;
to Ay, redefining coarsened problems F; to F. The re-coarsening operations
(line 7 of Figure 3) copy to each set A; blocks from EB; = EyUEU---U
E;_,, which could bring up to b x (¢ — 1) new blocks in A;. In practice, this
number is often significantly smaller because many blocks in Ep to E;—3
already belong to set A;. Nonetheless, re-coarsening operations change
significantly the problems at the top most levels, particularly at level L.

5.2 Interpolation phase

Interpolation is a class of cooperation operators that provide initial solu-
tions to search procedures for levels 0 to [— 1. Interpolation operations
initialize the search in promising regions of the search space as well as di-
verting the search away from entrapments in local optima or plateaus of
the cost function, or entrapments in other forms of confined regions of the

47

interpolation_search()
for (i=0;i<l-1;i++) do
fork(E; = tabu_search(E'iJ_:ll ,stop_tabu, false,0, M, i, explore));
joint();
for (i=0;i<l-1;i++) do
re-coarsening(E;);
B = tabu.search(E{ _l,stop_tabu, false,0, M, 1, explore);
Ey = tabu_search(E;,stop_tabu, false,0, M, 0, explore);
re-coarsening(FEy);

PN TR W

Figure 6: Interpolation phase

search space.

In each interpolation phase, two different interpolation operators are
executed: interpolation between adjacent levels i and i + 1 and direct in-
terpolation between level 0 and level . Interpolation phases start by the
concurrent execution of interpolation operations between adjacent levels
(line 2) followed by the concurrent execution of tabu search procedures for
levels 0 to ! — 1. Once search based on interpolated solutions is completed
(line 3), re-coarsening operations bring the best solutions to level I. A
search is performed at level { (line 6). Interpolation phases conclude with
a direct interpolation operation between level 0 and level {. The search at
level O is initialized with E;. Note, diversification is turn off in tabu search
procedures during an interpolation phase.

5.2.1 Interpolations between adjacent levels

This is a familiar operator to multilevel methods. Coarsened problem P;,
is a closed approximation of P;. It follows that elite solution E,?_;ll identifies
a region of S; worthy of further exploration because Ef_;ll is also a good
solution for problem P;. Then, the search at level i improves the cost
of Ef_;ll by performing a small number of cost-improving transformations
s — s of Ef_;ll in the region of the search space S; identified by Ef_;ll. We
describe one case where tabu search transitions lead to cost improvements
of elite solution EY, .

Let S € Si41 be a current solution of tabu search at level i. We have
c(E:) < ¢(Bi;7) (line 2) if the following condition is satisfied: For at least
one transformation (s — s'), there is a block s’ € § such that s’ & A; 4,
and the cost differential ug(s) — ug(s’) is smaller than any other pair of

48

blocks s, s’ where s’ € A;y;. When the coarsening factor cf is sufficiently
large, there are several solutions S € S;1 that satisfy the above condition,
consequently, as observed empirically, such block s’ is often found.

5.2.2 Direct interpolations between levels 0 and !

Direct interpolation is a new interpolation operator for multilevel cooper-
ative algorithm and multilevel methods. The reasons this operator pro-
vides good initial solutions differ from adjacent interpolations. Coarsened
problem P, is a very distant (coarse) approximation of the source problem
Py, therefore E; is not very specific about a region of the source problem
worthy of further exploration. Furthermore, the cost of the elite solution
E; computed in line 6 is usually high, higher than the cost of any elite
solution copied in A;. In terms of cost, elite solution E; is not a good
solution at level 0, not even a very good solution for level /. Nonetheless,
elite solution E; is a good initial solution for the following two reasons:
Solution E; contains sub-collections of blocks from different elite solutions
copied in A;. These sub-collections approximate promising regions of the

search space Sp. Let Tg, = E—L‘—,:i:& be the average (mean) number of
t-subsets covered exclusively by blocks in E;. The standard deviation ¢g, of
ug,(s1),uE (52), - - -, uE,(sp) is much smaller than the corresponding stan-
dard deviation for random initial solutions and smaller than the standard
deviation of elite solutions copied in A;. This property of E; delays the
entrapment of tabu search in a confined region of the search space for the
source problem.

The case of level | is particular as the search at this level cannot be
re-initialized by interpolation operations. Rather, at the beginning of each
re-optimization phase, a new initial solution Sg is computed at level I
by selecting randomly b blocks almost entirely among blocks from elite
solutions that have been recently in set A; (see Section 5.3). Elite solution
E, derives from this initial solution. Without lost of generality, assume Sg
is composed of a sub-collection Ej, of & blocks from E, and a second sub-
collection E,, of & blocks from E, where E, and E, are clite solutions that
have been copied in A; by re-coarsening operations. Since Sg is a random
initial solution, we have ¢(Sg) > ¢(Ep) and ¢(Sr) > ¢(E,). The cost of
Sr is higher because pairs of blocks sp,,84, for sp, € Ep, and sq, € Eq,
cover the same t-subsets each in E,, and in E,,. Consequently, since these
blocks cover the same t-subsets in Sg, everything else been equal, we have
Usk(Sp,) < uE,(Sp,) and usy(sq,) < UE,(Sq). Under the assumption that
pairs of blocks like sp,,sq, occur uniformly among blocks of E,, and Eq,,
there will be blocks s € Sg for which ug,(s) > Us, but us,(s) < ug,(s)

49

(respectively us,(s) < ug,(s)). In words, the number of ¢-subsets covered
exclusively is smaller in general for blocks in Sg (compared to E, and E;)
including for the blocks s € Sg that cover exclusively a large number of
t-subsets in E, and E,.

Standard deviation is lower for E; because of the following three factors.
First, several blocks that cover exclusively many ¢-subsets in Sg also belong
to E;. As explained in Section 4.5, these blocks form a stable sub-collection
of blocks that cannot be easily removed from the current solution. Second,
if there are blocks s € Sk such that ug,(s) = 0 or ug,(s) is very small, they
will usually be the first one to be replaced by tabu search and will not occur
in E;. This is because blocks s € Sg that cover exclusively few t-subsets
minimize the term (us(s) — us(s’)) in equation (12), even when the value
of ug(s’) is not so high. Finally, in the sequence of tabu search transitions
between the initial random solution Sg and the elite solution Ej, tabu
search cannot introduce blocks that cover exclusively many ¢-subsets in the
current solution S. This is because the small size of A; limits considerably
the number of neighbors each solution has in the search space S;. In a small
set like A;, the cardinality of S is also very small, S does not have blocks
s’ that cover exclusively many t-subsets. This is why in practice, the cost
of Ej is usually higher than elite solutions found at lower levels.

Conditions at level 0 are ideal to improve the cost of E;. The set Ag is
considerably larger than A;, there are plenty of solutions in §; that have
cost-improving neighbors at level 0. The transfer of E; to level 0 brings
many new blocks in E;. The high cost of E; creates enormous opportunities
at level 0 to find blocks s’ € A; for a current solution S at level 0 for which
the cost differential ug(s) — us(s’) is smaller than any other pair of blocks
s,s' where s' € A;. On the other hand, the low standard deviation for
E) guides tabu search towards good solutions for the source problem. The
term (ug(s) — us(s’)) in equation (12) is not minimized by small values of
us(s). Consequently, the minimization of (ug(s) —ug(s’)) at level 0 is more
likely to compete for block s' € S with the highest value us(s’). There are
more blocks available in the current solution S at level 0 to choose from in
order to perform cost-improving transitions, it is then much more difficult
to trap tabu search in a particular region of the search space. Finally,
independently of the standard deviation of E;, blocks in E; that may trap
tabu search in a region of the search space belong to elite solutions E, and
E,. This is because, some blocks in E,, (respectively F,;) complement
each other very well in covering t-subsets and will not be removed from the
current solution S.

In summary, an interpolation between adjacent levels 7 and i+1 provides
a good initial solution EJ} to search at level i because E/.} is already a

50

good solution for level 4. Solution E; in direct interpolation is a good initial
solution because it leads to a more extensive exploration of the search space.
Indeed, the high cost of E; means that the search at level 0 has the potential
to perform several cost-improving transitions and to reach a broad range of
regions in the search space. Furthermore, blocks in E; are such that search
is not easily trapped in plateaus of the cost function. In our tests, search
following direct interpolations (line 7) makes the largest cost improvements
to the overall best solution for the multilevel cooperative search, larger than
adjacent interpolations between levels 0 and 1 (line 2).

5.3 Initializing search at level [

Some form of re-initialization at the top most level is needed in a multilevel
cooperative search algorithm. The restart operation (line 12 Figure 2)
re-initializes the search at level [based on a solution interpolated from a
meta-set of blocks called the set R (for “restart” set). The set R is handled
as a special level above level [, though the blocks in R do not constitute a
subset of A;. Blocks in R are:

1. the best overall elite solution in each of the main loop most recent
iterations;

2. blocks selected randomly among the blocks that belong strictly to Ao;
3. blocks from A;.

Once the set R is formed (line 1 Figure 7), an initial solution Sg is obtained
by selecting randomly b blocks from R (line 2). Then, tabu search explores
the search space generated by the set R. Tabu search returns elite solution
Er (line 12 Figure 2), which signals the beginning of a new re-optimization
phase. The search at level ! is initialized with Eg (line 1 in Figure 3). Since
R is not a subset of A;, to obtain a feasible initial solution at level I, the
blocks in Er which do not belong to A; are copied in A;.

Since re-initialization of level ! is based on set R rather than A, it is
less likely that elite solution E; will be one of the elite solutions copied in
A; by re-coarsening operations. The number of blocks from Ao copied in R
is used as a control parameter of this algorithm. For example, if we want
the search at level { to be independent of the search history, this number is
set with high values.

51

restart_search(j);

1. Build set R;

2. Compute an initial solution Sg by selecting randomly b blocks from R;

3.while (termination tabu search criterion for restart_search not satisfied)
Egr = tabu_search(Sr,stop-R, false,0, M,0, explore);

Figure 7: Restarting search at level |

6 Experimentation

We compare the upper bounds obtained using our algorithm with upper
bounds obtained by different constructive techniques for covering design
(see [2, 14, 16, 19, 20] for a survey of these techniques). Up to date results for
covering design are published in La Jolla Covering Repository Tables [13].
These tables report the best known upper bounds for C; (v, k, t) (referred as
C(v, k,t) from now on) for problems with parameters v < 32, k < 16,¢ < 8
and A = 1. They first appeared in [14]. Since then, they are constantly
updated on the web site [13], where they are independently validated before
being uploaded. Computation times are not reported in La Jolla Tables.
We report our computation times for runs where new upper bounds are
found. We have also set the same maximum CPU time for all runs, this is
one of the stopping criteria of our algorithm. Computation times and the
maximum CPU time provide an appraisal of the computational resources
spent for our tests!.

Tests have been conducted on a subset of 158 covering design problems
in La Jolla Tables [13] for which C(v, k,t) was unknown. We have limited
our experimentation to this subset of problems primarily for the follow-
ing two reasons: Computer memory requirements for storing the tables of
neighbors (Section 4) exceeded the capacity of several of our computers for
v > 20. Consequently, we have limited our tests to problems where v < 20.
The most computationally intensive operation of this multilevel cooperative
search algorithm is to evaluate neighborhoods: |[N(S)| = bx kx (v—k)). In
this expression, b can vary from 4 to 18497 in problems where v < 20. Such
large variation would have had different impacts on our tests. For example,
it would have been difficult to calibrate the control parameters. We have
limited our tests mostly to problems where b < 200, this represents about
80% of the problems for which v < 20.

Tests have been conducted on 41 dedicated sequential computers. Con-

1Qur CPU times cannot be used to compare our runs with each others as tests have
been conducted on processors with different clock rates.

52

current computing threads interleave on the same processor. The 41 com-
puters belong to the following computer architectures: Sun UltraSPARC
10 300-MHz, Sun UltraSPARC 5 400-MHz, Sun UltraSPARC III 600-MHz,
Pentium III 866MHz and Pentium IV 2.2 GHz. This experimentation sec-
tion first describes the control parameters of our multilevel cooperative
search algorithm and the calibration procedure. Next, numerical results
are reported and analyzed.

6.1 Control parameters

Table 1 lists the control parameters of the multilevel cooperative search
algorithm and the range of the values that have been used during the tests.
The first row of Table 1 refers to the stopping criteria of the multilevel
cooperative search (MCP). There are two stopping criteria:

1. CPU time;

2. total number of iterations in the main loop of the algorithm (line 6
Figure 2).

A third implicit stopping criterion is the discovery of a new upper bound for
C(v, k,t). The range in Table 1 refers to the total number of loop iterations.
The maximum CPU time was set to 168 hours. The search ends whenever
one of these two stopping criteria is satisfied.

Second row is the number of levels. Row 3 is the number of blocks in
A;. This number should be at least b x (I + 3). We can choose to have
|A;] > b x (I + 3). Three options are available to fill A;:

1. copy in A; randomly selected blocks that belong strictly to Ao;
2. keep the blocks already in A;;

3. combine the first two options.

Control parameter r; in row 4 states the number of random blocks that
are copied in A;. When r; > 0, random blocks are copied in A; at the
beginning of the restart_search sub-routine in a similar way as for the re-
coarsening operator. In fact, copying random blocks in A; is a randomized
re-coarsening, coarsened problems P; to P; are redefined by the r; blocks.
If |Ay] > b x (I + 3) + 7y, the difference are blocks that have not been kick
out of A; by the different re-coarsening operations.

53

Parameters Typical range
1 | Stopping criteria for MCP 600 — 1000
2 | Number of levels (1) 3-6
3 | Size of A, b x (I +3) — 3000
4 | Number of random blocks in 4, (r;) 20 — 400
5 | Stopping criterion for tabu search 500 — 800
6 | Pivot ¢, of the first tabu list 10 -12
7 | Pivot £ of the second tabu list 5
8 | # iterations during diversification phase (rs) 40 - 60
9 | Exploration factor (explore) 0-20
10 | Size of the restart set R 120 — 1200
11 | # of random blocks in R (R,) 20 - 100
12 | Depth of the tabu search exploration in R 2-60
13 | Phases before unconditional diversification (UD) 3-5
14 | # iterations during UD 40 — 60
15 | # of blocks fixed after UD 20 — 50
16 | Exploration factor for UD 20 — 50

Table 1: Control parameters and range of their values

Parameters in rows 5 to 9 are control parameters for tabu search during
re-optimization and interpolation phases. Parameter 5 specifies the value
of the stopping criterion for tabu search (see Section 4). Parameters 6 and
7 specify the value of the pivots around which the length of the tabu lists
can be set randomly in a range pre-specified in the code of the algorithm.
Parameter 8 is the number of tabu search iterations during the diversifica-
tion phase of the algorithm. This number is expressed in percentage of b.
Parameter 9 specifies the value of the exploration factor.

Parameters in rows 10, 11 and 12 control the restart.search operator.
Parameter 10 specifies the size of R. Parameter 11 specifies the number of
blocks which are selected randomly among blocks that belong strictly to
Ap. Parameter 12 specifies the stopping criterion of the tabu search run in
R. The stopping criterion is specified in the same terms as for parameter 5,
i.e., the number of tabu iterations performed without improving the current
best solution.

In some re-optimization phases, the diversification phase of tabu search
is performed unconditionally. Furthermore, a certain number of blocks in-
troduced in the current solution S during the diversification phase are pro-
hibited from leaving S even after the diversification phase is completed. The

54

execution of a unconditional diversification phase is triggered after a prede-
fined number of iterations of the main loop (Figure 2) have been executed
without improving the overall best solution of the multilevel cooperative
search. Parameter 13 specifies the number of loop iterations required to
trigger a re-optimization phase with unconditional diversification. Param-
eter 14 has the same interpretation as parameter 8. Parameter 15 identifies
the number of blocks which cannot be removed from S after the diversi-
fication phase. Parameter 16 has the same interpretation as parameter 9.
These implementation details are not shown in the algorithm.

The procedure to calibrate the control parameters is as follows. Ini-
tially, tests have been conducted on a reduced set of problems of small size.
Runs with the best solutions (some with new upper bounds) were kept sep-
arately. A preliminary range of settings was derived from this separated
set of runs. For each parameter, the lower bound of the range was set
to be the minimum value of this parameter in the separated set of runs.
Similarly, the upper bound of the range of each control parameter was set
to be the maximum value of this parameter in the separated set of runs.
Two other sets of calibration runs have been conducted. One set of runs
aimed at adjusting the initial range to problems of larger size (essentially
widening the ranges). A last set of runs has been conducted to analyze
the response of the multilevel cooperative search algorithm to changes in
the values of parameters 4, 8, 9, 11, 13, 14, 15, 16. This last calibration
essentially aimed at finding control parameter settings most likely to yield
new upper bounds in the time frame allocated to each test run (168 hours).
As apparent in our numerical results, these settings may not be suitable to
find large improvements in the upper bounds. No attempt has been made
to optimize the settings for specific problems.

6.2 Numerical results

Comparisons with the best known upper bounds in La Jolla Tables are
reported in Tables 2 to 5. From left to right, the header of each column
refers respectively to the problem with parameters (v, k), lower bound (LB),
best known upper bound (UB) at the time of our tests, size of the covering
design we tested (b), number of t-subsets not covered by our best solution
(c). When an entry in the fifth column is 0, it means that all {-subsets
have been covered, b is a new upper bound for the problem instance with
parameters (v, k,t). Each time a new upper has been found for b, the test
was restarted with b = b — 1. Tables 2 to 5 report the smallest value of b
for which we have found a new upper bound.

55

(v,k) |LB| UB | b
(125) | 27 | 29 | 28
(13,5) | 32 | 34 | 33
(13,6) | 20 | 21 | 20
(14,5) | 37 | 43 | 42
(14,6) | 24 | 25 | 24
(15,5) | 54 | 56 | 55
(15,6) | 30 | 31 | 30
16,5) | 61 | 65 | 64
16,6) | 35 | 38 | 37
16,7) | 23 | 24 | 23
17,6) | 43 | 44 | 43
17,7) | 25 | 27 | 26
17,8) | 17 | 18 | 17
18,7) | 31 | 33 | 32
18,9) | 14 | 16 | 15
(18,10) | 11 | 12 | 11

(v,k) | LB | UB] b

(18I1) | 9 | 10 | 9

(19,5) | 103 | 108 | 107
(19,6) | 57 | 63 | 62
(19,7) | 33 | 35 | 34
(198) | 24 | 27 | 26
(19,9) | 15 | 17 | 16
(19,10) | 13 | 14 | 13
(19,11) [9 | 11 | 10
20,5) | 124 | 133 | 132
20,6) | 64 | 72 | 71
20,7) | 43 | 45 | 44
{20,9) | 20 | 21 | 20
(20,10) | 14 | 15 | 14
(20,11) | 11 | 12 | 11
(20,12) | 9 | 10 | ©

Bl 5[| ool o] of 5] 0] of 00| =] | ©f 10| cof

oo =f 0o oo| 15l = | co] vof eo| =] pof | co po] | 0] &

Table 2: Tests for t =3

In general, we found fewer new upper bounds for small v, k, ¢, though
these problems are smaller and easier to solve. But for many of these
problems, the gaps between lower and upper bounds are close, improving
the upper bound may amount proving lower bound. This is difficult, since it
involves either 1- using an exhaustive search or 2- proving that all possible
collections of b blocks does not yield a covering design. When v, k,t are
small, it may be possible to prove lower bounds, however, most of these
have been done, and the ones left over are hard. Nonetheless, new upper
bounds are reported for small v, k, ¢, some where the gap is very close (see
for example entry (17,11) in Table 3 and entry (13,9) in Table 5). an
indication our method is quite competitive. This becomes more obvious
for medium size problems where we improve the upper bound of several
problems (Table 4 and problems on the left side of Table 5).

In Tables 2 to 5, we observe that the number of ¢-subsets not covered
generally increase for larger values of v and k. The number of iterations
executed by the main loop is a factor. For example, problem instance
(20,15) for ¢t = 8 met the CPU time termination criterion after completing
less than 200 iterations. A second factor is the smaller effort spent to
calibrate for larger problem instances. Finally, our algorithm didn’t perform
well for some particular problems like for example (14,7) and (15,7) in
Table 4. This likely also happens for larger problems.

Table 6 gives the CPU time taken by the tests for which improved upper
bounds are reported in Tables 2 to 5. From left to right, column headers

56

[(v,k) | LB| UB| b

c (v k) |LB|UB]| b | ¢

{126) | 40 | 41 | 40 | 6 || (07,10 | 19 | 23 | 22 | 4
(12,7 20| 24 | 23 | 1 || Q711) | 13 | 16 | 15 | O
(13,6 59 | 66 | 65 | 2 || (18,7) | 111 { 130 | 126 | O
(13,7 28 | 30 | 29 | 3 || (188) | 57 | 66 | 65 | 2
(14,6 75 | 80 | 79 | 8 || (189) | 34 | 38 | 37 | 6
(A4,7) | 40 | 44 | 43 | 2 || (18,10) | 24 | 26 | 25 | 8
(14,8 23 | 24 | 23 | 9 || (18,11) | 15 | 19 | 18 | 18
15,6) | 93 | 117 | 116 | 1 || (19,7) | 131 | 153 | 152 | ©
15,7) | 52 | 57 | 56 | 1 || (19,8) | 74 | 84 | 83 | 3
158) | 29 | 30 | 20 | 11 || (19.9) | 45 | 48 | 47 [3
(15,9) | 19 | 20 | 19 | 9 | (19,10) | 27 | 32 | 31 |13
(15,00) | 12 | 14 | 18 | 6 || (19,11) | 19 | 23 | 22 [10
(16,6) | 144 | 162 | 151 | 6 || (19,12) | 15 | 17 | 16 | 22
16,7) | 69 | 76 | 75 | 1 || (20,8) | 83 | 93 | 92 | 2
(16,9) | 24 | 26 | 25 | 6 || (20,9) | 54 | 64 | 63 | O
(16,10) | 16 | 18 | 17 | 3 || (20,10) | 30 | 36 | 35 [18
(A7,7) | 8 | 99 | 98 | 6 || (20,11) | 24 | 28 | 27 | 14
(17,8) | 49 | 54 | 53 | 0 || (20,12) | 15 | 20 | 19 [36
(17,0) | 27 | 28 | 27 | 9 [(20,13) | 14 | 16 | 156 | 9

Table 3: Tests for t =4

display the problem parameters, the best known upper bound previously to
our improvements, the value of the best new upper bound we have found,
the number of tabu search iterations executed before finding the new upper
bound and finally, the elapsed CPU time in seconds to find the new upper
bound. We observe in Table 6 that the new upper bounds are found quite
rapidly (problem (17,8,4) is the longest, around 147 CPU hours). This
is related to the setting of the control parameters. Diversification actions
were activated soon after the search failed to find cost-improving solutions
in a particular region of the search space. These diversification actions
involve calls to randomization and the use of re-coarsening operations with
poor quality solutions. On the long term, these actions dilute the global
guidance of the search by the cost function and multilevel cooperation. If
new upper bounds are to be found, then it will usually be soon in the
computation. In fact, the time where new upper bounds are reported to
have been found in Table 6 parallel very much the discovery of the last
overall best solutions in many of the tests reported in Tables 2 to 5. To
make use of more CPU time to compute better upper bounds, one has to
reduce the weight that parameters like 4, 9, 11 and 13 have on the search
behavior of the multilevel cooperative search algorithm. It has been shown
[7] that, under the control of a multilevel cooperative search, heuristics like
tabu search are better optimizer once given more CPU time.

57

(w,k) |[LBJUB] b | c | (vk) [LB|UB]| & | ¢
(116) | 96 | 100 | 99 | 1 || (17.0) | 58 | 80 [79 | ©
(1,7) | 33 | 34 | 33 | 8 [[(a7,10) | 41 | 49 | 48 | ©
(12,7) | 55 | 59 | 58 | 2 || (a7,11) | 25 | 32 [30 | ©
(13,7) | 75 | 78 | 77 | 34 || (18,9) | 98 | 113 | 112 | 2
(138) | 33 | 43 | 42 | 0 || (18,10) | 49 | 54 | 53 | 12
(147) | 118 [138 | 137 | 1 || (18,11) | 32 | 42 | 41 | 6
(14,8) | 49 | 55 | 54 | 5 || (18,12) | 20 | 24 | 23 | 123
(14,9) | 28 | 32 | 31 | 4 || (19,10) | 65 | 86 | 83 | ©
(15,7) | 161 | 189 | 188 | 1 || (19,11) | 42 | 50 | 49 | ©
(158) | 75 | 89 | 88 | 2 || (19,12) | 29 | 38 | 37 | ©
(15,9) | 39 | 42 | 41 | 15 || (19,18) | 18 | 21 | 20 | 139
{15,10) | 24 | 27 | 26 | 1 || (20,10) | 90 | 106 | 99 | ©
(16,8) | 104 | 117 | 116 | 12 || (20,11) | 50 | 65 | 64 | 4
(16,9) | 52 | 61 | 60 | 0 || (20,12) | 32 | 42 | 41 | 16
{16,10) | 31 | 37 | 34 | 0 || (20,3) | 24 | 33 | 32 | 4
(16,11) | 18 | 22 | 21 | 22 || (20,14) | 16 | 18 | 17 | 248
(17,8) | 147 | 188 | 178 | 0

Table 4: Tests for t =5

Table 7 reports the outcomes of tests that assess the impacts the ran-
domized steps have on the performance of our algorithm. Problems listed
in Table 7 are problems for which a new upper bound have been found by
our algorithm. Each row of this table reports the number of tabu search
iterations and the CPU time taken by three independent runs of our algo-
rithm using a same setting of control parameters for each run (settings may
differ between problems in different rows). There are important variations
in the amount of CPU time to find a new upper bound between runs on a
same problem. However, a new covering design is always found.

Table 8 compares simulated annealing, our one level tabu search and
multilevel cooperative search. Tests have been conducted on problems for
which multilevel cooperative search found new upper bounds. Tabu search
and simulated annealing procedures are given the same amount of CPU
time (in seconds in Table 8) as multilevel cooperative search using comput-
ers with same clock rates. We report the number of iterations® performed
by each procedure as well as the number of ¢-subsets that have not been
covered. Results in Table 8 show that the tabu search procedure is very
competitive. These results also confirm that multilevel cooperation sub-
stantially improves the performance of tabu search. More extensive tests
have been conducted with the one level tabu search where it found indepen-
dently 5 of the new upper bounds identified by the multilevel cooperative

20ne iteration of simulated annealing is like one neighbor evaluation for tabu search.
Simulated annealing evaluates only one or very few neighbors at each iteration.

58

t=6

(v,k) | LB | UB b c (v,k) | LB | UB b c
12,7) | 165 | 176 | 175 | 2 || (17,10) | 89 | 119 | 118 | 1
12,8) 50 51 50 6 (17,11 48 61 60 7
138) | 9 | 160 | 99 [o || (17,12 26 | 36 | 35 [31
139) | 38 | 40 | 39 [0 [(18,11) | 68 | 89 | 8B 1
(14,8) 132 | 151 | 150 | 2 18,12) | 38 48 47 55
(14,9) | 52 | 74 | 70 | 0 || (18,13) | 24 | 28 | 27 | 134
(14,10) 27 29 28 | 32 19,11 85 | 102 | 101 12
(15,9) | 82 {100 | 99 | 0 | (19,12 51 | 76 | 75 3
(15,10) 42 54 52 0 (19,13 30 42 41 103
(16,9) | 134 | 172 | 170 | 0 |[(19,14) [21 | 22 | 21 | 362
(16,10 63 77 76 0 (20,12) 70 93 92 0
(16,11 35 | 44 | 43 | 2 || (20,13) | 45 | 66 | 65 | SO
17,9) | 197 | 268 [245 | 0 [] (20,14) | 26 | 32 | 31 | 458
t=7
(v.k) | LB | UB b c (v,k) | LB | UB b c
(i3,8) [269 [297 {295] 0 || (17,12) | 50 [64 | 63 4
(139) | 73 | 79 | 78 | 6 [(1713) | 25 [26 | 25 | 296
(14,9) | 140 | 166 | 163 | 0 [| (18,12) | 72 | 101 | 100 | 15
(14,10) | 54 | 57 | 56 | 0 || (18,13) | 36 | 50 | 49 | 168
(15,10 78 118 [115 | O (19,13 56 84 83 70
(15,11 37 42 41 49 || (19,14 33 42 41 229
(16,10) | 132 | 167 [165 { 0 || (20,13 79 | 136 | 135 | 210
(16,11) | 62 | 88 [85 | 0 | (20,14 43 | 60 [59 [595
(17,11) 98 127 | 126 | 12 (20,15) 28 34 33 531
t=28
(v,k) | LB | UB b c (v,k) | LB | UB b c |
14,10) | 103 | 119 | 117 [O (17,13) 37 42 41 396
15,11) 74 80 79 5 (18,13) 70 103 | 102 48
16,11) | 114 | 191 | 190 | 5 || (18,14) | 33 | 34 | 33 | 839
(16,12) 50 59 58 | 39 (19,14) 49 75 74 | 246
(17,12) | 88 | 138 | 137 | 18 || (20,15) | 44 | 57 | 56 | 746

Table 5: Tests for £ = 6,7 and 8

59

Previous | New Tabu CPU
(v, k, t) UB UB | Iterations | Time
(13,8,5) 43 42 | 1006263 16780
(13,8,6) 1060 99 | 18833 1639
(13,8,7) 297 205 | 675823 48331
(13,9,6) 40 39 | 3962341 199081
(14,9,6) 74 70 | 920688 20621
(14,9,7) 166 163 | 170608 10448
14,10,7) 57 56 | 12150 891
14,10,8) 119 117 | 1977944 144094
15,9,6) 100 99 | 260927 70032
15,10,6) 54 52 | 266206 74306
(15,10,7) 118 115 | 292485 42315
(16,9,5) 61 60 | 148508 20486
(16,9,6) 172 170 | 362941 177913
(16,10,5) 37 34 | 2516428 398476
(16,10,6) 77 76 | 1467652 184592
(16,10,7 167 165 | 303568 36961
16,11,7 88 85 | 185564 24160
17,8,4) 54 53 | 41396983 | 520789
17,8,5) 188 178 | 354106 91311
(17,9,5) 80 79 | 2680690 138870
(17,9,6) 268 245 | 419836 192413
(17,10,5) 49 48 | 899131 278101
(17,11,4) 16 15 | 712030 7617
(17,11,5) 32 30 | 415428 56489
(18,7.4) 130 126 | 4572362 366055
19,6,3) 63 62 | 301834 8853
19,7,4) 153 152 | 11560 1138
19,10,5) 86 83 | 714778 84262
(19,11,5) 50 49 | 1813365 191949
(19,12,5) 38 37 | 4164742 | 490706
(20,6,3) 72 71 | 15469025 | 351503
(20,9,4) 64 63 | 6815489 | 445288
(20,10,5) 106 99 | 2379806 353505
(20,12,6) 93 92 | 250548 330744

Table 6: Computational times on successful problems

First run Second run Third Tun
(v, k,t) b Tabu CPU Tabu CPU Tabu CPU
Iterations Time Iterations Time Iterations Time
(12,5,3) 29 | 19226 13 9271 6 7903 5
(13,6,4) 66 | 58003 212 33264 121 13725 45
(17,11,4) | 16 | 171268 2024 386865 4431 15050 209
(13,8,5) 43 | 402150 3004 957527 7084 1251202 09185
(19,11,5) | 50 | 175252 18732 83050 10144 18187 2469
(19,12,5) | 37 [4164742 490706 || 1377491 154184 || 1385207 166421
(13,9,6) 40 | 592921 6106 157792 1651 1803051 18480
(14,10,7) | 55 | 493573 12661 906425 23060 597453 15408 |

Table 7: Comparison of different runs with same parameter setting

search algorithm.

Multilevel Cooperative Search | Simulated Annealing Tabu Search
(v, k, t) CPU Time | Tabu lterations Iterations c Tterations | ¢
13,8,5) 839 50313 330061196 4 39824 5
16,9,5) | 20486 148508 4820470893 2 185693 7
16,10,5) | 48867 366183 5727645000 11 315167 4
(17,11,5) | 56489 415428 3178988604 27 225053 24
(13,8,6 1639 18833 1032767980 14 53867 11
(14,9,6 20621 920688 . 6007147920 12 215842 8
(16,9,6 177913 362941 46526949504 | 185 | 726651 11
(14,10,7) | 891 12150 205696966 10 13098 9
(16,11,7) | 24160 185564 2184703573 32 39775 0

Table 8: Comparison between different search heuristics

Research is very active regarding the application of constructive meth-
ods to improve upper bounds. New upper bounds are reported regularly
on the web site [13]. The bulk of these new results are for large problems,
particularly v > 20, an uncharted territory for constructive methods un-
til recently. Upper bounds are found because more powerful computers
are used and because the gaps between bounds for large values of v is often
substantial. Based on results on the right side of Table 5, the current imple-
mentation of our algorithm cannot tackle efficiently these larger problems.
Executing the current algorithm on a parallel computer, parallelization of
the neighborhood evaluation, re-calibration of the control parameters and
other simple optimizations will address partially this problem. For the
largest problems, the exact evaluation of the neighborhcods will have to be
replaced by a selective evaluation of a subset of neighbors. For large values
of b, the cost of neighborhood evaluations can be reduced by coarsening the

61

vector solution S, i.e., by fixing to “1” some of the decision variables.

7 Conclusion

In this paper, we have introduced a multilevel cooperative search heuristic
for computing upper bounds on Cj (v, k,t), the minimum number of blocks
in any ¢ — (v, k,\) covering design. A new tabu search heuristic for the
covering design problem has been used as the underlying search method
of this multilevel cooperative search. In our tests, this new tabu search
heuristic outperformed simulated annealing, a widely used search heuris-
tic for covering designs. We report numerical results for 158 problems of
small and medium size where this new tabu search heuristic is embedded
in our multilevel cooperative search heuristic. The algorithm was given
a maximum of one week of CPU time on standard desktop computers to
find new upper bounds for each tested problem. Multilevel search and co-
operation drastically improve the performance of tabu search. New upper
bounds have been found for 34 problems. It is at this point the best search
heuristic for covering designs.

The multilevel cooperative search algorithm is based on two new coop-
eration operators: a multilevel re-coarsening operator and a direct interpo-
lation operator. In particular, the approach followed by direct interpolation
to compute initial solutions has never been used before by multilevel meth-
ods. Empirically, this approach has worked remarkably well for the covering
design problem. It will be interesting to confirm weather the initial solu-
tions computed for the direct interpolation operations depend specifically
on the present re-coarsening strategy for subset problems. We have reason
to believe it will not be the case and that most re-coarsening strategies can
be adapted to direct interpolation. We think it will be possible to generalize
the direct interpolation operation to other multilevel methods and possibly
to other search heuristic methods.

The current multilevel cooperative search strategy can be applied to
other combinatorial design problems such as packing design and ¢ design.
Similar cost function, neighborhood structure and the same three coopera-
tion operators can be used as well for these problems. There are other subset
problems similar to covering design such as feature selection in bioinformat-
ics and data mining. At least, the main framework of the re-coarsening and
direct interpolation operations can be applied in a multilevel cooperative
search algorithm for such problems. Finally, the potential for the present
algorithm to find new upper bounds to covering design problems is far from
been exhausted. By setting control parameters differently or specifically,

62

the present algorithm can be used as useful constructive method to reduce
gaps between bounds of covering design problems.

Acknowledgments

Funding for this project has been provided by the Natural Sciences and En-
gineering Council of Canada through its Research Grant program. We also
acknowledge the Center for Research on Transportation of the Université
de Montréal, Canada Foundation for Innovation through the Heterogeneous
Distributed Computing laboratory at the University of Manitoba and the
Department of Computer Science of the University of Manitoba for provid-
ing the computing resources for this project.

References

(1) S.T. Barnard and H.D. Simon. A Fast Multilevel Implementation of
Recursive Spectral Bisection for Partitioning Unstructured Problems.
Concurrency: Pratice & Ezperience, 6(2):111-117, 1994.

[2] J.A. Bate. A Generalized Covering Problem. PhD thesis, University
of Manitoba, 1978.

[3] A.Brandt. Multi-level adaptive solutions to boundary value problems.
Mathematics of Computation, 31:333-390, 1977.

[4] E.K. Burke, J.D. Landa Silva, and E. Soubeiga. Multi-objective Hyper-
heuristic Approaches for Space Allocation and Timetabling. In T.
Ibaraki, K. Nonobe and M. Yagiura, editor, Meta-heuristics: Progress
as Real Problem Solvers, pages 129-158. Springer, 2005.

[5] S.H. Clearwater, T. Hogg, and B.A. Huberman. Cooperative Problem
Solving. In B.A. Huberman, editor, Computation: The Micro and the
Macro View, pages 33-70. World Scientific, 1992.

[6] C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Com-
binatorial Designs. CRC Press, 1996.

[7) T.G. Crainic, Y. Li, and M. Toulouse. A Simple Cooperative Multi-
level Algorithm for the Capacitated Multicommodity Network Design.
Computer & Operations Research, 33(9):2602-2622, 2006.

63

(8] P. Erd6s and H. Hanani. On a limit theorem in combinatorial analysis.
Publicationes Mathematicae Debrecen, 10:10-13, 1963.

[9] T. Etzion, V. Wei, and Z. Zhang. Bounds on the sizes of constant
weight covering codes. Designs, Codes and Cryptography, 5:217-239,
1995.

(10] F. Glover. Tabu Search — Part I. ORSA Journal on Computing,
1(3):190-206, 1989.

(11] F. Glover. Tabu Search — Part II. ORSA Journal on Computing,
2(1):4-32, 1990.

(12] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
1997.

(13] D.M. Gordon, G. Kuperberg, and O. Patashnik. La Jolla covering
repository tables. http://www.cerwest.org/cover.html.

(14] D.M. Gordon, G. Kuperberg, and O. Patashnik. New constructions
for covering designs. Journal of Combinatorial Designs, 3(4):269-284,
1995.

[15] T. Hogg and C. Williams. Solving the Really Hard Problems with
Cooperative Search. In Proceedings of the 11th National Conference on
Artificial intelligence (AAAI93), pages 231-236. AAAI Press, August
1993.

(16] F. Margot. Small covering designs by branch-and-cut. Mathematical
Programming, 94:207-220, 2003.

[17) W.H. Mills. Covering designs I: coverings by a small number of subsets.
Ars Combinatoria, 8:199-315, August 1979.

[18] W.H. Mills and R.C. Mullin. Coverings and packings. In Contempo-
rary Design Theory: A Collection of Surveys, pages 371-399. Wiley-
Interscience Series in Discrete Mathematics and Optimization, 1992.

[19) K.J. Nurmela. Constructing combinatorial designs by local search.
Technical report, Helsinki University of Technology, November 1993.

(20] K.J. Nurmela and P.R.J. Ostergard. Constructing covering designs by
simulated annealing. Technical report, Helsinki University of Technol-
ogy, January 1993.

[21] M. Ouyang, M. Toulouse, K. Thulasiraman, F. Glover, and J.S. Deo-
gun. Multilevel Cooperative Search for the Circuit/Hypergraph Par-
titioning Problem. IFEE Transactions on Computer-Aided Design,
21(6):685-693, 2002.

[22] R. Rees, D.R. Stinson, R. Wei, and G.H.J. van Rees. Applications of
covering designs: Determining the maximum consistent set of shares
in a threshold scheme. Ars Combinatoria, 53:225-237, 1999.

(23] V. Rédl. On a packing and covering problem. European Journal of
Combinatorics, 5:69-78, 1985.

[24] J. Schénheim. On coverings. Pacific Journal of Mathematics, 14:1405-
1411, 1964.

[25] D.W. Stanton and D.E. White. Constructive Combinatorics. Springer-
Verlag, New York, 1986.

[26] M. Toulouse, K. Thulasiram, and F. Glover. Multi-Level Coopera-
tive Search: A New Paradigm for Combinatorial Optimization and an
Application to Graph Partitioning. In 5th International Euro-Par Par-
allel Processing Conference, volume 1685 of Lecture notes in Computer
Science, pages 533-542. Springer- Verlag, August 1999.

[27] C. Walshaw. Multilevel Refinement for Combinatorial Optimisation
Problems. Annals Oper. Res., 131:325-372, 2004.

65

