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Abstract

Public Key Cryptosystems (PKC) based on formal language the-
ory and semi groups have been of interest and study. A PKC based
on free group has been presented in [7]. Subsequently another PKC
using free partially commutative monoids and groups is studied in
[1). In this paper, we propose a PKC for chain code pictures that uses
a finitely presented group for encryption and free group for decryp-
tion. Also, we present another PKC for line pictures in the hexagonal
grid, which uses a finitely presented group for encryption and finitely
presented free partially commutative group for decryption.
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1 Introduction

Cryptography is the science of keeping secrets secret. It is the study of
sending messages in disguised form so that the intended recipient can re-
move the disguise and read the message. Diffie and Hellman introduced the
concept of Public Key Cryptosystem (PKC) [3]. In public key cryptogra-
phy the encryption key is available to everyone and the decryption key is
kept secret by the owner. In public key cryptosystems we are looking for
family of functions such that each function f is computable by an efficient
algorithm but it is infeasible to compute the pre-images. Such functions are
called one-way functions. For each function in that family there is some se-
cret information which enables an efficient computation of the inverse of f.
This secret information is called trapdoor information. One-way functions
with this property are called trapdoor functions.

In [6], Salomaa has very elegantly formulated the general technique
to construct public key cryptosystems based on formal language theory.
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Figure 1:

Choose a difficult (undecidable or intractable) problem @ and a sub problem
P, which is solvable in linear time. Shuffle P to obtain P1, which looks like
Q. The manner of shuffling is the trapdoor, which is secret. Use P1 to
encrypt and P to decrypt. In (1}, a PKC based on the finitely presented
partially commutative group is presented. In this paper, we present PKCs
for line pictures based on finitely presented groups and finitely presented
partially commutative groups.

A picture whose structure is described by unit lines is called the line
picture. A line picture in the cartesian plane considered as a square grid
described by a word over the alphabet {l,r,u,d} where ! means go and
draw one unit line left from the current position and r,u,d are interpreted
analogously with right, up, down is called a Chain Code Picture (CCP) [5].

Such line pictures can also be developed on a hexagonal grid by fixing
three basic directions and three reverse directions in the following manner.
Let a, b, c stand for the lines in the directions |, /,"\ of a hexagonal grid in
Figure 1 and a~!,b~1, ¢! denote the reverse directions. We propose a PKC
for certain type of chain code pictures where the decryption is done using
the free group. The encryption is done using a finitely presented group. We
present another PKC for certain type of line pictures over the hexagonal
grid, which uses a free partially commutative group for decryption and
finitely presented group for encryption.

2 Preliminaries

In this section, we give some preliminary definitions ([1], [7]). For basic
definitions in formal languages theory, we refer to [6].

Definition 2.1. Given an alphabet £ we consider 57! = {a~!/a € £} and
vEl = T UT-L. A word = in TF! is called reduced if it does not contain
any subword of the form aa~%,a € T,0 = X1

Definition 2.2. Let T be an alphabet and 8 = {(a,b)/ for some a,b € L}



be a concurrency relation on X. It means that a and b can be commuted.
In other words, an occurrence of ab can be replaced by ba and ba by ab.
If a word u € T* is obtained from a word v € =* by such a sequence of
replacements then we say that u and v are equivalent with respect to the
relation @ and it is denoted by u =¢ v or u = v mod 8.

Definition 2.3. A group G, or more precisely, a presentation of the group
G, denoted by G =< X, R >, is given by an alphabet T and a set R of pairs
in (2*1) x {A} called defining relators of G. If £ and R are finite we say
that G is a finitely presented group. If R = ¢, G is called a free group
generated by ¥ and is denoted by F(X). Given a group G =< I, R >, we
consider the binary relation on (5*)" denoted by <=> or simply & and

defined as follows: For any z,y € (Z*1)°,z =y if and only if one of the
Jollowing cases hold.

1. z=urv,y = w with (r,)) € R and u,v € (T*1)°
2. T =uv,y = urv with (r,\) € R and u,v € (T¥)"
3. £ =wua’a ",y = w with @ € I,0 = *1,u,v € ()"
4. z=w,y=ua’a""v witha € T,0 = +1,u,v € (2*1)*

Then we define %» to be the reflerive, transitive closure of ? . It is easy

to see that %r is @ congruence relation and the quotient (Z*!)"/ %' is
a group also denoted by G. The congruence class of a word T is denoted
by [z]c or simply [z]. Evidently = <5 v if and only if [z]c ‘=' [Yle. We
usually write x =g y instead of [:z;]c.v = [ylg and say that the 'wo'rds z and
y are equal in G.

The word problem for a group G consists in deciding for any two words
z,y in (Z*1)”, whether =g y or equivalently in deciding, for any given
word z whether 2 =¢ A where ) is the empty word.

Definition 2.4. A Thue system T on T is a finite subset of ¥*x £*. Each
member of T is called a rule. The Thue congruence — generated by T
is the reflexive, transitive closure of the symmetric relation pu defined as

Jollows: For any u,v such that (u,v) € T or (v,u) € T and any z,y €
T zuy « zvy, Two stnqgs w,z € X* are congruent with respect to T if
and only if w -' z where s the reflexive, transitive closure of pug

The word problem for the Thue system on ¥ is as follows: given any two
wordsz and y in &, is x ... y?. The word problem is in general undecidable
for Thue systems.



Definition 2.5. Let T be an alphabet and 6y be a partially commutative
(concurrency) relation on E. Let § C TF! x TE! be the extension of 8o to
nE!

0 ={(a,b),(a",b),(a,b7),(a7",b7") : (a,) € 6o} .

This develops the following Thue system T on T*', where T = {(aa™!,}),

(e~ 'a,)\) : a € 2} U {(cd,dc) : c,d € 8}. This Thue system T presents the
free partially commutative group G(6o). This G(6o) is the finitely generated
group < I, R > where the set of defining relators R = {(cdc™'d™1,}) : (c,d)
€ ). If 6y is empty then G(6o) is just the free group on T and if 6y contains
every pair of distinct letters, then G(8o) is the free abelian group on X.

A very well known result, due to Novikov [5], says that the word problem
for finitely presented group is undecidable. But the algorithm solving word
problem for free group is quite simple because for any free group F(X) and
any z,y € (Z*!)",z = y if and only if z and y can be reduced to the same
word. Wrathall (8] proved that the word problem for finitely presented free
partially commutative group is decidable in linear time.

Definition 2.6. Let ¥ be an alphabet and X C X*. Then X is said to
be a code if whenever T1T2...Tn = Y1¥Y2...Ym where zi,yi € X, 1=
1,2,3,...,n, 5=1,2,...,m then m = n and z; = y; for all i.

3 PKC for Chain Code Pictures

In this section, we propose a PKC for Chain Code Pictures without over
writing (retracing) that uses a free group for decryption and a finitely pre-
sented group for encryption.

3.1 Construction of PKC

Consider a free group F(T), which is non-empty and finite. Fix four differ-
ent reduced words %, Tr, Ty, &4 in (E*1)" such that

1. {zi,Zs,Zu, T4} is a code

2. The word z;z; is reduced without cancellation where ¢,j € {l,7,u,d}
Let A be an alphabet of cardinality much greater than that of X. Let
g: (%) - (=*')" be a morphism, mapping every letter to a letter
or to the non-empty word such that

3. g(c°') = a°2 implies g(c™*) =a"%%, c€ A, a €L, 01,02 =%l

4. g(c°) = X implies g{c™?) =X, c€ A, a €L, 0 ==1



g is called the trapdoor morphism.

Fix a finite subset R of g~ ([A\]) and define G = (A, R). Select four
different words {w;, w,, wu, wa} from (A*!)" such that g (w;) € [z:], where
i€ {l,nu,d}.

3.2 Encryption
The public encryption key is (G, wi, wr, Wy, w4) .
1. Replace each occurrence of I, , u, d by w;, wr, wy, wq respectively.

2. Insert relators from R and rewrite to obtain arbitrary cryptotext c.

3.3 Decryption
The secret decryption key is (F, zi, Ty, Tu, Td, g)

1. Calculate g (c)
2. Reduce g (c) to obtain a reduced word z.

3. Factorize z over elements {zi, Z,, Tu, %4} S8y z = i, Ti, - . . T4, (This
factorization is unique as {z;, Zr, Zu,z4} is a code)

4. i1,42...,1y, is the required plaintext.

Clearly each of these steps can be done in linear time.

Example

Let us consider the chain code alphabet {l,7,u,d} as *! = Tux~!
where ¥ = {l,d} and 7! = {r,u}.
Let A = {c1,¢2,¢3,c4,¢5,c6} and we define

gle)=g(z") =1 gty =g(e)=r

9(cs*) =g(ce)=d, glc)) =g(cz") =u

and  g(cs)=g(c3') =glcs)=g(es') =X

Let R = {csc3'cs, ey esest, e escy b, cacscy s } and define G = (A, R).

Let us choose z; = ld, zq = lul, z, = U, z, = dld in F(Z).

Choose w; = clczl,wd = c{lqcl,wr = clcsc;1 and w, = c;'lc;lce.

To encrypt the rectangle in Figure 2, if we consider the picture from
the bottom most vertex on the right, in the clockwise direction we obtain
the word p = llurrd which is taken to be the corresponding plaintext.
Replacing , 7, 4, d by w, wy, wy, wa respectively, we get

-1 -1.-1 -1 -1 -1_—1
W W W, WrWrWg = C1C4 €1C4 €4 Co C6C1C5Cy "C1C5C "Cy C4C1
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Figure 2: Line Pictures

Inserting relators from R, one possible cryptotext is
¢ = ercecs teacs tercy teses Leacs teg ter T escy tescics ey teresey e tesen
= c1¢6¢; e1cy tescy ey e Teseg tescicsc; Teicscy g tesen
To decrypt, apply g on c.
g(¢) = lANddAIr ANl

=p ldlddlrldlliliul
=p ldlddldililul
=F T TuTrTrld

Thus the message is llurrd.

4 PKC for Line Pictures using Finitely
Presented Free Partially Commutative
Group

In this section we present a PKC for line pictures over the hexagonal grid,
which uses finitely presented free partially commutative group for decryp-
tion and finitely presented group for encryption.

4.1 Construction of PKC

Let T be an alphabet and 8 be a partially commutative relation on ¥ such
that G (fp) is the finitely presented free partially commutative group.

Fix six different reduced words zq, Zp, Zc, Loa-1, Tp-1, -1 iD (2*1) such
that

1. {Za,Tb,Tc, Ta-1,To-1,Tc-1} is a code.
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2. The word z;z; is reduced without cancellation where i, € {a,b,c,
a—l’ b-l,c_l}
Let A be an alphabet of cardinality much greater than that of . Let
g be a morphism from A*! to ¥ U {A} such that

3. 9(c™) = a” implies g(c™*) =a™%, c€ A, 01,02 =%1,a€X
4. If g(c”) = X implies g(c™?) =\, c€ A, 0 = %1

5. If g(c) = a,9(d) = b and (a,b) € 9 then c and d commute where
cdeA

Fix a finite subset R of ¢! ([\]) and define G = (A, R). Six words
Wa, W, We, Wo-1, Wh-1, We-1 from (A%!) is selected such that g ('w,) € [zi]g
where i € {a,b,c,a™,b™!,c !} . Fix a finite subset R of (A*1)" x {\} such
that if (uv~!,)) € R then one of the following is true

1. (g(u)( @)~ ) A €R
2. g(u) =g(gy) A and g (v) =g(gy) A

Then G = (A, R) is a finitely presented group.

4.2 Encryption

The public encryption key is (G, wa, W, We, Wa-1, Wy-1, We-1)

1. Replace each occurrence of a,b,c,a™!,b71, ¢~ by wa,ws, we, Wo-1,
Wy~1, We—1 Tespectively.

2. Insert relators from R and reduce to obtain arbitrary cryptotext c.

4.3 Decryption

The secret decryption key is (G, Za, Zb, Te, Ta-1, Tp-1, Te-1,9)
1. Calculate g (c)
2. Reduce g (c) to obtain a reduced word z.

3. Factorize z over elements 4, Ty, Tc, Ta-1, Tp-1,Tc-1 S8Y 2 = T4y Ti, - - -
z;,, (This factorization is unique as {4, Zp, T, To-1, Tp-1,Tc-1 } is a
code)

4. i193...1,y, is the required plaintext.
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Clearly each of these steps can be done in linear time.
Example Let us consider the alphabet {a,b c,a”tb7l,c7l} as BH!
where T = {a,b,c} and Z7! = {a~},b71,c!

Let 8o = {(a,c¢)} and 8 = {(a,¢), (a™%,¢), (a,c7?), (e, c71)}

R={(aca~*c™},X), (@ cac™?, A), (ac" a7 ¢, A), (@7 ¢ tae, M)}

Choose z, = bcc, zp, = abc, £, = bbc and =z,
aab, T,-» =bcla
Let A = {c1,¢2,¢3, ¢4, C5,C6

= b lac, xp-1

Define g : (A%!)" — (Z#1)" by
gla) =gl =a, g(q')=g()=a",
g(cgh) =b, glea) =b71,
g(cg?) =c" g(ce) =c,
g9(ca) =g(")=g(cs)=g(c5") =A
and choose w, = ¢3¢z 'cecs, Wh=Cz c4 ce, We =Cy cﬁc‘,i 1cs and

We-1 = C4C3C1C6y; Wp—1 = 6102 04 65 y We-1 =C4 Cg 1

B ={(cz cseaci ez, ), (ci'escz ez t, A) » (eacsy A) , (cacseg teses ™, A)
(cacacstcs, M) }
% =(AR).
Consider the triangle in Figure 2, in the hexagonal grid. If we consider
the picture from the bottom most vertex in the anticlockwise direction we
obtain the word p = bca which is taken to be the corresponding plaintext.

To encrypt, replace each occurrence of a, b, ¢ by wa, ws, w, respectively,
we get

-1 -1 -1 -1 -1 -1

Cy Cy CgCq C5C4 CeC3 C4 C6Co

-1 -1 -1 -1 -1 -1 -1 -1 -1

Cy C4 Cy CGC361 CG 6664 63050564 %03 C3C5Cy CgCq
-1 -1 -1 -1 -1 -1 -1

Cy Cq Cy 066361 Cy C3C5C5Cy C6C5Cy C6Ce

WhWcWq
c =

To decrypt, apply g on c.

g(c)

Thus the message is bca.

abacha”1bAAbeAbee
abaca™bbcbee
abcaa™bbchee
abcbbebee

ZpTeTa

Remark In Figure 3, we give some line pictures which can be communi-

cated by the above PKC.
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Triangle
g Hexagon Star
Antisnowflakes
Hexagonal snowflakes

Figure 3: Line pictures over the hexagonal grid.

5 Security and Safety

The security of the above mentioned systems relies on the difficulty of the
word problem. R.V. Book proved that the word problem is undecidable for
Thue systems [2]. In [5], Novikov proved that the word problem for finitely
presented group is undecidable. But in (8], Wrathall proved that the word
problem for free partially commutative group is decidable in linear time.



In [4], an attack on partially commutative monoids and groups is pre-
sented. To avoid such attack, in this system we have introduced the code
conditions. The zero knowledge protocol presented in [1] can be used to
convince a Verifier that there is a morphism which maps the public finitely
presented group in to a free partially commutative group.
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