NOTE.

AN EXAMPLE OF AN L(n,d) LINEAR SPACE WITH MORE THAN $n^2 + n + 1$ LINES.

VITO NAPOLITANO

ABSTRACT. An L(n,d) is a linear space with constant point degree n+1, lines of size n and n-d, and with $v=n^2-d$ points. Denote by $b=n^2+n+z$ the number of lines of an L(n,d), then $z\geq 0$ and examples are known only if z=0,1 [7]. The linear spaces L(n,d) were introduced in [7] in relation with some classification problems of finite linear spaces. In this note, starting from the symmetric configuration 45_7 of Baker [1] we give an example of L(n,d), with n=7,d=4 and z=4.

1. Introduction

A (finite) linear space $\mathbb L$ is a pair $(\mathcal P, \mathcal L)$, where $\mathcal P$ is a (finite) set of points, and $\mathcal L$ is a family of subsets of $\mathcal P$, called lines, such that: for any two distinct points there is exactly one line containing both, there are at least two lines, and every line has at least two points.

The degree of a point $p \in \mathcal{P}$ is the number [p] of lines containing it, and the length of a line $\ell \in \mathcal{L}$ is its size.

Let n and d two integers satisfying $1 \le d \le n-2$, an $\mathbb{L}(n,d)$ is a finite linear space on $v = n^2 - d$ points with constant point degree n+1, and which has only lines of length n-d and n. For an $\mathbb{L}(n,d)$, the number z defined by z(n-d) = d(d-1) is an integer, and the number b of lines of $\mathbb{L}(n,d)$ is given by $n^2 + n + z$ [7].

Let α_n be a finite affine plane of order n, and let p_0 be a point of α . Deleting p_0 from α_n one obtains a finite $\mathbb{L}(n,1)$ with $v=n^2-1$ points and $b=n^2+n$ lines (punctured affine plane of order n).

Another example of $\mathbb{L}(n,d)$ comes from projective geometry. Indeed, let π_n be a finite projective plane of square order n, and let \mathcal{B} be a Baersubplane of π_n . The linear space obtained from π_n by deleting \mathcal{B} is an

¹⁹⁹¹ Mathematics Subject Classification. 51A25.

Key words and phrases. Linear space, planar space, desarguesian projective space. This research was supported by G.N.S.A.G.A. of INdAM and the MIUR project - Strutture Geometriche Combinatoria e loro Applicazioni.

 $\mathbb{L}(n,\sqrt{n})$ with $v=n^2-\sqrt{n}$ points and $b=n^2+n+1$ lines (the complement of a Baer-subplane in π_n).

In [[7], Chapters 10 and 12] linear spaces $\mathbb{L}(n,d)$ are studied, and using their relation with symmetric designs some non-existence conditions are given. Finally, it is also given a characterization of such linear spaces.

In particular, it is proved that an $\mathbb{L}(n,d)$ with z=0 is a punctured affine plane of order n, and an $\mathbb{L}(n,d)$ with z=1 is the complement of a Baer-subplane in a projective plane of order n [7].

So far, the only known examples of $\mathbb{L}(n,d)$ are for z=0,1. In this article an example with z=4 is presented.

 $\mathbb{L}(n,d)$ spaces are useful in some theorems on finite linear spaces. For example, in the classification of finite linear spaces on v points, with b lines, and with a point of degree n, $n \geq 2$, satisfying $n^2 - n + 2 \leq v \leq b \leq n^2 + n + 1$, every possible example of finite linear space with $v = n^2 - n + 2$ and $b = n^2 + n + 1$ is closely related to an $\mathbb{L}(n,d)$ with z = 2 (cf [7]).

Furthermore, they also appear in the problem of determining the maximum number of points for finite linear spaces with $n^2 + n + 2$ lines [[7], Chapter 11]. Indeed, in [7] the following result is proved.

Theorem 1.1 (Metsch, Thm. 11.1 [7] 1991). Let \mathbb{L} be a finite linear space, with $n^2 + n + 2$ lines for some integer $n \geq 6$. Denote by v its number of points, and by e the positive number with 2n = e(e+1). If every point has degree at most n+1 then $v \leq n^2 - e$ with equality if and only if \mathbb{L} is an $\mathbb{L}(n,e)$.

In this Note, starting from the symmetric configuration 45_7 (elliptic semiplane of order 6) described in [1], we give an example of $\mathbb{L}(7,4)$ with z=4.

2. $\mathbb{L}(n,d)$ spaces and symmetric configurations

Let n and κ be two positive integers, a symmetric configuration n_{κ} is a pair $(\mathcal{P}, \mathcal{L})$, where \mathcal{P} is a set of points of size n, and \mathcal{L} is family of subsets of points, called lines such that any two distinct points belong to at most one line¹, every point belongs to κ lines, and every line has size κ .

From double counting it follows that for a symmetric configuration the size of \mathcal{P} is equal to the size of \mathcal{L} .

Furthermore, $n \geq \kappa(\kappa - 1)^2 + 1$. For $\kappa = 3$ and $\kappa = 4$ the necessary existence condition $n \geq \kappa(\kappa - 1)^2 + 1$ is also sufficient, while per $\kappa \geq 5$ gaps start to appear in the existence spectrum (see e.g. [3]). For $\kappa = 5$ a symmetric configuration exists if and only if v = 21 or $v \geq 23$ [3] For $\kappa = 6$, a symmetric configuration exists if and only if v = 31 (the projective plane of order 5) or $v \geq 34$ [5].

¹In other words, a symmetric configuration is a regular semilinear space.

In 1978 Baker [1] constructed a 45_7 configuration, via its incidence matrix. The incidence matrix N of a symmetric configuration is a zero-one square matrix of order v whose rows are indexed by the points and columns by the lines and with the (i,j)-entry one precisely when the point p_i is on the line L_i .

Assuming the points and lines are enumerated by parallel classes² of size m, N is a block matrix of order v/m, each block of order m. Following Baker notation, we give the incidence matrix N of the configuration 45_7 he constructed, and which we will denote with \mathcal{B} .

A blank entry is the zero matrix of order 3, I is the identity matrix of order 3, and

Thus, we may group the points of \mathcal{B} into 15 triples of consecutive indexed points three by three non-collinear (clearly, they correspond to the parallel classes of points of \mathcal{B}):

$$\ell_1 = \{p_1, p_2, p_3\}, \ell_2 = \{p_4, p_5, p_6\}, \dots, \ell_{14} = \{p_{40}, p_{41}, p_{42}\}, \ell_{15} = \{p_{43}, p_{44}, p_{45}\}.$$

Let \mathcal{P} and \mathcal{L} be the set of points and lines of \mathcal{B} respectively.
Consider, the pair $(\mathcal{P}^*, \mathcal{L}^*)$, where

²Two points (lines) are *parallel* if they are not collinear (intersecting).

$$\mathcal{P}^* = \mathcal{P}$$
 $\mathcal{L}^* = \mathcal{L} \cup \{\ell_i \mid i = 1, \dots 15\}.$

Clearly, $(\mathcal{P}^*, \mathcal{L}^*)$ is a finite linear space, with $v = 45 = 7^2 - 4$ points, $b = 60 = 7^2 + 7 + 4$ lines, and with constant point degree 8, and $|\ell| \in \{3, 7\}$ for every $\ell \in \mathcal{L}^*$, that is it is an $\mathbb{L}(7, 4)$ with $b = 7^2 + 7 + 4$ lines.

For an L(n,d), with z(n-d)=d(d-1) and $b=n^2+n+z$ lines, we have [7]:

- Every point lies on a unique line of length n-d and on n lines of length n.
- $\mathbb{L}(n,d)$ has $n^2 d$ lines of length n and n + d + z lines of length n d.

Hence, the structure consisting of the points and lines of length n of an $\mathbb{L}(n,d)$ is a symmetric configuration, and so the following non-existence criterion for $\mathbb{L}(n,d)$ easily follows.

Proposition 2.1. If there is an $\mathbb{L}(n,d)$ with z(n-d) = d(d-1), $z \ge 1$, then it exists a symmetric configuration $(n^2 - d)_n$.

Since there is no 32_6 [3] it follows that there exists no $\mathbb{L}(6,4)$ (z=6). Similarly, since there is no 22_5 [3] it follows that there is no $\mathbb{L}(5,3)$ (z=3). In [7] it is proved that there is no $\mathbb{L}(6,3)$ (z=2), but this follows also from the fact that there is no 33_6 [5].

Remark 2.2. If $(\mathcal{P}, \mathcal{L})$ is a finite linear space, for any point-line pair (p, ℓ) , with $p \notin \ell$, let $\pi(p, \ell) = [p] - |\ell|$ denote the number of lines passing through p and missing ℓ . Since the lines of an $\mathbb{L}(7,4)$ have length n=7 or n-4=3, and all the points have degree n+1=8, we have $\pi(p,\ell) \in \{1,5\}$ for every point-line pair (p,ℓ) of $\mathbb{L}(7,4)$, with $p \notin \ell$. So, the $\mathbb{L}(7,4)$ found, is an example of finite $\{1,5\}$ -semiaffine linear space of order n with $b > n^2 + n + 1$ lines [cf [2], Section 4.8, Research problems].

REFERENCES

- R. D. Baker, Note. An Elliptic Semiplane, J. Combin. Theory, Ser. A 25 (1978), 193-195.
- [2] L.M. Batten, A. Beutelspacher, The theory of finite linear spaces, Cambridge University Press (1993).
- [3] H. Gropp, On the existence and non-existence of configurations n_κ, J. Combin. Inform. System Sci. 1, 15 (1990), 34-48.
- [4] Z, Janko and Tran van Trung, Answers to two questions about semisymmetric designs, J. Combin. Theory Ser. A 41 (1986), 276-277.
- [5] P. Kaski, P. R. Östergård, There exists no symmetric configuration with 33 points and line size 6, (submitted).
- [6] V. Krčadinac, Construction and Classification of finite structures by Computer (in Croatian), PhD thesis, University of Zagreb, May 2004.

[7] K. Metsch, Linear spaces with few lines, LNM 1490, Springer-Verlag, Berlin Heidelberg New York (1991).

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DELLA BASILICATA, EDIFICIO 3D, VIALE DELL'ATENEO LUCANO 10, CONTRADA MACCHIA ROMANA, I - 85100 POTENZA-ITALY E-mail address: vito.napolitano@unibas.it