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Abstract

Results are presented on the eternal domination problem: defend-
ing a graph from an infinite sequence of attacks, so that each attack
is defended by a guard at most distance one from the attack. We first
consider the model where at most one guard moves to defend an at-
tack. Our focus is on the relationship between the number of guards
and the independence and clique covering numbers of the graph. We
establish results concerning which triples of these parameters can be
attained by some graph, and determine the exact value of the number
of guards for graphs in certain classes. We then turn our attention
to the variant of the problem in which every guard can relocate to an
adjacent vertex in defence of an attack. We give a linear algorithm
to determine the minimum number of guards necessary to defend a
tree, and use it to answer another question about defending trees.

1 Introduction

Several recent papers have studied the problem of protecting the vertices
in a graph from a series of one or more attacks (1, 2, 5]. In such a problem,
guards are located at vertices, can protect the vertices at which they are
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located, and can move to a neighboring vertex to defend an attack there.
Under this set of rules, a guard located at each vertex of a dominating set
can defend a graph against a single attack. Several variations of this prob-
lem have been proposed including Roman Domination [3], Weak Roman
Domination [4] and k-secure sets/eternal secure sets [1, 2, 5, 7].

Let R =rq,r9,... be a sequence of vertices of a graph. The elements of
R are the locations of a sequence of consecutive attacks (or service requests)
at vertices, each of which must be defended (or attended) by a guard. We
consider the model where at most one guard is allowed to move to defend
each attack, except in Section 4 where we consider the model in which all
guards can move in response to an attack. In order to avoid confusion, we
state only the definitions for the “one guard moves” model here and defer
the definitions for the other model to Section 4.

A set D is an eternal secure set if, for all possible sequences of attacks
R =r,72,... there exists a sequence D = Dy, Dy,... of dominating sets
such that D; = (D;_1 \ {v}) U {r;}, where v € D;_, and r; € N[v] =
N(v)U{v} (note that v = r; is possible). The set D; is the set of locations
of the guards after the attack at r; is defended. If v # r;, we say that the
guard at v has moved to r;. The size of a smallest eternal secure set in G
is the eternal domination number (also known as eternal security number),
and is denoted by Y., (G) or simply oo [2].

For a graph G, the relationship between v,(G), and its domination
number y(G), independence number (G), and clique covering number 8(G)
(i.e., the chromatic number of G) is explored in Sections 2 and 3 of this
paper. The main result in Section 2 describes triples of integers (&, Yoo, 8)
that are achieved by some graph. Section 3 determines the eternal domi-
nation number of graphs in certain classes. In Section 4, we consider the
variation of the problem in which every guard is allowed to move at each
step. We solve some problems stated by Goddard et al. [5], including giving
a linear-time algorithm to defend the vertices of a tree.

2 Results for Graphs

In this section and the next, at most one guard is allowed to move to defend
an attack.
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2.1 Structural Results

Goddard et al. [5] noted that, for all graphs G,
a(G) £ 70(G) < 0(G).

Another upper bound on 7 is the following.

Theorem 1 (8] For any graph G with independence number a(G) > 1,

ool G) < (a(G; + 1).

First, a construction which is useful for obtaining graphs with given
values for these parameters is noted. Recall that the join of two disjoint
graphs G; and G is the graph Gy + G2 obtained from G; U G2 by adding
all possible edges joining vertices of G; to vertices of G3. The star product
of n > 1 disjoint graphs G1,Gb,...,Gy, is the graph

§(G1,Ga,...,Ga) =K1 +(G1UG2U---UGy).

That is, S(G1,Ga2,...,Gr) is obtained from the disjoint union G; UGz U
.-+ UG, by adding a new vertex and joining it to all of the other vertices.

The proof of the following proposition is similar to that of Theorem 2
in [8].

Proposition 2 Given n > 1 disjoint graphs G1,Ga,...,Gn, for the graph
S = 8(Gy,Gy,...,G,) we have

e o(S) = a(G1) + a(G2) + - + a(Gr),
® Y00(S) = Yoo (G1) + Voo(G2) + -+ - + Yoo(Gn), and
e 9(S) =0(G1) +6(G2) +--- +8(Gr).

Proof The statements regarding «(S) and 6(.S) are obvious. We argue that
Yoo (S) = Yoo (G1) + Yoo (G2) +* * - + Yoo (Gr). Clearly this number of guards
suffices to defend S from any sequence of attacks. On the other hand, for
i=1,2,...,n there exists a sequence of attacks at vertices of G; which can
only be defended if 7,,(G;) guards are located on G;. Since, if i # j, no
single move can relocate a guard at a vertex of G; to a vertex of Gj, it
follows that Yoo (G1) + Yoo(G2) + - -+ + Yoo(Gn) are necessary to defend S.
a

A simple lower bound is given.
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Corollary 3 (8] For every positive integer n there exists a connected graph
G with independence number 2n and eternal security number 3n. That is,
for every positive integer n there exists a graph G,, such that

Yoo(Gn) _ 3
G 272

A triple of positive integers (a, g,t) is called realizable if therc exists a
graph with @ = @, 7, = g and @ = . The above corollary shows that for all
integers n > 1 the triple (2n,3n, 3n) is realizable. Theorem 1 shows that no
triple with g > (°}?) is realizable. Goddard et al. [5] gave an example to
show that (2,6,10) is realizable. This was the first example of a realizable
triple with g strictly between a and t. It is natural to ask: Which triples
are realizable?

Before providing a partial solution to this question, we observe that
Proposition 2 implies that the set of realizable triples has a nice algebraic
structure: it is closed with respect to addition.

Pl‘OpOSitiOIl 4 If the n 2 1 triples (alagl)tl)a (02»92,t2)a- .. ’(anagn; tn)
are all realizable, then so is (a1 +ag+ -+ an,g1 + g2+ -+« + gn,t1 + 12 +
oo tn)~

Proof: Suppose that, for ¢ = 1,2,...,n, the triple (a;, g;,t;) is realized by
the graph G;. Then, by Proposition 2, the triple (¢; + a2 + -+ an, g1 +
g2+ +gn,t1 +1t24 - +1ty,) is realized by §(G1,Ga,...,G,). O

Taken together, the sequence of results below shows:
Theorem 5

1. The only realizable triple with a =1 is (1,1,1).

2. The only realizable triples with a = 2 are (2,2,2) and (2,3,t), where
t 2> 3.

3. For all integers a,g andt with 3 < a < g < -g-a and g < t, the triple
(a,g,t) is realizable.

Statement 1 is clear. The next few results determine the realizable
triples with a = 2.

Proposition 6 [2] If 8(G) < 3, then 8(G) = Yoo(G). That is, if (a,g,t) is
a realizable triple witht < 3, then g =t.
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Corollary 7 [7] If o(G) < 2 and a(G) = Yeo(G), then a(G) = 6(G). That
is, the only realizable triple with a = g = 2 is (2,2,2), which is realized by
Cy.

Corollary 8 For anyt > 3, the triple (2,3,1) is realizable.

Proof: The complement of a triangle-free graph of chromatic number ¢ has
a = 2 and 8 = t. By Theorem 1 and Corollary 7, such a graph has 7s, = 3.
a.

We now turn our attention to Statement 3 of Theorem 5.

Proposition 9 [2] For any integer a > 1, the triple (a,a,a) is realized by
a perfect graph with independence number a.

Theorem 10 [7] For any integers a > 3 and t > a, there ezists a graph G
with a(G) = Yo(G) = a, and 0 = t. That is, for any integers a 2 3 and
t > a, the triple (a,a,t) is realizable.

Proposition 11 Let a and g be positive integers with a 2 3 anda < g <
-g-a.. Then, for any integer t > g the triple (a,g,t) is realizable.

Proof: The proof is by induction on a + g. The base case, a + g = 6, is
covered by Proposition 9 and Theorem 10. Suppose that the statement is
true for all triples with 6 < a + g < n, for some integer n > 7. Consider a
triple (a,g,t) satisfying the hypotheses and havinga+g=n 2> 7. Then
g > 4. We consider several cases. If a = g then the result follows from
Theorem 10. The only remaining case when a = 3 is g = 4. Here, by
Corollary 8, the triple (a, g, t) is the sum of the realizable triples (2,3,t—1)
and (1,1,1). When a = 4, the cases g = 5 and g = 6 must be considered.
If a = 4 and g = 5, then (a, g, t) is the sum of the realizable triples (2,2, 2)
and (2,3,t—2). If = 4 and g = 6 then (g, g, t) is the sum of the realizable
triples (2,3,3) and (2,3,t —3). The final case is @ > 5 anda< g < %a.
Here (a — 2) + (g — 3) > 6 so that, by the induction hypothesis, (a, g,t) is
the sum of the realizable triples (2,3,3) and (a —2,9— 3,t— 3). The result
now follows by induction. O

This completes the proof of Theorem 5. A consequence of Theorem 5 is
that there can be arbitrarily large gaps between the independence, eternal
security, and clique-covering numbers.

Corollary 12 Let ¢ and d be positive integers. Then there exists a con-
nected graph with a + ¢ < Yo and Yoo + & < 9.
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Proof: Let @ = 2c+2 > 3. By Statement 3 of Theorem 5, the triple
(2c+2,3c+3,3c+d+4) = (a,a+ c+1,a+c+d+2) is realizable. O

‘We now turn our attention to the special situation when the domination
number of a graph equals its eternal domination number. The proof of the
following is straightforward and is omitted.

Lemma 13 (Cloning Lemma) Let G be a graph and v a vertez of G.
Let G’ be the graph obtained from G by adding a new vertex v’ such that
v'w € E(G') for each w € N[v]. Then ¥(G) = Y(G"), Yoo (G) = Yoo (G"),
and 6(G) = 8(G").

Theorem 14 For any graph G, v(G) = v (G) if and only if v(G) = 6(G).

Proof: If v(G) = 6(G), then since Y(G) < a(G) < 7(G) < 8(G) for all
graphs G, we have that v(G) = 7,(G).

Now suppose ¥(G) = 7Yoo(G). Obviously, v(G) = a(G) and every maxi-
mal independent set is a minimum dominating set and thus also an eternal
secure set. Hence every maximal independent set of G is also a maximum
independent set. Let D be a maximal independent set. From the Cloning
Lemma, we can assume that each vertex in D has at least one private
neighbor (i.e., a vertex of V — D that is adjacent to no other vertex of D).
Otherwise, modify G accordingly so the Cloning Lemma applies. Since D
is a dominating set and a maximum independent set, the private neighbors
of each vertex v € D induce a clique.

Assume we have 7(G) guards in G located at the vertices of D. Consider
an attack at vertex w ¢ D, where w is not a private neighbor of any vertex
in D (if no such w exists, then we are done). Then w is adjacent to some
vertex v € D. Send the guard from v to w. Since 45, (G) = |D| and since
no private neighbor of v is adjacent to any vertex in D except v, it must be
that w is adjacent to each private neighbor of v. It follows that 6(G) = | D).
(m]

2.2 Complexity
When a(G) = 2, 7(G) < 3 [5], and one can determine the eternal security
number of such graphs in polynomial time, due to Theorem 5 of [2]. We

can say more than this, however.

Theorem 15 The eternal security number of graphs of bounded indepen-
dence number can be computed in polynomial time.
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Proof: Suppose 7eo(G) is bounded by the constant B < (*(9*'). Let
n = |V(G)|.

Let i be an integer such that & < ¢ < B. Construct an arc-labelled
digraph X; as follows: The vertices of X; are the dominating subsets of
V(G) of size i. There is an arc from W to Z labelled r if whenever the
guards are at W and the attack is at r then the attack can be defended
by the guards moving to Z. Note that each vertex may be incident with
several arcs of the same label, and that loops are allowed. The digraph X;
can be constructed in time polynomial in n, as it has at most n® vertices
(since B is a constant).

Since the digraph X; captures every possible guards’ strategy, it is clear
that the eternal security number of G is at most ¢ if and only if X; has an
induced subgraph in which each vertex has an arc of each label going out
from it.

It can be determined iteratively whether X; has a subgraph of the re-
quired type. Repeatedly delete any vertex with no incoming arcs, or with
no outgoing arc of some label. If the process terminates with an empty
digraph, then the answer is no. If the process terminates with a non-empty
digraph, then by definition of the reduction this digraph has the required
property. Since at least one vertex is removed at each step, and the number
of vertices is polynomial in n, the procedure takes polynomial time.

In order to determine the eternal security number, we need to find the
smallest i such that @ < i < B and applying the above reduction to X;
does not result in an empty digraph. This can be done by trying the values
i=a,i=a+1, etc. in turn until either a positive answer is obtained, or
i = B —1 has been tried. In the latter case, 7., = B. Since B is a constant,
this procedure takes time polynomial in n. D

3 Graph Classes

In this section, we focus on certain classes of graphs, as suggested in (2].
Since perfect graphs have o = 8, one should consider classes that include
graphs that are not perfect, such as the following.

Let C* be the k*" power of the cycle on n vertices. We assume that
2k +1 < n. It was shown in (2] that 7o (Crn) = [%] = 6(C,). Observe that
¥(CE) = [3871, «(CF) = g ), and 8(C7) = [ 1-

Theorem 16 Let Ck be the k" power of the cycle on n wvertices. Then
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Yoo (CE) = (CF), for all k> 1,n > 3.

Proof: From the information above, the only case we need to consider
is when o(Ck) + 1 = 6(CF), which occurs when k + 1 does not divide
n. Number the vertices vp,v1,v2...,vn-1 clockwise around the cycle in
the obvious way. Suppose there are a(C¥) guards at independent vertices

V0, Uk+1, U2(k+1)s-- - Let p be the maximum integer such that a guard
resides at v, (so p is the maximum integer such that p = q(k+1) < n—k,
for some g > 1). Note that no guard is on v,,—1,¥n—2,...,Vp_k_1 (i.e., k+1

consecutive vertices). Consider an attack at v;. If defended by the guard at
o, we proceed as follows. Have an attack at v,_,. If defended by the guard
at v,, we are done (now, no guard is adjacent to v,_x), so this attack must
be defended by the guard at v,_(x4+1). Continuing in this way, consider
a sequence of similar attacks so that each guard starting with the closest
counterclockwise guard to v,_(x+1) and proceeding counterclockwise must
be forced to move, eventually with the guard at v; moving to v;. At this
point, no guard will be adjacent to v, _s.

On the other hand, suppose the first attack is defended by the guard
at vg41. But now we have a similar configuration to one above, with two
guards at consecutively numbered vertices and a “gap” of k + 2 consecu-
tively numbered vertices (starting just after the two consecutively numbered
vertices with guards), none of which have a guard. O

‘We now consider the complements of powers of cycles, denoted C—,’f, with
2k +1 < n. These are, in fact, the circular cliqgues which are central to the
theory of circular colorings of graphs. It is well known, and not difficult
to prove, that C¥ has independence number k + 1. We will also make use
of the easily verified observation that 6(C%) = k+ 1 if k + 1|n and k + 2
otherwise.

Theorem 17 Let 5_,’{ be co_r@lement of the k** power of the cycle on n
vertices. Then 7., (Ck) = 6(Ck), for allk > 1,n > 3.

Proof: Number the vertices of C_,’f Vg, V2,...,Vs—1 “around the cycle” (i.e.,
SO V;v;+1 is an edge in the graph’s complement, C¥). Assume k+1 does not
divide n (else the theorem is obvious) and suppose by way of contradiction
that Yeo(C¥) = k + 1 < 6(CF). Assume there are attacks so that the k + 1
guards are located at the k + 1 independent vertices vq,v2,...,vk+1. Now
consider an attack at w43, which can be defended by the guard at either
v; or vy. If this attack is defended by the guard at v, then after the guard
defends the attack, there is no guard adjacent to vg42. On the other hand,
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suppose the attack at vg,3 is defended by the guard at vp. After the guard
at vz moves to vk3, consider k — 1 subsequent attacks at vii4, Vk4s,-- ..
Each of these attack can only be defended by a unique guard, the guard
at v3,vs,..., respectively, and once these attacks are defended, there is no
guard adjacent to v,. O

Lemma 18 If G is an induced subgraph of H then voo(H) 2 Yoo (G)-

Proof: After a sequence of attacks on vertices of G that requires Yeo(G)
guards to defend there must be 70(G) guards located on vertices of G. O

A cactus graph is a graph in which each edge is contained in at most
one cycle. Every block of such a graph is either K3 or a cycle, and any
induced subgraph of a cactus graph is also a cactus graph.

Theorem 19 Let G be a cactus graph. Then voo(G) = 6(G).

Proof: The proof is by induction on the number of vertices. The theorem is
obviously true for trees (which are perfect) and cycles. Partition the edge
set of G into two cactus graphs, H;, H, having one vertex, v, in common;
s0 v is a cut-vertex. By choosing H; to correspond to an end-block in the
block cutpoint tree, this can be done so that H; is either a K3 or a cycle.

Suppose first that H; is a copy of K2 with vertex set {v,y}. There are
two cases to consider, depending on the relationship of §(G) to 6(Hz).

If 6(G) = 6(Hs), then by Lemma 18 we have 7(G) > Yoo(H2) =
8(H;) = 8(G), so that 7. (G) = 6(G). Hence, suppose that §(G) = 6(Hz)+
1. First, attack at y so that a guard is located there. Now it follows
that the subgraph, H, induced by V(G) — {v,y} has 8(H) = 6(Hz), and
consequently Yoo (H) = §(H) = 6(Hs). Since a guard located at y can not
defend a vertex of H, at least 6(H) more guards are required in order to
defend G. Therefore, 7,,(G) = 1+ 6(H) = 1+ 0(Hz) = 6(G), so that
Yoo (G) = 8(G). ‘

Now suppose that H; is a cycle. Let P be the path induced by V(H;) -
N[v]. There are two cases to consider, depending on the relationship of
0(H>) to O(Hp - v).

Suppose §(Ha — v) = 8(H2). Then Yoo(Hz — v) = 8(Hz — v) = 6(Ha).
Thus there is a sequence of attacks that results on 6(H3) guards being
located at vertices of Ho — v. None of these guards can defend an attack
at a vertex of P. It follows that at least 6(P) more guards are required to

defend G. Therefore Yoo (G) = 8(Hz2)+0(P) = 8(G), so that 7 (G) = 8(G).
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On the other hand, suppose 8(Hy — v) = §(H,) — 1. We consider two
sub-cases depending on the parity H;.

Suppose that H; is an even cycle We have v (Hz — v) = 8(Hy — v) =
6(H3z)—1, and can assume that there has been a sequence of attacks so that
6(H, — v) guards are located in H, — v. None of these guards can defend
an attack at a vertex of P. It follows that at least #(P) more guards are
required in order to defend G. Therefore, 7(G) > 0(H2 — v) + 8(P) =
0(Hz) — 14+ 6(P) = 6(Hy) — 1+ 6(H,) = 8(G), so that 7 (G) = G(G)

Finally, suppose that H; is the odd cycle with vertex sequence v = v,
V2, ..., U2m+1, V1. Suppose there has been a sequence of attacks that results
in 7.0 (H2) = §(Hs) guards being located on vertices of H, and no guard
being located at v. Then, since no guard on a vertex of Hy —v can defend an
attack at a vertex of Hj, at least yoo(H1—v) = 6(H, —v) = (H;) — 1 more
guards are required to defend G. In this case, Yo (G) > 0(Hy)+0(H;)—1 =
0(G), and so0 7.0(G) = 6(G) Hence, consider a sequence of attacks that
results in §(Hy) guards being located at vertices of Hy, with a guard being
located at v. Consider the sequence of attacks v3,vs,...,V2m—3. None of
these can be defended by the guard at v, and two of these can be defended
by the same guard. Hence there are §(H;) — 1 guards in H;, located at
V1,73,Us,...,U2m—3. Suppose that these are all of the guards in H;, so
that the total number of guards is 8(Hz) — 1 + 0(H;) - 1 = 6(G) - 1.
We shall obtain a contradiction. Consider an attack at v,. It must be
defended by the guard at vs, otherwise vap,—1 is not dominated. Now, the
sequence of attacks vy, vs,...,vam—4q must be defended by the guards at
U5,07,...,VU2m—3, respectively. However, when the guard at v,,, -3 moves
t0 U2mm—4, the vertex vopm_2 is no longer dominated. Therefore 8(G) — 1
guards are insufficient to defend G, and it follows that 7,,(G) = 8(G). D

We note that all known graphs G with 8(G) = a(G) + 1 have 7,.G =
8(G).

4 All Guards Move

In this section we allow that each guard can move when an attack occurs.
First, the relevant definitions are stated.

Let D = {z;,29,...,2¢} and D' = {z},2},...,2}} be dominating sets
of a graph G such that for ¢ = 1,2,...,k either z; = z} or z; is adjacent
to z{. Then D’ is said to be obtained from D by a guards move. When
z; # x;, we say that the guard at z; has moved to z}.
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A dominating set D of a graph G is an eternal m-secure set if, for
all possible sequences of attacks R = 71,7g,... there exists a sequence
D = Dg,Ds,... of dominating sets such that r; € D; and D; is obtained
from D;_, by a guards move. As before, the set D; is the set of locations of
the guards after the attack at r; is defended. The size of a smallest eternal
m-secure set in G is the eternal m-security number), and is denoted by
Ym(G) or simply Ym.

It is an open question whether, in this model, there is any advantage
in allowing two guards to occupy the same vertex (there is no advantage
in the “one guard moves” model [2]). Note, however, that our definition of
guard move has implicitly disallowed the possibility of two guards being on
the same vertex at the same time.

4.1 Vertex-Transitive Graphs

Goddard et al. [5] determine m(G) exactly for complete graphs, paths,
cycles, and complete bipartite graphs. Further, they show that the lower
bound ¥ (G) = 7(G) holds for all Cayley graphs and conjecture this holds
for all vertex-transitive graphs. We now disprove this conjecture.

Let P be the Petersen graph. Suppose it consists of the “outer” 5-cycle
1,2,3,4,5,1, “inner” 5-cycle 1’,3,5',2/,4, 1’ and the matching 11,22',...,55'.
The graph P has domination number three. Up to symmetry, there is only
one dominating set of size three: {1,3’,4'}. Suppose guards are located
these vertices. Consider an attack at vertex 1’. If the guard at vertex 1
moves to 1’, there is no way for the other guards to move and maintain a
dominating set. By symmetry, assume the guard at 4’ moves to 1’. Some
guard must move so as to dominate vertex 4. If the guard at 1 moves to 5
then there is no move for the guard at 3’ that will maintain a dominating
set. Since there is no dominating set of size 3 that contains 1 and 1’, it
follows that the guard at 1 moves to 2. But, again, there is no move for the
guard at 3’ that will maintain a dominating set.

4.2 A Linear Algorithm for the Eternal Security Num-
ber of a Tree

Let T be a tree. If T is isomorphic to K>, then v, = 1, and if T is
isomorphic to K1 m,m > 2, then 1, = 2.

The algorithm consists of repeatedly applying the two reductions below.
We first describe the reductions, and then establish correctness and time
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complexity of the algorithm. We note that the proofs of the reductions give
a strategy under which the tree can be defended by v,, guards.

R1: Let z be a vertex of T incident to ¢ > 2 leaves and to exactly one
vertex of degree at least two. Delete all leaves incident to z.

R2: Let z be a vertex of degree two in T such that z is adjacent to exactly
one leaf, y. Delete both z and .

Lemma 20 It T is the result of applying reduction R1 to the tree T, then
T' is a tree and 7y, (T) = 1 + 1o (7).

Proof. Let ¢1,03,...,4, k > 2, be the leaves adjacent to , and let w be
the unique neighbor of z with degree at least two. It is clear that 7" is a
tree.

In order to defend against attacks at ¢4, €5, ..., £, there must always be
at least two guards in N{z], and two guards suffice. Thus, in a minimum
eternal m-secure set, there are two guards that defend these leaves. In our
algorithm, one of these two guards must always be on z, and the other
may be on w or one of £,0s,...,¢; these two guards will always move
50 as to be on adjacent vertices. The same strategy eternally defends 7",
after removing one of the two guards. Therefore, v, (T') < Y (T) - 1, or
Ym(T) 2 Y (T') + 1.

On the other hand, in any strategy that eternally defends T" there must
be a guard at z or w in order to defend against attacks at z. Adding an
initial guard at £; and adapting the strategy for T so that there is always
a guard at z and so the two guards in N{z] are always at adjacent vertices
eternally defends T'. Therefore, v (T) < 1 + v (T”). This completes the
proof. O

Lemma 21 It T” is the result of applying reduction R2 to the tree T, then
T' is a tree and 7, (T) = 1 + v (T").

Proof. It is clear that T” is a tree. In order to defend against attacks at
there must always be a guard on z or y. This guard defends the vertices in
N[z] = {z,y}, and the remaining ¥,,(T) — 1 guards defend the rest of the
vertices of T'. Therefore, Ym (1) < Ym(T) — 1, or Y (T) 2 v (T') + 1.

Conversely, any strategy that eternally defends 7" can be extended to
a strategy that eternally defends T by adding a guard to defend N[z] =
{z,y}. Therefore, ¥ (T) < 1+ Ym(T’). This completes the proof. O
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Let T be a tree that is isomorphic to neither K nor Ky m,m > 2. Let =
be a vertex of maximum eccentricity among those which are adjacent to one
of more leaves. If deg(z) > 3 then R1 can be applied at x, otherwise R2 can
be applied at z. Thus, if T is isomorphic to neither K nor K ;,,,m > 2, one
of the reductions R1 and R2 can be applied. A list of vertices all of whose
neighbors except one are leaves can also be maintained and updated as the
reductions are applied. The degrees of the vertices of T’ can be computed in
linear time, and these can be updated in constant time as the reductions are
applied. The total number of operations is at most |[V(T')|. An application
of reduction R1 can be thought of as deg(z) — 1 single vertex operations
that each take constant time, and similarly for reduction R2. Thus, the
algorithm can be implemented to run in linear time. O

We describe an infinite collection of graphs for which certain attacks
result in every guard having to move in order to maintain an eternal m-
secure set. Let P, be a path with vertex sequence z,,%2,...,Z,. Let
G, be the graph obtained from P, and the disjoint sets of new vertices
{u1,u2,...,u,} and {v1,v2,...,vx} by joining u; and v; to z; for i =
1,2,...,n. Then 7,,(G,) = n+ 1 and any minimum eternal m-secure set
in G, must have a guard at each vertex of P. For any feasible initial
configuration of the guards, each attack in the sequence u1, Un, 4y, Un, - - -,
except possibly the first, causes every guard to move.

4.3 A Vertex Partition Theorem for Eternal Security
in Trees

Define a neo-colonization as a partition {V4,Va,...,V;} of graph G such
that each V; induces a connected graph. A part V; is assigned a weight of
one if it induces a clique and 1+7.(G[Vi]), otherwise, where v.(G[V}]) is the
size of the smallest connected dominating set in the subgraph induced by
Vi. [A connected dominating set of G is a set D such that D is a dominating
set and G[D)] is connected). Then 6.(G) is the minimum weight of any neo-
colonization of G. Goddard et al. proved that 7,,(G) < 0:(G) < 7.(G) +1.
We can now prove the following theorem, which was conjectured in {5].

Theorem 22 Let T be a tree. Then 6.(T) = ym(T).

Proof. The proof is by induction on the number of vertices in T'. It is
obviously true when T has one or two vertices. Consider a tree T with n
vertices. ‘
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First suppose that T is such that reduction R2 can be applied, yield-
ing T'. By the inductive hypothesis, 8,(T") = y»(T") and it follows from
Lemma 2 that %, (T") + 1 = 4»(T). Let P be a minimum weight neo-
colonization partition of 7”. In a minimum weight neo-colonization parti-
tion of T, either (1) z and y are a clique, in which case it is obvious that
0c(T) = Ym(T) = 6.(T") + 1 or (2) y is a clique and z is either a clique or
added to some part of P (i.e., the part containing z in the neo-colonization
of T is a proper superset of a part in the neo-colonization of T"), in which
case 0:(T) > 6.(1T") + 1, or (3) = and y are added to some part of P,
which implies in the weighting of this part in T, it must be weighted as a
connected dominating set, so we have 6.(T) > 6.(T") + 1.

On the other hand, suppose T is such that reduction R1 can be applied,
yielding T'. By the inductive hypothesis, 8,(T') = 7,,(T") and it follows
from Lemma 21 that v, (T') + 1 = yn(T). Let P be a minimum weight
neo-colonization partitioning of 7. In an minimum weight neo-colonization
partitioning of T, either (1) z is a clique, in which case the leaves adjacent
to = must each be cliques in this partition of T', and so obviously 6.(T") >
8:(T") + 2 or (2) = and the leaves adjacent to it form a part by themselves
and thus 6.(T) > 6.(T") + 2 or (3) z, and because of the minimality of
the partitioning, its adjacent leaves, are added to some part of P. If this
part was a clique in P, then the weight of the part is two greater in the
neo-colonization of T', since it must be weighted as a connected dominating
set in the neo-colonization of T". If this part was not a clique in P, then the
weight if the part is one greater in the neo-colonization of T than in that
of 7. O

Note added in press: Goldwasser and Klostermeyer have recently proved
[6] that for all ¢ > 3, certain complements of Kneser graphs satisfy a = ¢
and Yoo = (*1!). That is, the bound in Theorem 1 is tight. It is therefore
natural to ask how far the realizability results above can be extended. Given
enough base cases, it is possible to use the “star product” method of this
paper to show realizability of any triple (a,g,t) with g < ca for a fixed
constant ¢. On the other hand, at this time it is unknown whether the
triples (3,5,t), t > 5 are realizable. The inductive proof of Proposition 11
appears not to carry through with a quadratic bound on g, since (*}) is
greater than any sum (3)+ (%) where z+y = a: the cases ($)+1 < g < (“31)
seem to need to be handled using a different method.
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