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Abstract

In this paper, a definition of a variation of the standard notion
of the line signed graph of a given signed graph is recalled from [14]
and some fundamental results linking it to the notions of jump signed
graphs [6) and adjacency signed graphs [21), especially with regard to
their states of balance, consistency and compatibility are obtained.
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1 Introduction

For all standard terminology and notation in graph theory, we refer the
reader to Harary [15]; the nonstandard ones will be given in this note as
and when required. We will treat only finite simple graphs without self-
loops and isolates.

A signed graph (or signed graph in short; see [8, 11]) is an ordered
pair § = (S%,0), where S* is a graph G = (V, E) called the underlying
graph of S, and ¢ : E — {+,-} is a function, called a signing. We let
E*(S) = {e € E(G) : o(e) = +} and E~(S) = {e € E(G) : o(e) = —}.
Then E(S) = EY(S)UE~(S) and the elements of E*(S)(E~(S)) are called
positive (negative) edges in S. Two vertices u,v € V(S) = V(S*) = V are
said to be adjacent in S whenever they are adjacent in S* (i.e., whenever
uv € E(S*)). Thus, graphs may be regarded as signed graphs in which all
the edges are positive; hence we regard graphs as all-positive signed graphs
(all-negative signed graphs are defined similarly). A signed graph is said to
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be homogeneous if it is either all-positive or all-negative and heterogeneous
otherwise.

Behzad and Chartrand [8] have given a definition of the line signed graph
L(S) of a given signed graph S as follows: The vertices of L(S) correspond
one-to-one with the edges of S, eie; € E(L(S)), if and only if the edges of
S corresponding to the vertices e; and e; of L(S) have a vertex in common
in S, and for any e;e; € E(L(S)) one has e;e; € E~(L(S)), if and only if
the edges of S corresponding to e; and e; are both negative in S. A signed
graph H is a line signed graph if there exists a signed graph S such that
H = L(8S); S is then called a line root of H [25].

In [14], the author introduced the following variation of the above stan-
dard notion of line signed graph L(S) of a given signed graph S as follows:
It is a signed graph denoted Ly (S) and defined on the line graph L(S*)
of the graph S* by assigning to each edge ee’ of L(S*) the product of the
signs of the adjacent edges e and €' of S; we shall call Lx(S) the x-line
signed graph of S. The purpose of this note is to initiate a study of this
notion.

2 Preliminary results

A signed graph S is balanced if every cycle in S has an even number of
negative edges (cf. [16, 17]). In [14), it was observed that for any signed
graph S on the cycle Cp, n >3, Lx(S) is balanced. More generally, we
can prove the following result.

Theorem 2.1.  For any signed graph S, its x-line signed graph L (S)
is a balanced signed graph.

Proof. Let E* and E— denote respectively the set of positive edges of
S and the set of negative edges of S. Then, by the definition of Lx(S)
it may be easily verified that the partition {E*+, E~} of the vertex set
of Lx(S) has the property that every positive edge of Lx(S) joins two
vertices lying within one of the sets E* and E~ whereas every negative
edge of Ly(S) joins a vertex of E* with one of E~. Hence, by the well
known ‘Partition Criterion’ for balance due to Harary [16], it follows that
L (S) is balanced.

Let o be the signing specifying S and let p:V(S) — {-1,+1} be
any function, called a marking of S; accordingly, we shall denote by S,
the marked signed graph which is defined as the signed graph S together
with the marking p. In particular, if E, denotes the set of the edges «
incident at u, then u is called a canonical marking of S if it is obtained by
defining p(u), for each vertex u, as the product [[.cg, o(z). Then, define
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the operator ¢ that transforms S into the signed graph c,(S) which
has the same vertex set as that of S with two vertices defined adjacent
in c,(S) whenever the vertices are not adjacent in S* and each edge
wv in c,(S) signed p(u)u(v). Clearly, c,(S) so defined is a signed graph
whose underlying graph is the usual graph complement of S* and it is
also a balanced signed graph due to the Harary’s Partition Criterion for
Structural Balance (HPCSB) mentioned above. Therefore, we call ¢, (.S)
the u-balanced complement of the signed graph S; in particular, if p is given
to be the canonical marking p, of S then it has been called the balanced
complement of S and is specifically denoted S [25]. Apart from the basic
purpose for which it has been defined, a study of u-balanced complements of
a given signed graph appears to be of independent theoretical interest, not
only in the mathematical theory of signed graphs (cf.: [24]) but also possibly
in the theory of cognitive balance in social psychology (cf.: [2]). These
studies also appear to have interesting connections with discovering a proper
way of defining the notion of ‘complement’ S¢ of a given signed digraph
S, a longstanding open problem in social psychology (see [25, 2, 3, 7]).

The complement of the line graph of a given graph G has been called the
Jjump graph of G, denoted J(G) [12]. Next, the jump signed graph J(S) of
a given signed graph § has been defined [25] as a signed graph such that
(J(S))* =2 J(S*) and two vertices of J(S) are joined by a negative edge
if and only if the corresponding edges in S are of opposite signs. Clearly,
as noted in [6], for any signed graph S, J(S) so defined is a balanced
signed graph.

The idea of switching a signed graph was introduced in (1] and may be
formally stated as follows: Given a marking y of a signed graph S, switching
S with respect to u is the operation of changing the sign of every edge of
S to its opposite whenever its end vertices are of opposite signs in S,. The
signed graph obtained in this way is denoted by S,(S) and is called the
p-switched signed graph or just switched signed graph when the marking is
clear from the context. Further, a signed graph S, switches to signed graph
S2, written as S§; ~ S,, whenever, there exists a marking u of S such that
8u(S1) = S;. Two signed graphs S) and S> are said to be weakly isomorphic
(cf.: [28]) or cycle-isomorphic (cf: [26]) if there exists an isomorphism
S 1 (S1)* — (S2)* such that the sign of every cycle Z in S; equals the sign
of f(Z) in Sy, where the sign of a set M of edges, denoted sgn(M), in a
signed graph is defined as the product of the signs of the edges in it. The
following theorem will be useful in our further investigation, where ¥(G)
denotes the set of all signed graphs whose underlying graph is G.

Lemma 2.2. 28, 26] Given a graph G, any two signed graphs in ¥(G)
are switching equivalent if and only if they are cycle-isomorphic.

The following result is easy to verify using Lemma 2.2.
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Theorem 2.3.  For any signed graph S = (G,0), co(Lx(S)) ~ J(S).

3 Consistency and cycle-compatibility

In analogy with Harary’s balance principle in social psychology [16], Beineke
and Harary [9] defined a marked graph G, as being consistent if every
cyclein G, contains an even number of negative vertices.

Beineke and Harary [9, 10] were the first to pose the problem of char-
acterizing consistent marked graphs, which was independently settled by
Acharya [4, 5], Rao [22] and Hoede [19]. Recently, new characterizations of
consistent marked graphs have been obtained by Roberts and Xu [23].

In general, the mark u(S’) of a nonempty subsi(di)graph S’ of
S, is defined as the product of the marks of the vertices in S’. A cycle
Z in S, is said to be consistent (respectively, compatible) if u(Z) = +1
(#(2) = sgn(Z)); otherwise, it is said to be inconsistent (incompatible). We
shall call S consistent (cycle-compatible) if every cycle in it is consistent
(compatible).

Definition 3.1. [20] A given signed graph T = (H,§) 1is (S, R)-marked

if there exists a signed graph S = (G,0) (called a marker of '), a bijection

¢ : E(S) — V(I'), a binary relation R on E(S) and a marking u :

V() = {—,+} of T satisfying the following compatibility conditions,
(CC1): p(u) = (v~ (u)) Yu € V(T)

(CC2): wwe E(T) & {pl(u),p t(v)} eR.

The case when R is defined by the condition that ¢~(u) Ny~(v) # 0
has been dealt in [25] in respect of signed graph equations involving line
signed graphs.

Clearly, if T, is consistent then the subgraph of any of its markers S
must be balanced.

Towards studying the properties of structurally evolving social networks,
perhaps the simplest model for study could be the si(di)graphs evolving
through the unary operator L of taking the line si(di)graph L(S) of
a given si(di)graph S. We might then be interested to answer questions
like: Precisely which si(di)graphs S are line roots of I' so that I' is
consistent. Characterizations of signed graphs M whose line signed graphs
and iterated line signed graphs L*(M) are consistent have been obtained
[25]); towards attempting to answer such questions, the following result has
been obtained, where for any vertex v, d*(v) and d~(v) denote respectively
the number of positive edges incident at v (called the ‘positive degree’ of v)
and the number of negative edges incident at v (called the ‘negative degree’
of v) and d(v) denotes the total degree d(v) = d~(v) + d*(v).
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Theorem 3.2. [25] For any isolate-free signed graph S of order p,
L(S) is consistent if and only if the following conditions hold in S:
(i) S is balanced;
(ii) for every vertez v;, 1 <i<p, in S having total degree greater than
or equal to three,
(a) if d(v;) >3 then d~(v%)=0;
(b) if d(v;) =3 then either d~(v;)=0 or d~(v;)=2;
(c) if d~(v;) =2 and v; lies on a cycle of S then the negative
degree of v; is due to the negative edges of the cycle.

Observation 3.8.  The validity of the statement of Theorem 3.2 remains
unaltered by replacing L(S) by Lx(S) since the vertices of both L(S) and
Ly« (S) are the edges of S along with their signs as marks and the fact that
(L(S)* = (Lx(S))* = L(S").

Next, we have the following result the proof of which is not difficult to
see.

Theorem 3.4.  For any isolate-free signed graph S of order p, L« (S)
is cycle-compatible if and only if L« (S) is consistent.

4 Switching equivalence of jump signed
graphs and x-line signed graphs

Towards searching for an ideal notion of the complement of a given signed
graph, one is naturally lead to look for the analogue of the graph equation,

J(G) = L(G) (1)

for the case of jump signed graphs. Since J(G) = L(G), the solutions
to (1) would be graphs whose line graphs are self-complementary; these
graphs are determined already.

Theorem 4.1. [27] The graph equation J(G) = L(G) has only six
solutions; namely Ki, Ps, Cs, P30K,, K33 —e, K33.

Corollary 4.2. A signed graph S satisfies Ly (S) ~ J(S) if and only if
S* is isomorphic to any of the graphs Ko, Ps, Cs, P3oK;, K33 —e,
Ks’a.
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5 x-line signed graphs and {-—1,0, 1}-matrices

Let A = (ai;) be any m x n matrix in which each entry belongs to the set
{-1,0,1}; we shall call such a matrix a (0,+1)-matriz. Given any such
matrix A, one can construct a balanced matriz signed graph Sg(A) of A
as follows: The vertex set of Sg(A) consists of the nonzero entries in A
and the edge set consists of distinct pairs of vertices corresponding to the
nonzero entries of A that lie in the same row of A or in the same column
of A; the sign o(uv) of an edge uv in Sg(A) is defined as the product of
the signs of the entries in A that correspond to u and v. By a well known
result of Sampathkumar [24], it follows that Sg(A) is a balanced signed
graph. When no entry in A is negative, Sg(A) =: G(A) is the graph of
the (0,1)-matrix A originally defined by Hedetniemi [18]. Next, Mishra
[21] extended Cook’s [13] notion of the term graph T(B) of a (0, 1)-matrix
B to that of the term signed graph T(A) of a (0,+1)-matrix A as follows:
The vertex set of T(A) consists of the m row labels ry,72,...,7, and the
n column labels ¢;,¢s,...,¢, of A, the edge set consists of the unordered
pairs 7;¢; for which a;; # 0 and the sign of an edge r;c; being the sign
of the nonzero entry a;;. In the case of (0, 1)-matrices B, Hedetniemi [18]
has shown that G(B) = L(T(B)) and Mishra [21] has generalized this
relationship to demonstrate that S(A) = L(T'(A)) where S(A) is the matriz
signed graph of A which differs in structure from Sg(A) just by the rule to
assign signs to its edges; in fact, an edge uv in S(A) is signed negative if
and only if both the nonzero entries of A corresponding to the vertices u
and v happen to be negative. The following is a new observation, whose
proof follows from the fundamental facts just mentioned and the definition
of the x-line signed graphs.

Theorem 5.1.  For any (0, £1)-matriz A, Sg(A) = Ly (T(A)).

Mishra [21] defined the ‘Kronecker product’ (popularly known as ten-
sor product) of two signed graphs S; and Sz, denoted S; @ 52 as follows:
V(Sl ®Sz) = V(Sl) X V(Sz), E(S1 ®Sz) = {(ul,v1)(U2,vz) t U Uy €
E(S)) nvs € E(S2)} and the sign of the edge (u1,v1)(u2,v2) is the prod-
uct of the sign of ujus in S; and the sign of vyv; in S. In the following
result, A(S) will denote the usual adjacency matriz of the given signed
graph S (see [17]) and A@ B denotes the standard tensor product of the
given matrices A and B.

Theorem 5.2. [21] For any two signed graphs S, and Sz, A(S1 @ S2) =
+ A(S1) @ A(S2).

Theorem 5.3. [21]  For any signed graph S, T(A(S)) = S ® K, where
K denotes the complete graph K, with its only edge treated as being
positive.
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Next, Mishra {21] goes on to define the adjacency signed graph 8(S) of a
given signed graph S as the matrix signed graph S(A(S)) of the adjacency
matrix A(S) of S. The following result may be easily derived by applying
the fact that S(A) = L(T(A)) and Theorems 5.1 and 5.3.

Theorem 5.4. [21] For any signed graph S, 8(S) = L(S @ KJ').

We define the balanced adjacency signed graph 8x(S) of a given signed
graph S as the balanced matrix signed graph Sg(A(S)) of the adjacency
matrix A(S) of S. Then, analogous to Theorem 5.4, one may easily deduce
the following result.

Theorem 5.5. For any signed graph S, 8x(S) = L« (SQ K7).
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