On b-Eccentricity in Graphs

KM. KATHIRESAN AND G. MARIMUTHU*

Center for Research and Post Graduate Studies in Mathematics

Ayya Nadar Janaki Ammal College

Sivakasi - 626 124

Tamil Nadu, INDIA

e-mail: kathir2esan@yahoo.com and yellowmuthu@yahoo.com

Abstract

The distance d(u,v) between a pair of vertices u and v in a connected graph G is the length of a shortest path joining them. A vertex v of a connected graph G is an eccentric vertex of a vertex u if v is a vertex at greatest distance from u; while v is an eccentric vertex of G if v is an eccentric vertex of some vertex of G. A vertex v of G is a boundary vertex of a vertex v if $d(u,v) \leq d(u,v)$ for each neighbour v of v. A vertex v is a boundary vertex of v is a boundary vertex of some vertex of v is eccentric vertices are boundary vertices for v but not conversely. In this paper, we introduce a new type of eccentricity called v-eccentricity and we study its properties.

Keywords. b-eccentricity, b-radius, b-diameter, b-center, b-periphery, b-self centered graph.

2000 Mathematics Subject Classification: 05C12

1 Introduction

Let G be a non-trivial connected graph. The distance d(u,v) between two vertices u and v of G is the length of a shortest u-v path in G. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius r(G) of G and the maximum eccentricity is its diameter d(G). A vertex v in G is called a *central vertex* if e(v) = r(G) and the peripheral vertex if e(v) = d(G); and the set of all center vertices is denoted by G

^{*}Research Supported by the Government of India, CSIR, New Delhi

and its induced subgraph $\langle C \rangle$ is called the center of the graph. The set of all peripheral vertices is denoted by P and its induced subgraph $\langle P \rangle$ is called the periphery of the graph. If r(G) = d(G), then G is called a self centered graph. A vertex v in G is called an eccentric vertex of a vertex u if d(u,v)=e(u), that is, every vertex at greatest distance from u is an eccentric vertex of u. A vertex v is an eccentric vertex of u is an eccentric vertex of some vertex of u. Consequently, if u is an eccentric vertex of u and u is a neighbor of u, then u is an eccentric vertex u may have this property, however, without being an eccentric vertex of u. In u is defined to be a boundary vertex of a vertex u if u if u is geodetic, that is, every vertex in u is on some shortest path joining two boundary vertices.

A vertex v is a boundary vertex of G if v is a boundary vertex of some vertex of G. A graph G in which each vertex is a boundary vertex is called a self-boundary graph. A vertex in a graph is called complete (or extreme or simplical) if the subgraph induced by its neighborhood is complete. For graph theoretic terminology, we follow [1,5].

2 Main Results

The b-eccentricity $e_b(u)$ of a vertex u is defined by $e_b(u) = min\{d(u, w) : w$ is a boundary of $u\}$. Minimum b-eccentricity among the vertices of G is the b-radius $r_b(G)$ of G and the maximum b-eccentricity is its b-diameter $d_b(G)$. A vertex v is called a b-central vertex if $e_b(v) = r_b(v)$ and a b-peripheral vertex if $e_b(v) = d_b(v)$. A graph G is called a b-self centered graph if $d_b(G) = r_b(G)$. The set of all b-central and b-peripheral vertices of a graph are denoted by C_b and P_b respectively. The induced subgraph $\langle C_b \rangle$ of all b-central vertices is called the b-center $C_b(G)$ of G and the induced subgraph $\langle P_b \rangle$ of all b-peripheral vertices is called b-periphery $P_b(G)$ of G.

A graph G and its b-eccentricities are given in Figure 1. In the graph G, $r_b(G) = 1$ and $d_b(G) = 4$. Also $C_b(G) = K_2$ and $P_b(G) = \overline{K_2}$.

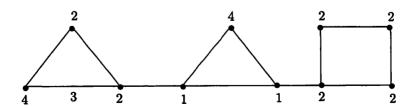


Figure 1. The graph G and its b-eccentricity

Remark 2.1. Let u be a boundary vertex in a connected graph G. If u is complete, then $e_b(w) = 1$ for all $w \in N(u)$. But the converse need not be true. In the graph G of Figure 2, u is a boundary vertex of v and $e_b(w) = 1$ for all $w \in N(u)$ while $\langle N(u) \rangle$ is not complete.

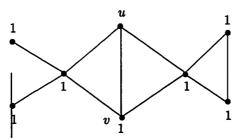


Figure 2. The graph G

Next we provide a result which establishes bounds for b-diameter of a graph.

Result 2.2. For any connected graph G of order n, $r_b(G) \leq d_b(G) \leq n-1$.

We now verify the sharpness of the above inequality.

Proposition 2.3. There exists a family of b-self centered graphs which are not self centered graphs.

Proof. We construct a graph G_n by using K_2 and two copies of odd cycle C_n . Let the vertices of K_2 be v_1 and v_2 . Let $u_{11}, u_{12}, u_{13}, \ldots, u_{1n}$ and $u_{21}, u_{22}, \ldots, u_{2n}$ be the vertices of the two copies of C_n . Merge the vertex u_{11} with the vertex v_1 and merge the vertex u_{21} with v_2 and let the resulting graph be G_n . The boundary vertices of u_{11} in G are $u_{1\left(\frac{n+1}{2}\right)}, u_{1\left(\frac{n+3}{2}\right)}, u_{2\left(\frac{n+3}{2}\right)}, u_{2\left(\frac{n+3}{2}\right)}$.

Also $d\left(u_{11},u_{1\left(\frac{n+1}{2}\right)}\right)=d\left(u_{11},u_{1\left(\frac{n+3}{2}\right)}\right)=\frac{n-1}{2}.$ But $d\left(u_{11},u_{2\left(\frac{n+1}{2}\right)}\right)=d\left(u_{11},u_{2\left(\frac{n+3}{2}\right)}\right)=\frac{n+1}{2}.$ Thus $e_b(u_{11})=\frac{n-1}{2}.$ Similarly $e_b(u_{21})=\frac{n-1}{2}.$ The vertices $u_{1i},i=2,3,\ldots,n-1$ has its boundary vertices at minimum distance within the set $\{u_{12},u_{13},u_{14},\ldots,u_{1(n-1)}\}.$ The vertices $u_{2i},i=2,3,\ldots,n-1$ has its boundary vertices at minimum distance within the set $\{u_{22},u_{23},u_{24},\ldots,u_{2(n-1)}\}.$ From this it is easy to verify that $e_b(u)=\frac{n-1}{2}$ for all $u\in V(G)$. Thus G_n is a b-self centered graph but it is not a self centered graph.

Proposition 2.4. There exist graphs G_n such that $d_b(G_n) = n - 1$.

Proof. The graph $G_n = P_n, n \ge 1$ has the required property. \square

Next we give some graphs having prescribed b-radius and b-diameter.

For each pair a, b of positive integers with $a \leq b$, there Theorem 2.5. exists a connected graph G with $r_b(G) = a$ and $d_b(G) = b$.

Proof. Case i. a = 1 and $b \ge 1$.

The path P_{b+1} has the required property.

Case ii. $a \ge 2$ and b > a.

For given a, consider the two copies of cycle C_{2a+1} and for given b, consider the path $P_{2(b-a)+1}$. Let $u_{11}, u_{12}, \ldots, u_{1(2a+1)}$ and $u_{21}, u_{22}, \ldots, u_{n+1}$ $u_{2(2a+1)}$ be the vertices of the two copies of the cycle C_{2a+1} . Let v_1, v_2, \ldots, v_n $v_{2(b-a)+1}$ be the vertices of the path $P_{2(b-a)+1}$. Merge the vertex u_{11} with v_1 and merge the vertex u_{21} with $v_{2(b-a)+1}$. Let the resulting graph be G. Then

$$e_b(u_{1i}) = e_b(u_{2i}) = a = r_b(G)$$
 for $i = 1, 2, ..., 2a + 1$.

$$e_b\left(v_{2((b-a)+2)/2}\right) = e_b\left(v_{b-a+1}\right) = b = d_b(G).$$

 $e_b\left(v_{b-a+1-i}\right) = b-i, i = 1, 2, \dots, b-a-1.$

$$e_b(v_{b-a+1-i}) = b-i, i = 1, 2, \ldots, b-a-1$$

$$e_b(v_{b-a+1+i}) = b-i, i = 1, 2, 3, \dots, b-a-1.$$

Case iii. $a = b \ge 2$.

Consider the graph G constructed in Proposition 2.3. When we take n=2a+1 in Proposition 2.3, we get the required property.

b-Center and b-Periphery of Graphs 3

In this section, we prove that every connected graph is a b-center of some connected graph and b-periphery of some connected graph.

The b-center of a connected graph G need not lie within a block of G. The graph G given in Figure 3 satisfies this property.

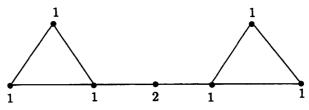


Figure 3. The graph G

If G is a complete graph, then G is a b-center and b-periphery of itself. Now we assume that G is not a complete graph.

Theorem 3.1. Every graph G is a b-center of some connected graph H.

Proof. Let G be a graph. Replace every edge uv by K_3 if uv lie on a cycle and by $K_4 - x$ if uv does not lie on a cycle in such a way that the 3-degree vertices x and w in $K_4 - x$ are coincided with u and v respectively. Let $v_{11}, v_{12}, v_{21}, v_{22}, \ldots, v_{l1}, v_{l2}$ be the vertices of degree 2 in the copies of $K_4 - x$ where l is the number of edges which are not lie on cycle, in the resulting graph be H. Then

$$e_b(u) = 1$$
 for all $u \in V(G)$ and $e_b(y) = 2$

for all newly added vertices y.

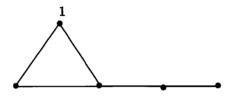


Figure 4. The graph G

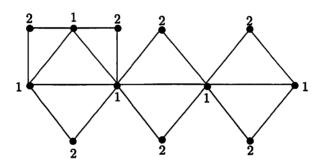


Figure 5. The graph H with b-eccentricity

Remark 3.2. The construction of the graph H given in Theorem 3.1 is not unique.

Theorem 3.3. Every connected graph G is a b-periphery of some connected graph H.

Proof. Consider a complete graph K_m . Replace exactly one edge of K_m by K_3 and denote the resulting graph by F and the newly added vertex by v.

With each vertex of G, merge the 2-degree vertex of F and let the resulting graph be H. Then $e_b(u) = 2$ for all $u \in V(G)$ in H and $e_b(w) = 1$ for all vertices of K_m in H. Thus G is a b-Periphery of H.

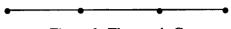


Figure 6. The graph G

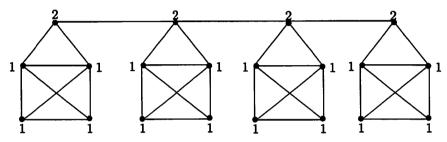


Figure 7. The graph H with b-eccentricity

References

- [1] F. Buckley and F. Harary, *Distance in graphs*, Addision-Wesley, Reading, (1990).
- [2] J. Caceres, M.L. Puertas, C. Hernando, M. Mora, I.M. Pelayo and C. Seara, Searching for geodetic boundary vertex sets, *Electronic Notes* in *Discrete Math.*, 19(2005), 25-31.
- [3] Gary Chartrand, David Erwin, Garry L. Johns and Ping Zhang, Boundary vertices in graphs, *Discrete Math.*, **263**(2003), 25 34.
- [4] Gary Chartrand, David Erwin, Garry L. Johns and Ping Zhang, On the boundary vertices in graphs, J. Ccmbin. Math. Combin. Comput., 48(2004), 39 53.
- [5] D.B. West, Introduction to Graph Theory, Prentice-Hall of India, New Delhi (2003).