x-Line Signed Graphs

MUKTI ACHARYA

Department of Applied Mathematics

Delhi College of Engineering

Bawana Road, Delhi - 110 042, INDIA.

e-mail: mukti1948@yahoo.com

Abstract

In this paper, a definition of a variation of the standard notion of the *line signed graph* of a given signed graph is recalled from [14] and some fundamental results linking it to the notions of *jump signed graphs* [6] and *adjacency signed graphs* [21], especially with regard to their states of balance, consistency and compatibility are obtained.

Keywords. Line signed graph; balance complement; jump signed graph; matrix signed graph; adjacency signed graph; tensor product; consistency, compatibility.

2000 Mathematics Subject Classification: 05C22.

1 Introduction

For all standard terminology and notation in graph theory, we refer the reader to Harary [15]; the nonstandard ones will be given in this note as and when required. We will treat only finite simple graphs without self-loops and isolates.

A signed graph (or signed graph in short; see [8, 11]) is an ordered pair $S = (S^u, \sigma)$, where S^u is a graph G = (V, E) called the underlying graph of S, and $\sigma : E \to \{+, -\}$ is a function, called a signing. We let $E^+(S) = \{e \in E(G) : \sigma(e) = +\}$ and $E^-(S) = \{e \in E(G) : \sigma(e) = -\}$. Then $E(S) = E^+(S) \cup E^-(S)$ and the elements of $E^+(S)(E^-(S))$ are called positive (negative) edges in S. Two vertices $u, v \in V(S) = V(S^u) = V$ are said to be adjacent in S whenever they are adjacent in S^u (i.e., whenever $uv \in E(S^u)$). Thus, graphs may be regarded as signed graphs in which all the edges are positive; hence we regard graphs as all-positive signed graphs (all-negative signed graphs are defined similarly). A signed graph is said to

be homogeneous if it is either all-positive or all-negative and heterogeneous otherwise.

Behzad and Chartrand [8] have given a definition of the line signed graph L(S) of a given signed graph S as follows: The vertices of L(S) correspond one-to-one with the edges of S, $e_ie_j \in E(L(S))$, if and only if the edges of S corresponding to the vertices e_i and e_j of L(S) have a vertex in common in S, and for any $e_ie_j \in E(L(S))$ one has $e_ie_j \in E^-(L(S))$, if and only if the edges of S corresponding to e_i and e_j are both negative in S. A signed graph S is a line signed graph if there exists a signed graph S such that S is then called a line root of S of S is then called a line root of S of S is the signed graph S such that

In [14], the author introduced the following variation of the above standard notion of line signed graph L(S) of a given signed graph S as follows: It is a signed graph denoted $L_{\times}(S)$ and defined on the line graph $L(S^u)$ of the graph S^u by assigning to each edge ee' of $L(S^u)$ the product of the signs of the adjacent edges e and e' of S; we shall call $L_{\times}(S)$ the \times -line signed graph of S. The purpose of this note is to initiate a study of this notion.

2 Preliminary results

A signed graph S is balanced if every cycle in S has an even number of negative edges (cf. [16, 17]). In [14], it was observed that for any signed graph S on the cycle C_n , $n \geq 3$, $L_{\times}(S)$ is balanced. More generally, we can prove the following result.

Theorem 2.1. For any signed graph S, its \times -line signed graph $L_{\times}(S)$ is a balanced signed graph.

Proof. Let E^+ and E^- denote respectively the set of positive edges of S and the set of negative edges of S. Then, by the definition of $L_{\times}(S)$ it may be easily verified that the partition $\{E^+, E^-\}$ of the vertex set of $L_{\times}(S)$ has the property that every positive edge of $L_{\times}(S)$ joins two vertices lying within one of the sets E^+ and E^- whereas every negative edge of $L_{\times}(S)$ joins a vertex of E^+ with one of E^- . Hence, by the well known 'Partition Criterion' for balance due to Harary [16], it follows that $L_{\times}(S)$ is balanced.

Let σ be the signing specifying S and let $\mu: V(S) \to \{-1, +1\}$ be any function, called a marking of S; accordingly, we shall denote by S_{μ} the marked signed graph which is defined as the signed graph S together with the marking μ . In particular, if E_u denotes the set of the edges x incident at u, then μ is called a canonical marking of S if it is obtained by defining $\mu(u)$, for each vertex u, as the product $\prod_{x \in E_u} \sigma(x)$. Then, define

the operator c that transforms S into the signed graph $c_{\mu}(S)$ which has the same vertex set as that of S with two vertices defined adjacent in $c_{\mu}(S)$ whenever the vertices are not adjacent in S^{u} and each edge uv in $c_{\mu}(S)$ signed $\mu(u)\mu(v)$. Clearly, $c_{\mu}(S)$ so defined is a signed graph whose underlying graph is the usual graph complement of S^u and it is also a balanced signed graph due to the Harary's Partition Criterion for Structural Balance (HPCSB) mentioned above. Therefore, we call $c_{\mu}(S)$ the μ -balanced complement of the signed graph S; in particular, if μ is given to be the canonical marking μ_{σ} of S then it has been called the balanced complement of S and is specifically denoted \overline{S} [25]. Apart from the basic purpose for which it has been defined, a study of μ -balanced complements of a given signed graph appears to be of independent theoretical interest, not only in the mathematical theory of signed graphs (cf.: [24]) but also possibly in the theory of cognitive balance in social psychology (cf.: [2]). These studies also appear to have interesting connections with discovering a proper way of defining the notion of 'complement' S^c of a given signed digraph S, a longstanding open problem in social psychology (see [25, 2, 3, 7]).

The complement of the line graph of a given graph G has been called the jump graph of G, denoted J(G) [12]. Next, the jump signed graph J(S) of a given signed graph S has been defined [25] as a signed graph such that $(J(S))^u \cong J(S^u)$ and two vertices of J(S) are joined by a negative edge if and only if the corresponding edges in S are of opposite signs. Clearly, as noted in [6], for any signed graph S, J(S) so defined is a balanced signed graph.

The idea of switching a signed graph was introduced in [1] and may be formally stated as follows: Given a marking μ of a signed graph S, switching S with respect to μ is the operation of changing the sign of every edge of S to its opposite whenever its end vertices are of opposite signs in S_{μ} . The signed graph obtained in this way is denoted by $S_{\mu}(S)$ and is called the μ -switched signed graph or just switched signed graph when the marking is clear from the context. Further, a signed graph S_1 switches to signed graph S_2 , written as $S_1 \sim S_2$, whenever, there exists a marking μ of S_1 such that $S_{\mu}(S_1) \cong S_2$. Two signed graphs S_1 and S_2 are said to be weakly isomorphic (cf: [28]) or cycle-isomorphic (cf: [26]) if there exists an isomorphism $f: (S_1)^u \to (S_2)^u$ such that the sign of every cycle Z in S_1 equals the sign of f(Z) in S_2 , where the sign of a set M of edges, denoted sgn(M), in a signed graph is defined as the product of the signs of the edges in it. The following theorem will be useful in our further investigation, where $\Psi(G)$ denotes the set of all signed graphs whose underlying graph is G.

Lemma 2.2. [28, 26] Given a graph G, any two signed graphs in $\Psi(G)$ are switching equivalent if and only if they are cycle-isomorphic.

The following result is easy to verify using Lemma 2.2.

3 Consistency and cycle-compatibility

In analogy with Harary's balance principle in social psychology [16], Beineke and Harary [9] defined a marked graph G_{μ} as being consistent if every cycle in G_{μ} contains an even number of negative vertices.

Beineke and Harary [9, 10] were the first to pose the problem of characterizing consistent marked graphs, which was independently settled by Acharya [4, 5], Rao [22] and Hoede [19]. Recently, new characterizations of consistent marked graphs have been obtained by Roberts and Xu [23].

In general, the mark $\mu(S')$ of a nonempty subsi(di)graph S' of S_{μ} is defined as the product of the marks of the vertices in S'. A cycle Z in S_{μ} is said to be *consistent* (respectively, *compatible*) if $\mu(Z) = +1$ ($\mu(Z) = sgn(Z)$); otherwise, it is said to be *inconsistent* (*incompatible*). We shall call S consistent (cycle-compatible) if every cycle in it is consistent (compatible).

Definition 3.1. [20] A given signed graph $\Gamma = (H, \xi)$ is (S, \mathcal{R}) -marked if there exists a signed graph $S = (G, \sigma)$ (called a marker of Γ), a bijection $\varphi : E(S) \to V(\Gamma)$, a binary relation \mathcal{R} on E(S) and a marking $\mu : V(\Gamma) \to \{-, +\}$ of Γ satisfying the following compatibility conditions, (CC1): $\mu(u) = \sigma(\varphi^{-1}(u)) \ \forall u \in V(\Gamma)$

(CC2):
$$uv \in E(\Gamma) \Leftrightarrow \{\varphi^{-1}(u), \varphi^{-1}(v)\} \in \mathcal{R}$$
.

The case when \mathcal{R} is defined by the condition that $\varphi^{-1}(u) \cap \varphi^{-1}(v) \neq \emptyset$ has been dealt in [25] in respect of signed graph equations involving line signed graphs.

Clearly, if Γ_{μ} is consistent then the subgraph of any of its markers S must be balanced.

Towards studying the properties of structurally evolving social networks, perhaps the simplest model for study could be the si(di)graphs evolving through the unary operator L of taking the line si(di)graph L(S) of a given si(di)graph S. We might then be interested to answer questions like: Precisely which si(di)graphs S are line roots of Γ so that Γ is consistent. Characterizations of signed graphs M whose line signed graphs and iterated line signed graphs $L^k(M)$ are consistent have been obtained [25]; towards attempting to answer such questions, the following result has been obtained, where for any vertex v, $d^+(v)$ and $d^-(v)$ denote respectively the number of positive edges incident at v (called the 'positive degree' of v) and the number of negative edges incident at v (called the 'negative degree' of v) and d(v) denotes the total degree $d(v) = d^-(v) + d^+(v)$.

Theorem 3.2. [25] For any isolate-free signed graph S of order p, L(S) is consistent if and only if the following conditions hold in S:

- (i) S is balanced;
- (ii) for every vertex v_i , $1 \le i \le p$, in S having total degree greater than or equal to three,
 - (a) if $d(v_i) > 3$ then $d^-(v_i) = 0$;
 - (b) if $d(v_i) = 3$ then either $d^-(v_i) = 0$ or $d^-(v_i) = 2$;
 - (c) if $d^-(v_i) = 2$ and v_i lies on a cycle of S then the negative degree of v_i is due to the negative edges of the cycle.

Observation 3.3. The validity of the statement of Theorem 3.2 remains unaltered by replacing L(S) by $L_{\times}(S)$ since the vertices of both L(S) and $L_{\times}(S)$ are the edges of S along with their signs as marks and the fact that $(L(S))^u \cong (L_{\times}(S))^u \cong L(S^u)$.

Next, we have the following result the proof of which is not difficult to see.

Theorem 3.4. For any isolate-free signed graph S of order $p, L_{\times}(S)$ is cycle-compatible if and only if $L_{\times}(S)$ is consistent.

4 Switching equivalence of jump signed graphs and ×-line signed graphs

Towards searching for an ideal notion of the *complement* of a given signed graph, one is naturally lead to look for the analogue of the graph equation,

$$J(G) \cong L(G) \tag{1}$$

for the case of jump signed graphs. Since $J(G) = \overline{L(G)}$, the solutions to (1) would be graphs whose line graphs are self-complementary; these graphs are determined already.

Theorem 4.1. [27] The graph equation $J(G) \cong L(G)$ has only six solutions; namely K_2 , P_5 , C_5 , $P_3 \circ K_1$, $K_{3,3} - e$, $K_{3,3}$.

Corollary 4.2. A signed graph S satisfies $L_{\times}(S) \sim J(S)$ if and only if S^u is isomorphic to any of the graphs K_2 , P_5 , C_5 , $P_3 \circ K_1$, $K_{3,3} - e$, $K_{3,3}$.

5 \times -line signed graphs and $\{-1,0,1\}$ -matrices

Let $A = (a_{ij})$ be any $m \times n$ matrix in which each entry belongs to the set $\{-1,0,1\}$; we shall call such a matrix a $(0,\pm 1)$ -matrix. Given any such matrix A, one can construct a balanced matrix signed graph Sg(A) of A as follows: The vertex set of Sg(A) consists of the nonzero entries in A and the edge set consists of distinct pairs of vertices corresponding to the nonzero entries of A that lie in the same row of A or in the same column of A; the sign $\sigma(uv)$ of an edge uv in Sg(A) is defined as the product of the signs of the entries in A that correspond to u and v. By a well known result of Sampathkumar [24], it follows that Sg(A) is a balanced signed graph. When no entry in A is negative, Sg(A) =: G(A) is the graph of the (0,1)-matrix A originally defined by Hedetniemi [18]. Next, Mishra [21] extended Cook's [13] notion of the term graph T(B) of a (0,1)-matrix B to that of the term signed graph T(A) of a $(0,\pm 1)$ -matrix A as follows: The vertex set of T(A) consists of the m row labels r_1, r_2, \ldots, r_m and the n column labels c_1, c_2, \ldots, c_n of A, the edge set consists of the unordered pairs $r_i c_i$ for which $a_{ij} \neq 0$ and the sign of an edge $r_i c_j$ being the sign of the nonzero entry a_{ij} . In the case of (0,1)-matrices B, Hedetniemi [18] has shown that $G(B) \cong L(T(B))$ and Mishra [21] has generalized this relationship to demonstrate that $S(A) \cong L(T(A))$ where S(A) is the matrix signed graph of A which differs in structure from Sg(A) just by the rule to assign signs to its edges; in fact, an edge uv in S(A) is signed negative if and only if both the nonzero entries of A corresponding to the vertices uand v happen to be negative. The following is a new observation, whose proof follows from the fundamental facts just mentioned and the definition of the x-line signed graphs.

Theorem 5.1. For any $(0, \pm 1)$ -matrix $A, Sg(A) \cong L_{\times}(T(A))$.

Mishra [21] defined the 'Kronecker product' (popularly known as tensor product) of two signed graphs S_1 and S_2 , denoted $S_1 \otimes S_2$ as follows: $V(S_1 \otimes S_2) := V(S_1) \times V(S_2)$, $E(S_1 \otimes S_2) := \{(u_1, v_1)(u_2, v_2) : u_1u_2 \in E(S_1) \ v_1v_2 \in E(S_2)\}$ and the sign of the edge $(u_1, v_1)(u_2, v_2)$ is the product of the sign of u_1u_2 in S_1 and the sign of v_1v_2 in S_2 . In the following result, A(S) will denote the usual adjacency matrix of the given signed graph S (see [17]) and $A \otimes B$ denotes the standard tensor product of the given matrices A and B.

Theorem 5.2. [21] For any two signed graphs S_1 and S_2 , $A(S_1 \otimes S_2) = A(S_1) \otimes A(S_2)$.

Theorem 5.3. [21] For any signed graph S, $T(A(S)) \cong S \otimes K_2^+$, where K_2^+ denotes the complete graph K_2 with its only edge treated as being positive.

Next, Mishra [21] goes on to define the adjacency signed graph $\eth(S)$ of a given signed graph S as the matrix signed graph S(A(S)) of the adjacency matrix A(S) of S. The following result may be easily derived by applying the fact that $S(A) \cong L(T(A))$ and Theorems 5.1 and 5.3.

Theorem 5.4. [21] For any signed graph S, $\eth(S) \cong L(S \bigotimes K_2^+)$.

We define the balanced adjacency signed graph $\mathfrak{F}_{\times}(S)$ of a given signed graph S as the balanced matrix signed graph $\operatorname{Sg}(A(S))$ of the adjacency matrix A(S) of S. Then, analogous to Theorem 5.4, one may easily deduce the following result.

Theorem 5.5. For any signed graph S, $\mathfrak{F}_{\times}(S) \cong L_{\times}(S \bigotimes K_2^+)$.

References

- [1] R.P. Abelson and M.J. Rosenberg, Symbolic psychologic: A model of attitudinal cognition, *Behav. Sci.*, 3 (1958), 1-13.
- [2] B.D. Acharya and S. Joshi, On the complement of an ambisidigraph, *Electronic Notes on Discrete Mathematics*, 15, 2003.
- [3] B.D. Acharya, Shalini Joshi and S.B. Rao, A Ramsey theorem for strongly connected ambisidigraphs, In: Proc. II International Conference On Social Network Analysis held in The Indian Statistical Institute, Kolkata, ISI Platinum Jubilee Monograph Series, World Scientific Press, Boston, USA, 2008 (To appear).
- [4] B.D. Acharya, A characterization of consistent marked graphs, Nat. Acad. (India) Sci.-Letters, 6 (12)(1983), 431-440.
- [5] B.D. Acharya, Some further properties of consistent marked graphs, *Indian J. pure appl. math.*, 15 (8)(1984), 837-842.
- [6] M. Acharya and D. Sinha, A characterization of signed graphs that are switching equivalent to their jump signed graphs, Graph Theory Notes of New York, XLIII:1 (2002), 7-8.
- [7] M. Acharya and D. Sinha, A characterization of sigraphs whose line sigraphs and jump sigraphs are switching equivalent, Graph Theory Notes of New York, XLIV:6 (2003), 30-34.
- [8] M. Behzad and G.T. Chartrand, Line coloring of signed graphs, *Element der Mathematik*, *Band* 24(3) (1969), 49-52.
- [9] L.W. Beineke and F. Harary, Consistency in marked graphs, J. Mathl. Psychol., 18 (3)(1978), 260-269.

- [10] L.W. Beineke and F. Harary, Consistent graphs with signed points, Riv. Math. per Sci. Econom. Sociol., 1 (1978), 81-83.
- [11] G.T. Chartrand, *Graphs as Mathematical Models*, Prindle, Weber and Schmidt, Inc., Boston, Massachusetts, 1977.
- [12] G.T. Chartrand, H. Hevia, E.B. Jarett and M. Schultz, Subgraph distance in graphs defined by edge-transfers, *Discrete Math.*, 170(1997), 63-79.
- [13] C.R. Cook, Graphs associated with (0,1)-arrays, Themis Project Tech.Rep. No.28, University of Iowa, 1970.
- [14] M.K. Gill, Contributions to some topics in graph theory and its applications, The Indian Institute of Technology, Bombay, 1983.
- [15] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., (1972).
- [16] F. Harary, A characterization of balanced signed graphs, Mich. Math. J., 2 (1953), 143-146.
- [17] F. Harary, R.Z. Norman and D. Cartwright, Structural Models: An Introduction to the Theory of Directed graphs, Wiley, New York, 1965.
- [18] S.T. Hedetniemi, *Graphs of* (0, 1)-matrices, In: Recent trends in graph theory, Lecture Notes in Mathematics, No.186, Springer-Verlag, New York, 1970.
- [19] C. Hoede, A characterization of consistent marked graphs, J. Graph Theory, 16 (1)(1992), 17-23.
- [20] Mukti Acharya and Deepa Sinha, Common-edge sigraphs, AKCE J. Graphs. Combin., 3(2)(2006), 115-130.
- [21] V. Mishra, Graphs associated with [0,1] and [0,+1,-1] matrices, Ph.D. Thesis, The Indian Institute of Technology, Bombay, 1975.
- [22] S.B. Rao, Characterization of harmonious marked graphs and consistent nets, J. Combin., Infom. Syst. Sci., 9 (1984), 97-112.
- [23] F.S. Roberts and Shaoji Xu, Characterizations of consistent marked graphs, Discrete Appl. Math., 127 (2003), 357-371.
- [24] E. Sampathkumar, Point-signed and line-signed graphs, Karnatak University Graph theory Research Report No.1, 1973. [Also, see Abstract No.1 in Graph theory Newsletter, 2 (2)(1972); National Academy Science-Letters, 7 (1984), 91-93.]

- [25] D. Sinha, New frontiers in the theory of signed graphs, Ph.D. Thesis, University of Delhi, 2005.
- [26] T. Sozansky, Enumeration of weak isomorphism classes of signed graphs, J. Graph Theory, 4 (2)(1980), 127-144.
- [27] B. Wu and X. Guo, Diameters of jump graphs and self-complementary jump graphs, *Graph Theory Notes of New York*, **XL**: 6(2001), 31-34.
- [28] T. Zaslavsky, Signed graphs, Discrete Appl. Math., 4 (1)(1982), 47-74.