Stable and Negative Edges of $K_{m,m}$ and tC_4

KM. KATHIRESAN

Department of Mathematics

Ayya Nadar Janaki Ammal College

Sivakasi - 626 124, India.

e-mail: kathir2esan@yahoo.com

and

K. MUTHUGURUPACKIAM

Department of Mathematics

Kalasalingam University

Anand Nagar, Krishnankoil - 626 190, India.

e-mail: gurupackiam@yahoo.com

Abstract

In this paper we discuss how the addition of a new edge changes the irregularity strength in $K_{m,m}$ and tC_4 .

Keywords. Irregular degree, irregular strength. 2000 Mathematics Subject Classification: 05C78

1 Introduction

In this paper we consider simple undirected graphs with no K_2 components and at most one isolated vertex. Let G = (V, E) be a graph. A network G(f) consists of the graph together with an assignment $f: E(G) \to Z^+$. The sum of the labels of the edges incident with a vertex is called the weight of that vertex. If all the weights are pairwise distinct, G(f) is called an irregular network. The strength of the network G(f) is defined by $s(G(f)) = \max_{e \in E} \{f(e)\}$. The irregularity strength s(G) of G is defined as $s(G) = \min \{s(G(f))/G(f) \text{ is irregular}\}$.

The problem of finding irregularity strength of graphs was proposed by Chartrand et al., [2] and has been proved to be difficult, in general. There are not many graphs for which the irregularity strength is known. The readers may refer to the survey of Lehel [9] and the papers [1, 6, 10, 11]. R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schelp studied the irregularity

strength of tK_3 in [3]. A. Gyárfás [4] determined the irregularity strength of $K_n - mK_2$. Stanislav Jendrol and Michal Tkáč [11] studied the irregularity strength of the union of t copies of the complete graph K_p .

Definition 1.1. [7] Let G be any graph which is not complete, e be any edge of \overline{G} , then e is called a positive edge of G if s(G+e) > s(G), e is called a negative edge of G if s(G+e) < s(G) and e is called a stable edge of G if s(G+e)=s(G).

Definition 1.2. [7] Let G be any graph which is not complete. If all the edges of \overline{G} are positive (negative, stable) edges of G, then G is called a positive (negative, stable) graph. Otherwise, G is called a mixed graph.

Example 1.3. [7] Star graphs $K_{1,n}$ are negative graphs for $n \geq 3$.

Example 1.4. [8] P_3 is a positive graph.

The following graph G (Figure 1) is a stable graph. Example 1.5.

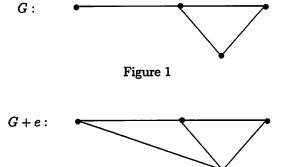


Figure 2

It is easy to verify that s(G) = 2 and s(G + e) = 2. Hence G is a stable graph.

Example 1.6. Consider P_4 . It is easy to verify that $s(P_4) = 2$. Let v_1, v_2, v_3 and v_4 be the consecutive vertices of P_4 . For any $e \in \overline{P_4}, P_4 + e$ is isomorphic to either G_1 or G_2 (Figure 3 or 4).

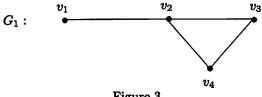
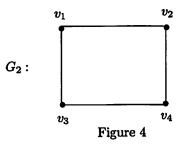


Figure 3



Also $s(G_1) = 2$ and $s(G_2) = 3$. Hence v_2v_4 is a stable edge of P_4 and v_1v_4 is a positive edge of P_4 . Thus P_4 is a mixed graph.

In [7], we proved that $P_n, n \geq 4$ is a mixed graph and the cycle C_n is a negative graph for any $n \geq 4$.

In this paper we discuss positive, negative and stable edges of t copies of C_4 and complete bipartite graph $K_{m,m}$.

2 Stable and negative graphs

Gyárfás [5] proved that the irregularity strength of $K_{m,m}$ is 4 for odd m. The following theorem proves that $K_{m,m}$ is a negative graph for odd m.

Theorem 2.1. For any odd $m \geq 3$, $K_{m,m}$ is a negative graph.

Proof. Consider a complete bipartite graph $K_{m,m}$ of order 2m where m is odd. Let $u_1, u_2, u_3, \ldots, u_m$ and $v_1, v_2, v_3, \ldots, v_m$ be the vertices of the two partite sets of $K_{m,m}$. For any $e \in \overline{K_{m,m}}$, $K_{m,m} + e$ is isomorphic to $K_{m,m} + v_{m-1}v_m$. So, it is enough to prove that $v_{m-1}v_m$ is a negative edge of $K_{m,m}$. Define the edge labeling $f : E(K_{m,m} + v_{m-1}v_m) \to Z^+$ as follows.

$$f(u_1v_j) = 1, 1 \le j \le m.$$

$$f(u_2v_j) = \begin{cases} 1, & 1 \le j \le m-1 \\ 2, & j = m. \end{cases}$$
For $3 \le i \le \left\lceil \frac{m}{2} \right\rceil$, $f(u_iv_j) = \begin{cases} 1, & 1 \le j \le m-i \\ 2, & j = m+1-i, m+2-i \\ 3, & m+3-i \le j \le m. \end{cases}$
For $\left\lceil \frac{m}{2} \right\rceil + 1 \le i \le m-1$, $f(u_iv_j) = \begin{cases} 1, & 1 \le j \le m-i \\ 2, & j = m+1-i \\ 3, & m+2-i \le j \le m. \end{cases}$

$$f(u_mv_j) = 3, 1 \le j \le m.$$

$$f(v_{m-1}v_m) = 1.$$

The weights of the vertices of $K_{m,m} + v_{m-1}v_m$ are $m, m+1, m+2, \ldots, 3m-2, 3m$. All are pairwise distinct. By the above labeling, we have an irregular network $K_{m,m}$ with maximum label 3. Hence, $s(K_{m,m} + v_{m-1}v_m) \leq 3 < s(K_{m,m})$.

Therefore, $v_{m-1}v_m$ is a negative edge of $K_{m,m}$.

Thus $K_{m,m}$ is a negative graph for odd $m \geq 3$.

Chartrand et al. [2] proved that $s(K_{m,m}) = 3$ when m is even. The following theorem proves that $K_{m,m}$ is a stable graph for even $m \ge 4$ and $K_{2,2}$ is negative a graph.

Theorem 2.2. If m is even, then $K_{m,m}$ is a stable graph where, $m \geq 4$ and $K_{2,2}$ is a negative graph.

Proof. It is easy to verify that $K_{2,2} \cong C_4$.

In [7], we proved that cycles are negative graph for any $n \geq 4$ and hence $K_{2,2}$ is a negative graph.

Consider a complete bipartite graph $K_{m,m}$ of order $2m(m \ge 4)$ where m is even. Let $u_1, u_2, u_3, \ldots, u_m$ and $v_1, v_2, v_3, \ldots, v_m$ be the vertices of the two partite sets of $K_{m,m}$. For any $e, e \in \overline{K_{m,m}}, K_{m,m} + e$ is isomorphic to $K_{m,m} + v_{m-1}v_m$. So, it is enough to prove that $v_{m-1}v_m$ is a stable edge of $K_{m,m}$.

Define the edge labeling $f: E(K_{m,m} + v_{m-1}v_m) \to Z^+$ as follows.

$$f(u_1v_j) = 1, 1 \le j \le m.$$
For $2 \le i \le \frac{m}{2}$, $f(u_iv_j) = \begin{cases} 1, & 1 \le j \le m+1-i \\ 3, & m+2-i \le j \le m. \end{cases}$
For $\frac{m}{2} + 1 \le i \le m-2$, $f(u_iv_i) = \begin{cases} 1, & 1 \le j \le m-i \\ 2, & j = m+1-i \\ 3, & m+2-i \le j \le m. \end{cases}$

$$f(u_{m-1}v_j) = \begin{cases} 1, & j = 1 \\ 2, & j = 2, m \\ 3, & 3 \le j \le m-1. \end{cases}$$

$$f(u_mv_j) = \begin{cases} 2, & j = 1, m-1 \\ 3, & \text{otherwise.} \end{cases}$$

$$f(v_{m-1}v_m) = 2.$$

The weights of the vertices of $K_{m,m}+v_{m-1}v_m$ are $m,m+1,m+2,\ldots,3m-1$. All are pairwise distinct. By the above labeling, we have an irregular network $K_{m,m}+v_{m-1}v_m$ with maximum label 3. Hence

$$s(K_{m,m} + v_{m-1}v_m) \le 3. (1)$$

The minimum possible weights of $K_{m,m} + v_{m-1}v_m$ are $m, m+1, m+2, \ldots, 3m-1$. Since, the maximum degree of $K_{m,m} + v_{m-1}v - m$ is m+1, it is not possible to obtain the weight 3m-1 by using the label 2 and fewer than 2 to the edges of $K_{m,m} + v_{m-1}v_m$. Hence,

$$s(K_{m,m} + v_{m-1}v_m) \ge 3. (2)$$

From (1) and (2), $s(K_{m,m} + v_{m-1}v_m) = 3 = s(K_{m,m})$. Therefore, $v_{m-1}v_m$ is a stable edge of $K_{m,m}$. Thus, $K_{m,m}$ is a stable graph for even $m \ge 4$. \square

In [3], R.J. Faudree et al. proved that any 2-regular graph G with 4p vertices with no triangle components has strength 2p + 1.

By the above theorem we observe the following.

Observation 2.3. Irregularity strength of tC_4 is 2t + 1.

Theorem 2.4. For $t \ge 1$, tC_4 is a negative graph.

Proof. Consider disjoint union of t copies of C_4 .

Let v_{i1}, v_{i2}, v_{i3} and v_{i4} be the consecutive vertices of the i^{th} copy of C_4 for $1 \le i \le t$. For any edge $e \in \overline{tC_4}$, $tC_4 + e$ is isomorphic to either $tC_4 + v_{(t-1)4}v_{t4}$ or $tC_4 + v_{t2}v_{t4}$.

Case 1. Consider the graph $tC_4 + v_{(t-1)4}v_{t4}$. Define the edge labeling $f: E(tC_4 + v_{(t-1)4}v_{t4}) \to Z^+$ by

$$f(v_{i1}v_{i2}) = f(v_{i1}v_{i4}) = 2i - 1, 1 \le i \le t - 2,$$

$$f(v_{i2}v_{i3}) = 2i, 1 \le i \le t - 2,$$

$$f(v_{i3}v_{i4}) = 2i + 1, 1 \le i \le t - 2,$$

$$f(v_{(t-1)1}v_{(t-1)2}) = f(v_{(t-1)1}v_{(t-1)4}) = 2t - 3,$$

$$f(v_{(t-1)2}v_{(t-1)3}) = f(v_{(t-1)3}v_{(t-1)4}) = 2t - 2,$$

$$f(v_{(t-1)4}v_{t4}) = 2,$$

$$f(v_{t1}v_{t2}) = f(v_{t1}v_{t4}) = 2t - 1 \text{ and}$$

$$f(v_{t2}v_{t3}) = f(v_{t3}v_{t4}) = 2t.$$

The weights of the vertices of $tC_4 + v_{(t-1)4}v_{t4}$ are 2, 3, 4, ..., 4t, 4t + 1. All are pairwise distinct. By the above labeling, we have an irregular network $tC_4 + v_{(t-1)4}v_{t4}$ with maximum label 2t, hence $s(tC_4 + v_{(t-1)4}v_{t4}) \le 2t < s(tC_4)$.

Hence, the edge $v_{(t-1)4}v_{t4}$ is a negative of tC_4 .

Case 2. Consider the graph $tC_4 + v_{t2}v_{t4}$. Define the edge labeling $f: E(tC_4 + v_{t2}v_{t4}) \to Z^+$ by

$$f(v_{i1}v_{i2}) = f(v_{i1}v_{i4}) = 2i - 1, 1 \le i \le t - 1,$$

$$f(v_{i2}v_{i3}) = 2i, 1 \le i \le t - 1,$$

$$f(v_{i3}v_{i4}) = 2i + 1, 1 \le i \le t - 1,$$

$$f(v_{t1}v_{t2}) = 2t - 2,$$

$$f(v_{t2}v_{t3}) = f(v_{t3}v_{t4}) = f(v_{t1}v_{t4}) = 2t \text{ and}$$

$$f(v_{t2}v_{t4}) = 1.$$

The weights of the vertices of $tC_4 + v_{t2}v_{t4}$ are $2, 3, 4, \ldots, 4t, 4t + 1$. All are pairwise distinct. By the above labeling, we have an irregular network $tC_4 + v_{t2}v_{t4}$ with maximum label 2t, hence $s(tC_4 + v_{t2}v_{t4}) \le 2t < s(tC_4)$. Hence $v_{t2}v_{t4}$ is a negative of tC_4 . Thus, tC_4 is a negative graph. \Box

From our verification for small values of m and n we propose the following conjecture.

Conjecture 2.5.

- 1. Every complete bipartite graph $K_{m,n}$ with $m \neq n$ is either a stable or a negative graph.
- 2. Disjoint union of cycles is a negative graph.

Acknowledgement

The second author wishes to thank S. Arumugam, Director (R&D), Kalasalingam University for many fruitful discussions.

References

- D. Amar, O. Togni, Irregularity strength of trees, Discrete Math., 190(1998), 15-38.
- [2] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer., 64(1988), 187-192.
- [3] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schelp, Irregular networks, regular graphs and integer matrices with distinct row and column sums, *Discrete Math.*, 76(1989) 223-240.
- [4] A. Gyárfás, The irregularity strength of $K_n mK_2$, Utilitas Math., 35(1989), 111-114.

- [5] A. Gyárfás, The irregularity strength of $K_{m,m}$ is 4 for odd m, Discrete Math., 71(1988) 273-274.
- [6] Jeffrey H. Dinitz, David K. Garnick, András Gyárfás, On the irregularity strength of the $m \times n$ grid, Journal of Graph Theory, 16(4)(1992), 355-374.
- [7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comput., 64(2008), 49-64.
- [8] KM. Kathiresan and K. Muthugurupackiam, A Study On Stable, Positive and Negative Edges With Respect To Irregularity Strength of A Graph, Ars Combin., (To appear).
- [9] J. Lehel, Facts and quests on degree irregular assignments, *Graph theory, Combinatorics and Applications*, (Wiley, New York 1991), 765-782.
- [10] Olivier Togni, Irregularity strength of the toroidal grid, *Discrete Math.*, **165/166**(1997), 609-620.
- [11] Stanislav Jendrol, Michal Tkáč, The irregularity strength of tK_p , Discrete Math., 145(1995), 301-305.