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Abstract

I. Anderson and L. Ellison [7] demonstrated the existence of Z-
cyclic Directed Triplewhist Tournament Designs and Z-cyclic Or-
dered Triplewhist Tournament Designs for all primesp =9 (mod 16).
It is shown here that their methodology can be generalized completely
to deal with primes of the form p = (2* + 1) (mod 2**'), k> 4.
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1 Introduction

A whist tournament on v players, denoted Wh(v), is a (v,4,3) (near) re-
solvable BIBD. Each block, (a, b, ¢,d), of the BIBD is called a whist game.
For such a game, the partnership {a,c} opposes the partnership {b,d}.
The design is subject to the (whist) conditions that every player partners
every other player exactly once and opposes every other player exactly
twice. Each (near) resolution class of the design is called a round of the
Wh(v). It has been known since the 1970s that Wh(v) exist for all v =0, 1
(mod 4) [5].

In a whist game (a, b,c,d) the opponent pairs {a,b}, {c,d} are called
opponents of the first kind and the opponent pairs {a,d}, {b,c} are called
opponents of the second kind. A Wh(v) with the property that every player
opposes every other player exactly once as an opponent of the first kind
and exactly once as an opponent of the second kind is called a triplewhist
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tournament on v players, and is denoted by TWh(v). E. H. Moore [16],
in his classic paper “Tactical Memoranda I-III”, introduced the triplewhist
specialization. TWh(v) do not exist for v = 4,5,9,12,13 and exist for all
other v = 0,1 (mod 4) with the possible exception of p = 17 [2].

In a whist game one can also refer to left hand opponents and right
hand opponents. These relationships are the obvious ones associated with
the players seated at a table with a at the North position, b at the East
position, ¢ at the South position and d at the West position. A whist tour-
nament is said to be a directed whist tournament on v players, DWh(v),
if every player has every other player exactly once as a left hand opponent
and exactly once as a right hand opponent. DWh(v) were introduced by
R. D. Baker [11] and are known to exist for all v = 4n + 1 and for all
v=4n,n > 12 [10].

Another whist specialization, an ordered whist tournament design, was
introduced by Y. Lu {15]. In this case, each opponent must be played once
when playing North-South, and once when playing East-West. Necessarily,
the number of games a player plays (i.e., v — 1) must be even. Abel, Costa
and Finizio {1} have shown that OWh(dn + 1) exist for all n > 1.

A (triple, directed, ordered)whist design is said to be Z-cyclic if the
players are elements in Z,, U.A where m = v, A =0 when v =1 (mod 4)
and m = v —1, A = {co} when v =0 (mod 4) and it is further required
that the rounds also be cyclic in the sense that the rounds can be labeled,
say, Ry, Ry, ... in such a way that R;,, is obtained by adding +1 (mod m)
to every element in R;.

Z-cyclic designs are particularly appealing for the simplicity of their
presentation, one merely provides an initial round, R;, and all remaining
rounds are obtained by development of the initial round. The existence
of Z-cyclic (directed, ordered, triple) whist tournament designs is an open
problem of considerable interest. It is a fact that Z-cyclic DWh(v) cannot
exist for v =0 (mod 4) [12].

When a whist tournament design satisfies two or more of the special-
izations mentioned above then the design is refered to in terms of these
specializations, e.g. a Z-cyclic directed triplewhist design, a directed or-
dered design, etc. The notations for directed triplewhist, ordered triple-
whist and directed orderedwhist are DTWh(v), OTWh(v) and DOWh(v),
respectively. The designation of Z-cyclic is usually written out. Since
OWh(v) and Z-cyclic DWh(v) do not exist for v = 0 (mod 4) the inves-
tigation into multj-specializations of whist tournament designs has focused
on v =1 (mod 4). Abel et al. [1] have shown that DOWh(4n + 1) exist
for all n > 1. Anderson and Finizio [8] have shown that Z-cyclic DTWh(p)
exist for all primes p =5 (mod 8), p > 29. Additionally, they have shown
the existence of Z-cyclic DTWh(p) for certain other primes p < 10,000 [9].
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Anderson and Ellison [6] have shown that Z-cyclic OTWh(p) exist for all
primes p =5 (mod 8), p > 29. These same authors, in [7], have shown the
existence of Z-cyclic DTWh(p) and Z-cyclic OTWh(p) for all primes p =9
(mod 16). In this latter paper it is established that the existence of a Z-
cyclic DOTWh(v) is impossible. In this present study it is shown that the
methodology employed by Anderson and Ellison in (7] is completely gen-
eralizable to primes of the form p = (2% 4+ 1) (mod 2%+!), k > 4, thereby
providing a procedure for the establishment of the existence of Z-cyclic
DTWh(p) and Z-cyclic OTWh(p), p = (2¥ + 1) (mod 2¢+1), k> 4.

2 Some Preliminary Materials

When v =1 (mod 4) it is conventional that the initial round of a Z-cyclic
Wh(v) is the round that omits 0. Using symmetric differences it follows
that a collection of n games (a;, b;, i, di), i = 1,...,n form the initial round
of a Z-cyclic triplewhist tournament on v = 4n + 1 players if

|J{ai, i cir di} = Zans1 \ 0, (2.1)
i=1
U{:I: —¢;), 2 (b; — di)} = Zan41 \ 0, (2:2)
U — b, s = )} = Zanaa \O, (23)
i=1
and .
({2 — di), £(ei = b:)} = Zan4a \ O (2.4)
i=1
If, in addition,
J{b: — aiyci — by di = iy 0 — di} = Zanaa \ O, (2.5)

i=1
then these games form the initial round of a Z-cyclic DTWh(v). On the
other hand, if, in addition to (2.1) - (2.4), we have that

n

\U{ai — bi,ai — diyei — biyei — di} = Zan41 \ O, (2.6)

t=1

then these games form the initial round of a Z-cyclic OTWh(wv).
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For convenience of reference the differences (2.2) are called the partner
differences, (2.3) the opponents first kind differences, (2.4) the opponent
second kind differences, (2.5) the first forward differences and (2.6) the or-
dered differences.

Example 2.1 The initial round of a Z-cyclic DTWh(29) is given by the
following 7 tables [8].
(1,13,15,14) (24,22,12,17) (25,6,27,2) (20,28,10,19)
(16,5,8,21)  (7,4,18,11)  (23,9,26,3).

Example 2.2 The 7 tables listed below constitute the initial round of a
Z-cyclic OTWh(29) [6].
(1,3,26,13) (23,11,18,9) (7,21,8,4) (16, 19, 10, 5)
(20,2,27,28) (25,17,12,6) (24,14,15,22).

Definition 2.1 Let q denote a prime or a prime power. If 8 is a primitive
element for GF(q) then for each non-zero element y € GF(q) there erists
a unique integer i such thaty = 6. Ifc| (g—1) and i = j (mod c) then
it is customary to write y € C§. Cj, j < c, is often refered to as the j-th
cyclotomic class of indez c. It is also common to say that y is a j-th power
modulo c.

To say that y is a 0-th power modulo ¢ is synonomous with y is a c-th
power.

3 The Primary Constructions

For the remainder of this study we consider p to be a prime such that
p = (25 +1) (mod 2¥+1), k > 4. That is to say, p = 2t + 1, where ¢ is
odd and k > 4. For convenience we utilize the notation of Liaw [13] and
set d =25, m =2%~1 and n = 2F-2,

Construction 1. Let r denote a primitive root of p,  denote a non-square
in Z, and consider the following collection of (p ~ 1)/4 games.

(1,z,2™, —2) @r¥*% 0<i<n-1,0<j<t-1. (3.7)

Since —1 = r™t it follows that the indices of the elements in the set
{r%, zr? 2mr% —2r% : 0 < i < n—1,} constitute a complete set of
residues modulo d. Therefore the games (3.7) exhaust the set Z, \ 0. Note
that the partner differences in the base table are £(z™—1) and £2z. Again,
the fact that —1 = ™ allows for the conclusion that the indices of the ele-
ments in the set {(z™ — 1)r%, —(z™ — 1)r% 22r% ~22r%: 0<i<n—-1,}
constitute a complete set of residues modulo d if 2z(z™ — 1) is a nonsquare.
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Since 2 is a square [3] and z is a non-square it follows that the partner differ-
ences exhaust Z, \ 0 if z™ — 1 is a square. Similar logic applied to the (base
table) opponents first kind and opponents second kind differences indicate
that the games (3.7) constitute the initial round of a Z-cyclic TWh(p) if
the following conditions are satisfied:

a. z#£0,

b. z™-1=0,

c. (z—1)(=z""1+1)=0,
d (z+1)(zmt-1)=0.

The first forward differences in the base table are x — 1, z(z™"! — 1),
—z(z™ ! + 1), z + 1. To assist in the analysis of these differences let us
assume that exactly one of z + 1, z — 1 is a square. That is to say, we
assume that z2 — 1 # [0. Note, for example, that this assumption to-
gether with (d) above shows that the differences z — 1 and z(z™~! — 1)
are such that their product is a square. The same conclusion is true for
the pair z + 1, —z(z™~! + 1). Thus, the indices of the elements in the set
{(x = 1)r?, z(z™ ! = 1)r2, —z(@z™ '+ 1)r¥, (z+ 1)r¥*: 0<i<n-1,}
constitute a complete set of residues modulo d if

z(z™ 1 —1) d
-7 € Ch (3.8)
and
— m—1
_x_(:c__i_l_) eCd. (3.9)
z+1

Now, (3.8) will be satisfied if z™+1(z™ 2 +2™ 3 4. .. +z+1) € C§. Since
—1€e C2, (3.9) is satisfied if z(z™~2 —z™ 3 +...+ 2%~z +1) € C§. Thus
the following theorem is established.

Theorem 3.1 If there ezists an element = € Z, \ 0 such that

a. z#0,
b. 22 -1#0,
e @ +1)#£0,

d. 2™ (Y72t € CF,
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e. 2(Titg (-2)) € C§,
then the games (3.7) form the initial round of a Z-cyclic DT Wh(p).

The ordered differences for the base table are —(z —1), z+1, z(z™~! - 1),
z(z™ ! + 1). Arguing as above, the following theorem can be established.

Theorem 3.2 If there exists an element x € Z, \ 0 such that

e xz#0,
b. 22 -1#0,
e T @ +1) £0,
d. 2(375° o) € G,
e. ™+ (YT (—a)) € CE,
then the games (3.7) form the initial round of a Z-cyclic OT Wh(p).

If 7 is a primitive root of p, the power sequence {r* : i = 0, 1,...,p—2} and
generates the multiplicative group in GF(p) = Z,. If z = r* and y=1 we
say that z and y are |i — j| “powers apart” in thls power sequence.

Construction 2. Let r denote a primitive root of p,  denote a non-square
in Z, and consider the following collection of (p — 1)/4 games.

(L™ L™, —zm ) @r¥t ¥ 0<i<n-1,0<j<t-1. (3.10)

Since 1 and ™ are squares that are m powers apart in the power sequence
of 7 and z™~!, —z™~! are non-squares that are mt powers apart in this
same power sequence, it easily follows that the games (3.10) exhaust the set
Zp\0. The partner differences in the base table are £(z™ —1) and +2z™~1.
. Again, it easily follows that Condition (2.2) is satisfied if (™ —1) is a square.
The opponents first kind differences are £(z™~! — 1) and £z™~!(z + 1).
Since z™~! is a non-square, Condition (2.3) is satisfied if (z + 1)(z™1—1)
is a square. Similarly, Condition (2.4) is satisfied if (z — 1)(z™ ! + 1) isa
square. Thus the conditions sufficient for Construction 2 to be the initial
round of a Z-cyclic TWh(p) are precisely the same as those for Construction
1.

The first forward differences in the base table are z™~! — 1, z™~1(z — 1),
—z™ Yz + 1), 2™~ + 1. Once again we assume that z2 — 1 & (0. It then
follows that the pair z™~! — 1, z™~1(z — 1) is such that their product is a
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square. Likewise for the pair —z™1(z + 1), z™~! + 1. We conclude that
Condition (2.5) is satisfied if

)

Az™ " =1) _~d
Tz =1) € Ch, (3.11)
and
(™1 +1) d
@t D) e Cy. (3.12)
Now, (3.11) will be satisfied if z(z™ 2 + z™3 + .+z+1)€CE. (3.12)
will be satisfied if z™+1(z™ 2 —z™ 3 + ...+ 2% —z +1) € C§. Thus the

following theorem is established.
Theorem 3.3 If there ezists an element x € Z, \ 0 such that

a. z#0,
b. 22 —-1#£0,
o S E " +1) 0,
d. o(Ti?at) € C§,
e. a1 (LG (-2)) € G,
then the games (3.10) form the initial round of a Z-cyclic DTWh(p).

The ordered differences for the base tables are —(z™™! — 1), ™! + 1,
z™(z —1), z™ (2 + 1). Arguing as above, the following theorem can be
established. ‘

Theorem 3.4 If there exists an element x € Z, \ 0 such that

a. z#0,
b. 22 -1 #£0,

e IS e +1) #£0,
d. a™ (Lg% ) € G,

e. 2(Tiky’(~2)") € C8,
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then the games (3.10) form the initial round of a Z-cyclic OTWh(p).

One can discern a certain reciprocity in the sufficient conditions associ-
ated with the production of DTWh(p) and OTWh(p) via Constructions 1
and 2. If it is desired to obtain such designs for a given p then one could
investigate the satisfaction of the sufficient conditions indicated in Theo-
rems 3.1, 3.2, 3.3, 3.4 and then employ the appropriate construction. On the
other hand, suppose it is desired to investigate the existence of DTWh(p)
and/or OTWh(p) for all p via these two constructions. One approach to
this latter concern is to use Weil’s Theorem (see Theorem 4.1 below). In
the application of Weil’s Theorem it is beneficial to have an efficient set
of sufficient conditions in order to keep the asymptotic bound as small as
possible via the methods discussed in Section 4. Theorem 3.5 serves this
purpose for Constructions 1 and 2.

Theorem 3.5 If there exists an element x € Z, \ 0 such that

a z#0,

b. x2 —1#£0,

e [l @ +1) #£0,
d (Y5 a) e Cp,

e 2T o) (Tiks (-2)) € C;
then there exists both a Z-cyclic DTWh(p) and a Z-cyclic OTWh(p).

Proof: Clearly it suffices to show that Conditions (d) and (e) guarantee the
corresponding conditions in each of Theorems 3 1, 3.2, 3.3, 3.4. For conve-
nience, set f(z) = 21_021‘ and g(z) = Y1y (—x) Condition {d) leads
to two possibilities: (i) zf(z) € C4, but zf(z) ¢ C¢ and (ii) zf(z) € Cg.
Now, Case(i) implies that (z™)(z f (:1:) € C§. Furthermore, Case (i) togcther
with Condition (e) imply that zg(z) € C’o Consequently, Construction 1
yields a Z-cyclic DTWh(p) via Theorem 3.1 and Construction 2 yields a
Z-cyclic OTWh(p) via Theorem 3.4. Case (ii) together with Condition (e)
imply that zg(z) € C and, hence, (z™)(zg(z)) € C&. Thus, Construction
1 yields a Z-cyclic OTWh(p) via Theorem 3.2 and Constructlon 2 yields a

Z-cyclic DTWh(p) via Theorem 3.3. |
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4 Asymptotic Existence

For the set of sufficient conditions listed in Theorem 3.5 it is possible to
find, for each k, a number N, the “asymptotic bound”, such that for all
p > N of the form p = (2¥ + 1) (mod 2**+!) the conditions are guaranteed
to be satisfied. One approach for determining such an N is outlined below
and uses the following theorem of Weil.

Theorem 4.1 [14] Let q be a prime or a prime power and let x be a mul-
tiplicative character of GF(q) of order s > 1. Let f € GF(q)[z] be a monic
polynomial of positive degree that is not an s-th power of a polynomial. Let
b be the number of distinct roots of f in its splitting field over GF(q). Then

for every a € GF(q) we have |} cor(q) X(af(z))] < (b-1)4/3.

Let s|(g — 1). A multiplicative character of order s will be denoted by xs
and can be defined by x,(y) = e®"93/¢ for y € C§ and x,(0) =

For what follows, set a(z) =z? -1, B(z) = ::2 227 4 1), v(z) =
(X mg?7%), and 8(z) = (Z:’;Bz ) (T 752 (~2)). Additionally,

set Hy(2) = 1+ xs(2) + xs(zz) + .+ xs(2°"1). Consider the sum

S=" (1-x22))(1 ~ x2(a(2)))(1 = x2(B(z)))(Hm (7(2)))(Ha(§(2)))-
z€Z,

(4.13)
Note that |S| = 4d?|A| where A is the set of elements in Z, that satisfy
the conditions of Theorem 3.5. Typically one uses Weil’s theorem to obtain
a lower bound on |S| but in order to do so in (4.13) each factor must be
expressed in terms of the multiplicative character of order d. This is ac-
complished via the following well known Lemma.

Lemma 4.2 Let g be a prime or a prime power. Suppose that s1, sy are
positive integers such that s|sa|(g — 1). Then xs, (y) = Xs, (¥°2/%1).

Proof: The result is trivial if y = 0. Let 8 denote a primitive element of
GF(q) and set s; = €s;. If y # 0, there exist unique integers a,b, ¢, u,w
such that y = 6%, y € C3, y € C;? and us + b = ¢ = ws; + a. Thus

Xoa (y72/%1) = )%z = x, (3) i
Thus,
§= 3 (1-xa(e™)(1-xa((al@)™NA-xa( (BN ™) Hal(v(2)))) (Ha(8())):
z€Zp
‘ (4.14)
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Since (—~1)™ € C§, S has the value 0 when z = 0. Expanding (4.14) and ap-
plying Theorem 4.1 to all but the constant term (= 1) yields |S| > p— /P,
where u is a function of k. We conclude that |[A| > 0if p > u2. p2 =N
is the asymptotic bound beyond which the conditions of Theorem 3.5 are
guaranteed to hold. For example, in [7] 4 = 1453. Preliminary investiga-
tion indicates that for k = 4, p = 15949 and for k£ = 5, p = 145549. Thus
it seems that a complete analysis is possible for & = 4 but doubtful for & = 5.
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