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Abstract

Given a graph G, the adjacency matrix, A(G), the standard
Laplacian, L(G), and the normalized Laplacian, £{G), have been
studied intensively. In this paper, interlacing inequalities are given
for each of these three matrices under the two operations of removing
an edge or a vertex from G. Examples are given to show that the
inequalities are the best possible of their type. In addition, an inter-
lacing result is proven for the adjacency matrix when two vertices of
G are contracted. Among the results given are the following. Let G
be a graph and let H be a graph obtained from G by removing an
edge or a vertex of degree r. Let A, 2 = 1,2,...,n be the eigenvalues
associated with A(G), L(G), or £(G) and let 6; be the eigenvalues
associated with A(H), L(H), or L(H) where both sets of eigenvalues
are in nonincreasing order. In the case of removing a vertex so that
H = G-, for the normalized Laplacian we have Ai—r41 > 6i > Aigr.
For the standard Laplacian we have X; > 6; > Aisr. In the case
of removing an edge so that H = G — e, where e is an edge inci-
dent on a vertex of degree 1, for the normalized Laplacian we have
Ai 20 2 Aiga.
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1 Introduction

All graphs in this paper are simple graphs, namely, finite graphs without
loops or parallel edges. Let G be a graph, and let V(G) and E(G) denote
the vertex set and the edge set of G, respectively. Two vertices are adjacent
if they are two end-vertices of an edge and two edges are adjacent if they
share a common end-vertex. A vertex and an edge are incident if the vertex
is one end-vertex of the edge. For any vertex v € V(G), let d, denote the
degree of v.

Suppose that V(G) = {w,v2,...,v}. Annxn (0,1)-matrix A :=
A(G) = (aij) is called the adjacency matriz of G if

0 = 1 ifvv; € BE(G),
71 0 otherwise.

The eigenvalues of A(G) have been studied extensively. We refer to Biggs
[2] and Schwenk and Wilson [9] for literature in this area.

The standard Laplacian L := L(G) = (L;;) of a graph G of order n is
the n x n matrix L defined as follows:

dv,. if v = vy,
Lij = -1 if V;v; € E(G),
0 otherwise.

We note that for any graph G, its standard Laplacian L(G) = L can be
written as L = SST, where S is the matrix whose rows are indexed by
the vertices and whose columns are indexed by the edges of G such that
each column corresponding to an edge e = v;v; (with i < j) has entry 1 in
the row corresponding to v;, and entry —1 in the row corresponding to v;,
and has zero entries elsewhere. Since L = SS7, L is positive semidefinite
and has nonnegative eigenvalues. Furthermore, 0 is always an eigenvalue
of L since the vector (1,1,...,1)7 is a corresponding eigenvector. In fact,
as noted by Mohar [8], the multiplicity of the eigenvalue 0 is equal to the
number of connected components of the graph G.

The normalized Laplacian of G is the n x n matrix £ := £(G) = (L;;)
given by

1 if v; = v; and d(v;) # 0,
Lij = —ﬁ if viv; € E(G),
0 otherwise.

Let T denote the diagonal matrix with the (z,7)-th entry having value d,,.
We can write £ = T-1/2LT-1/2 = 7-1/2§8TT-1/2 with the convention
that T71(4,4) = 0 if d,, = 0. It can be easily seen that all eigenvalues
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of £ are real and non-negative. In fact, if A is an eigenvalue of L, then
0 < X < 2. As pointed out in [4, p. 2], the eigenvalues of the normalized
Laplacians are in a “normalized” form, and the spectra of the normalized
Laplacians relate well to other graph invariants for general graphs in a way
that the other two definitions fail to do. The advantages of this definition
are perhaps due to the fact that it is consistent with the eigenvalues in
spectral geometry and in stochastic processes.

One of our goals is to describe all eigenvalue interlacing results for A(G),
L(G), and L(G), associated with the removal of an edge or vertex. Three
of the six possible cases have been resolved: eigenvalue interlacing result
on the adjacency matrix when a vertex is removed; eigenvalue interlacing
result on the standard Laplacian when an edge is removed; and eigenvalue
interlacing result on the normalized Laplacian when an edge is removed.
We complete the picture by obtaining best possible interlacing results for
the three remaining situations. Some other interesting related results are
also given along the way. In particular, let G be a graph of order n and
H = G — e, where e is an edge incident on a vertex of G of degree 1. If
M>X>...2\M\ =0and §; > 6, > ... 20, =0 are the eigenvalues of
L(G) and L(H), respectively, then X; > 6; for each 1 =1,2,3,4,...,n.

2 Known Interlacing Results

Eigenvalue interlacing provides a useful tool for obtaining inequalities
and regularity results concerning the structure of graphs in terms of eigen-
values of adjacency matrices and Laplacians. Much research has been done
in this area. For a survey of literature, we refer to Haemers [5]. The fol-
lowing result is known as Cauchy’s interlacing theorem.

Theorem 2.1 Let A be a real n x n symmetric matriz and B be an (n —
1) x (n — 1) principal submatriz of A. If

M2XA>...2A and
912922-'-2011—1

are the eigenvalues of A and B, respectively, then

>\i > Bi > Ai+1 fOT each i = 1,2,3,4,...,n— 1.

Now, instead of deleting one row and column, what if we delete g rows
and the corresponding ¢ columns? The following theorem is a generalized
version of Cauchy’s theorem. It can be proved by using Cauchy’s interlacing
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theorem iteratively. For a direct proof, we may use the Courant-Fisher
theorem, see page 190, [6)].

Theorem 2.2 Let A be an n x n real symmetric matriz and B be anr x 7,
1 <7 < n, principal submatriz of A, obtained by deleting n — r rows and
the corresponding columns from A. If

MZ2A2>..2 M

6h20;2>...26:
are the eigenvalues of A and B, respectively, then for each integer i such
that
1<ir

A1’. 2 91' 2 ’\i+n—r-

Let G be a graph of order n and let H = G — v, where v is a vertex of
G. Theorem 2.1 gives an interlacing property of the eigenvalues of A(G)
and the eigenvalues of A(H), which we refer to as the vertex version of the
interlacing property.

Theorem 2.3 Let G be a graph and H = G — v, where v is a vertez of G.
If
AM>2X>...2) and
h2>2602...20,1
are the eigenvalues of A(G) and A(H), respectively, then
Ai 2 0; > Miy1 foreachi=1,2,3,4,...,n—1.

Theorem 2.1 does not directly apply to the standard Laplacian (or the
normalized Laplacian) of G and H since the principal submatrices of a
standard Laplacian (or a normalized Laplacian) may no longer be the stan-
dard Laplacian (or the normalized Laplacian) of a subgraph. However, the

following result given in van den Heuvel [7] reflects an edge version of the
interlacing property.

Theorem 2.4 Let G be a graph and H = G — e, where e is an edge of G.
If

AM>XA>...>2x =0 and
0h>60>...26,=0

are the eigenvalues of L(G) and L(H), respectively, then

Ai>20; > A1 foreachi=1,2,3,4,...,n—1.
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Since the trace of £ is n when there are no isolated vertices, it is impos-
sible to have an exactly parallel result to Theorem 2.4. However, through

the use of Harmonic eigenfunctions, the following result was recently estab-
lished, (3].

Theorem 2.5 Let G be a graph and let H = G — e, where e is an edge of
G. If

M>A>...2)0 and
0,>2602>...26,

are the eigenwalues of L(G) and L(H), respectively, then
X120 > Niy1 foreachi=1,23,4,...,n,

where )\o =2 and An-{-l =0.

3 New Interlacing Results

We first consider how the eigenvalues of the standard Laplacian of the
graphs G and H = G — v interlace, where the degree of the vertex v is
r. It turns out that a modification of the proof of Theorem 2.4 yields the
following result.

Theorem 3.1 Let G be a graph of order n and H = G — v, where v is a
vertex of G of degree r. If

A12A22-~-2An=0
0129‘22---2011—]:0

are the eigenvalues of L(G) and L(H), respectively, then
Xi >0; > Xiyr foreachi=1,2,3,4,...,n,

where \; =0 fori > n+ 1.

Proof: We know that L(G) = S¢ST and that the eigenvalues of SgSE
are nonnegative. Let H be a subgraph of G obtained by deleting a vertex
of degree r from G and let L{H) be the standard Laplacian of the graph
H. Now, for any n x m matrix A, the spectrum of the matrices AAT and
AT A coincide except for the multiplicity of the eigenvalue 0. In particular,
the positive eigenvalues of L(G) are the same as the positive eigenvalues
of S£Sg. Observe that L(H) = S 'y S% can be obtained by deleting the r
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columns and rows corresponding to the edges incident on the deleted vertex,
so that S%SH is an order m — r principal submatrix of SZ;SG (where m is
the number of edges in G). Hence, the theorem follows from the generalized
version of the Cauchy’s Interlacing Theorem, Theorem 2.2. O

In the above theorem, we cannot improve the gap on the right by reduc-
ing it from r to r— 1, as shown by considering the complete bipartite graph.
It was noted by W. Anderson and T. Morley in [1] that the eigenvalues of
the standard Laplacian of the complete bipartite graph K, ,, on m+n ver-
tices are m +n, m, n, 0 with multiplicities 1, n — 1, m — 1, 1, respectively.
Without loss of generality, assume m > n. Then the eigenvalues of the
graph Ky, 1 are m+n—1, m, n— 1, 0 with multiplicities 1, n -2, m—1,
1, respectively. Since 6, =n —1, Apy1 = Apg2 = ... = Apgn-1 = n, and
Am+n = 0, we have 6, = n —1 > 0 = A\, 4n, where the gap is m, which is
the degree of the vertex removed from K, ».

We now consider how the eigenvalues of the normalized Laplacian of
the graphs G and H = G — v interlace, where the degree of the vertex
v is 7. First of all, we look at a few results that will be of great help in
proving a main result of this paper. Now we know how the eigenvalues
of the normalized Laplacian of the graphs G and H interlace, where the
graph H is obtained by deleting r edges from the graph G. We can apply
Theorem 2.5 iteratively r times and we have the following proposition.

Proposition 3.2 Let G be a graph and let H be a subgraph of G obtained
by deleting r edges. If

AMZA>...2 M and
912922201;

are the eigenvalues of L(G) and L(H), respectively, then
Xierp 26; 2 Miyr, foreachi=1,2,...,n
with the convention of

Ai=2 foreach 1<0,
Ai=0 foreach i>n+1.

The proof of Theorem 3.6 will heavily depend on the Courant-Fischer
theorem.
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Theorem 3.3 (Courant-Fischer) For a real, symmetric n x n matriz A
with eigenvalues
M2A2A322 M

we have
TA
A = max min 929
(k+1) a(k+2) YeRn T
g g @M ERD oy (kb)) ((k42) | o) G G
970
and
. 9" Ag
k= min max -
gM,g@ gk -DeR™ | ) @) k-1 7 g
970

Lemma 3.4 Let G be a graph on n vertices, let L = L(G) be the standard
Laplacian of G, and let f = (f1,..., fa)T be a column vector in R™. Then,

fFLE =) (fi - fi)?
i~j

where )
adjacent.

i~j TUNS Over all unordered pairs {i,j} for which v; and v; are

Proof: Lemma 3.4 directly follows from the definition of L. ]

Lemma 3.5 Suppose that for real a, b and «y

a?2-2y*>0, ¥ -9*>0, and = <2

Then
a2 _ 2,72 0.2

b2— 2 = b2
Proof. The result follows from

0,2—2')'2_(121—2')'2/0,2 izi
B2—v2 b2 1—72/b2 " b2

since the final inequality holds when -}; < %2- which is equivalent to
a?/bh? <2 m]
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In the special case where the edge removed is incident on a vertex of
degree 1, we can improve on Theorem 2.5 by showing that the eigenvalues
do not increase when an edge is removed. Note that the corresponding
result for the standard Laplacian is a trivial special case of Theorem 2.4.
The proof of the theorem for the normalized Laplacian is more involved
and must deal with the fact that removing an edge decreases the degree
of an adjacent vertex, thereby increasing the magnitude of some (possibly
many) off-diagonal elements.

Theorem 3.6 Let G be a graph of order n and H = G — e, where e is an
edge incident on a verter of G of degree 1. If

/\1 2 )\22---2/\n=0
6 > 6:>...260,=0

are the eigenvalues of L(G) and L(H), respectively, then

Ai > 0; foreachi=1,2,3,4,...,n.

Proof: We adapt the Courant-Fischer theorem to the Laplacian using
harmonic eigenfunctions. Recall that

L=T"'2LT/2
We assume that T7/2 is invertible, that is, there are no vertices of degree
Z€ro.
For vectors g and g\) define the vectors
f=T"% and f9 = T2,

Note that

g J‘ g(l))g(2), R )g(k—l)
if and only if

FLD, @, fen,

The notation f L f, ... f-1) means that f is orthogonal to
span(f(1), ..., fk=1)).

Applying the Courant-Fischer theorem to get the eigenvalues Ay of £
gives
. gTT—1/2LT-1/2g
min max -
g1 ,g® ., gk=DERm o) () () gk-1) g'9
9#0

A =
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fTLf

= min max
FO f@ | plk-1) gRn flf(l),f(a),...,f(k'l) fTTf
f#0
: Zi—vj(fi - fj)2
= min max e
FO,F@ . JEDER ) gy g e D5 fid
f#0

where f; is the j-th component of f, d; = d(v;) is the degree of v;, and
;n; Tuns over all unordered pairs {3, j} for which v; and v; are adjacent.
The second line depends on the invertibility of T so that maximizing over
vectors f(¥) is equivalent to maximizing over vectors g(*). The final line
depends on Lemma 3.4. The vector f can be viewed as a function f(v)
on the set of vertices that maps v; to f;. The function f(v) is a harmonic
eigenfunction.

Without loss of generality we assume that an edge between the particu-
lar vertices v; and v; is removed, where the degree of the vertex v; is 1 and
consider the eigenvalues ) of the Laplacian of the modified graph. Two
changes occur in the Courant-Fischer theorem when an edge is removed.
The degrees of v; and v are decreased from 1 and d(v2) to 0 and d(vz) — 1,
respectively, so that

ijzdj —*foda_flz_fzz
3 J

Also, since v; and v, are no longer adjacent, the sum no longer includes
the pair {1, 2} so that

Y i HP - (- £~ (- f2)
i i

Note that the sum Ei~j still runs over vertices that are adjacent in the
original graph; in applying the theorem to the modified graph we explicitly
subtract out (f; — f2)? instead of modifying the index set of the sum.

Thus
Yini(fi = f3)? = (h = f2)?

O = min max
fOf@) L fle=DER™ ) ) g2 -1 Ej f‘;zdj - f12 - f22
f#0
Sini(Fi— ;)2 = Af3
= min max g 2
FO @), FE-DERR ¢ ) @) plke1) Ej szd_,- —2f2
£#0
fi=—f2
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Zi~j(fi - fj)2

< min max
FO, @) Flk-1) gRn FLFD g ek=1) Zj fggdj
f#0
fHi=—f2
. — £.)2
min max &7_(";2—'&) = A
FOL@ L JE-DeRn £ ) F) k1) 3 fods
f#0

In line 2, we use the fact that the expression does not depend on f;. In line
3 we use Lemma 3.5. The lemma is applicable since the inequality )\, < 2,
which holds for every eigenvalue of any normalized Laplacian, implies

Zi~j(fi - fj)2
Zj f]gdj =2

Hence,
A 20, foreachk=1,2,3,4,...,n

when the edge incident to a vertex of degree 1 is removed.

We have assumed throughout that 7" is invertible (i.e., there is no vertex
of degree zero). However, this is not restrictive; the inequality holds in
general. If d(v) = 0 for g vertices then the normalized Laplacian can be

permuted so that
Ly 0
PLPT =
( 0 Ogxq )
for some permutation matrix P. Thus for £,
/\n—q = /\n—-q+1 == Ay =0

The removal of an edge then only affects £, so that the theorem can
be applied to the submatrix. The additional zero eigenvalues, Og+1 =
Onogy2 = -+ - = 0y = 0 satisfy

Ak > O

fork=n—-g+1,--,n. Interlacing bounds for all other 8; follow from the
interlacing theorem applied to £;. m]

Now consider removing j edges from v; to get eigenvalues 0,9 ) (where

0}3 ) represents the k-th eigenvalue of the normalized Laplacian of the sub-
graph obtained by deleting j edges of the original graph from v;). By
applying the edge interlacing result, Theorem 2.5, we have

60 <600 <ol << = ey
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Thus, from Theorem 3.6, we have the following
6 < 6™V < M-

where d; = d,,. Using this fact and Proposition 3.2, we have the following
new result.

Theorem 3.7 Let G be a graph of order n and H be o subgraph of G
obtained by deleting the r edges from a vertez v of degree r. If

Al 2 A2...22=0
6 > 622...26,=0

are the eigenvalues of L(G) and L(H), respectively, then

Xicrg1 = 0: 2 Aigr for eachi=1,2,3,4,...,n,

where \; =2 fori <0 and A\; =0 fori>n+1.

Hence, if we remove a vertex of degree r from the graph G to obtain
the subgraph H of G, we will have 6,_1 = 6, = 0, which will give us the
following result.

Theorem 3.8 Let G be a graph of order n and H = G — v, where v is a
vertex of G of degree r. If

A
0

M>...2A=0
0p>...20,-1=0

(\VARAYS

are the eigenvalues of £L(G) and L(H), respectively, then
Xicrgl =0 = Miyr foreachi=1,2,3,4,...,n-1,

where \y =2 fori <0 and ); =0 fori >n+1.

In the above theorem, we cannot improve the gap on left by reducing
it from r — 1 to r — 2, as shown by considering the complete graph. It was
noted by Chung in [4] that the eigenvalues of the normalized Laplacian of
the complete graph K, on n vertices are 0 and ;2y with multiplicities 1
and n — 1 respectively. Hence, the eigenvalue of the normalized Laplacian
of the subgraph K,—; = K, — v on n — 1 vertices are 0 and ::—:;— with
multiplicities 1 and n — 2 respectively. Since 6, = 253 £ %7 = Ay,
we have 6,—3 = 2= < 2 = Mg = Ay—2—(n-1)+1, Where the gap is n — 2,
which is 1 less than the degree of the vertex removed from K. Similarly,
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we cannot improve the gap on the right by reducing it from r to r — 1, as
shown by considering the star graph. It was noted by Chung in [4] that the
eigenvalues of the star graph S,, are 0, 1, 2 with multiplicities 1, n — 2, 1,
respectively. Hence, if we remove the center vertex from the star graph S,
on n vertices, the eigenvalues of the new subgraph are 0 with multiplicity
n—1 Sinceh =02 1=A_1,wehave ) =0>0= )\, = Al4(n=1)»
where the gap is n — 1, which is the degree of the vertex removed from S,,.

Finally, using Cauchy’s interlacing result on two pairs of matrices, we
can prove the following edge version of the interlacing result for the adja-
cency matrix. This completes the picture regarding the six cases of eigen-
value interlacing results for A(G), L(G), and £(G), associated with the
removal of an edge or vertex.

Theorem 3.9 Let G be a graph and let H = G — e, where e is an edge of
G. If

AM>X>...> ) and
026:>...>20,

are the eigenvalues of A(G) and A(H), respectively, then
Aic120; > Aiyy foreachi=2,3,4,...,n—1,

61 = A2, and 0, < Ay

Proof: Let P = G — v, where v is a vertex of G that is incident to edge ¢
and A(P) be the adjacency matrix of the graph P. Let

N7 2 Tn-l

be the eigenvalues of A(P). Then A(P) is a principal submatrix of both
A(G) and A(H). Hence, from Cauchy’s interlacing result we have the
following

Ai27v 2 Ay foreachi=1,2,3,4,...,n—1 and
9,'2’7-;,20,‘.*.] foreachi=1,2,3,4,...,n—1

Then, we have the following,
Aic1 2 %1260 27 2 A

Hence, the theorem follows. ]
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In the above theorem, we cannot improve the gap, as shown by consid-
ering the Petersen graph G. The eigenvalues of A(G) are 3, 1 (with multi-
plicity 5), and —2 (with multiplicity 4). The eigenvalues of A(H), where the
graph H is obtained by deleting any edge of G, are 2.8558,1.4142,1,1,1,
0.3216, —1.4142, —2, -2, and —2.1774. Hence, A\ = 1 # 1.4142 = 6, and
0, =2.8558 £ 3 = A1

Let G be a graph and z € V(G). The neighborhood of z is
N(z) ={y : zy € E(G)}.

For any two vertices  and v of G, we use G/{u,v} to denote the graph
obtained from G by contracting u and v to one vertex, i.e., G/{u, v} is the
graph obtained from G by deleting the vertices 4 and v and adding a new
vertex (uv) such that the neighborhood of (uv) is the union of the neigh-
borhoods of © and v When u and v are adjacent, G/{u,v} is the graph
obtained from G by contracting the edge uv. Contraction of edges and
vertices has many applications in graph theory. By contracting two nonad-
jacent vertices with nonintersecting neighborhoods we obtain the following
interlacing result.

Theorem 3.10 Let G be a graph and let u and v be two distinct vertices
of G. Define H = G/{u,v} and let

A1
01

X>...2 A and
f22>...2 0,

vV v

be the eigenvalues of A(G) and A(H), respectively. Then
)‘i-l Z 91' Z ’\i+2a fOT each i = 2,3,4,.. LN = 2,

where 81 > A3 and Ap—2 = Onh—1.
If we assume that N(u) N (N(v) U{v}) = 0 then, depending on the sign
of 0;, the above inequalities can be strengthened in one of two ways. Let k
be such that 0 > 0 and Br+1 < 0. Then
9,' > ’\i+l f07' each i = 1,2,...,k
and
Xi>6; foreachi=k+1,k+2,...,n—-1

Proof: The matrix A(H) can be obtained from A(G) by removing the rows
and columns associated with « and v and adding a new row and column
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for the contracted vertex. The inequality \;_; > 6; > Ai+2 follows from
Theorem 2.2.

Let us now suppose that N(u)N(N(v)U{v}) = 0, and let k be such that
6r 2 0 and 6r41 < 0. We assume without loss of generality that u = v,
and v = v and consider the graph H obtained by deleting every edge from
v and adding a corresponding edge to v2. The eigenvalues of the graph
H differ from those of H only in that H has an additional vertex, v, of
degree zero giving an additional zero eigenvalue. For z € R® we have

=T AG)z _ 22,-,,, z;z
e 7 ¥,

If we let J be the set of indices of vertices adjacent to v; then

sTAMH)T _ o Nt 255+ X je s (#225 — m125)
=Tz Y73 '

The min-max part of the Courant-Fischer theorem gives

zj~l ;T + Zje.r(xﬂj - T1%;)

6 = min max 2 )
y) .., yli-1gRn aly®M,. yG-D 3 Tj
x#0
Yo it TiT + Y e (T2 — T175)
~1 L3 J j J
> max p=ti ;ez
y) .. y(‘ 1)emn zLlyM,. G- jwj
T1=T2
xF#0
. >t TiTL
= min max '7—2
y(V .. yli-1)eRn Ly, 0D e —ep 3 x
x#0
Z'Blejxl
> min max 2'7——2——- = Ai41
v, yERr L m o ijj
z#£0

where in the above i = 1,2,...,n— 1. The max-min part of the Courant-
Fischer theorem can be used to show that 6; < 2\,-_1 fori=2,3,...,n. 'I‘hus
for the eigenvalues 6; of A(H) we have A\i_; > 6; > Ay fori=2,3,. -
1 as well as 6, < < An-1 and 6; > Xo. Since the eigenvalues of A(H ) and
A(H) differ only in that the latter set includes an additional zero eigenvalue
we have 6; = 6; for i = 1,2,...,k from which we get 6; = 6; > Aiy1 for
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i=1,2,...,k. Similarly we have 0,-=é,-+1 fori=k+1,k+2,...,n—1s0
that0i=0,~+1Sz\ifori=k+1,k+2,...,n—1. (m]

We conclude by observing that the inequality A;_y > 6; > Ai41 holds
in a surprising number of cases, including for A(G) and £(G) in the case
of removing an edge. In the case of contracting two vertices, the inequality
holds for £(G) (proven in [3]). Except for the adjacency matrix in the
case of edge removal, none of these is an obvious consequence of Cauchy’s
interlacing theorem. This raises a natural question of what other operations
on graphs might lead to similar interlacing results.
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