Skolem Graceful Signed Stars

MUKTI ACHARYA

Department of Applied Mathematics

Delhi College of Engineering

Delhi - 110 042, India
e-mail: mukti1948@yahoo.com

and

TARKESHWAR SINGH

Mathematics Group

Birla Institute of Technology and Science

Pilani, Goa Campus

Goa-403 726, India. e-mail: stsingh@rediffmail.com

Abstract

In this paper, we obtain a necessary condition for the Skolem gracefulness of disjoint union of k signed stars K_{1,r_i} , $1 \le i \le k$, which we call a k-signed star $St(r_1, r_2, \ldots, r_k)$. We also present results on the Skolem gracefulness of the 2-signed star $St(r_1, r_2)$.

Keywords. Signed star, skolem graceful labeling. 2000 Mathematics Subject Classification: 05C78

1 Introduction

For standard terminology and notation in graph theory, we follow West [20] and for signed graphs we follow Chartrand [8] and Zaslavsky [21, 22]. For a dynamic survey on graph labelings we refer to Gallian [11].

Lee and Wui [16] introduced the concept of Skolem graceful graphs. A Skolem graceful labeling of a graph G = (V, E) is a bijection $f: V \to \{1, 2, \ldots, |V|\}$ such that the induced edge labeling $g_f: E \to \{1, 2, \ldots, |E|\}$ defined by $g_f(uv) = |f(u) - f(v)| \forall uv \in E$ is also bijective; if such a labeling exists for a given graph G, then it is called a Skolem graceful graph. If a graph G, with p vertices and q edges, is graceful then by definition one may see that $q \geq p-1$, while if it is Skolem graceful, then $q \leq p-1$. Thus,

Skolem graceful labelings nearly complement graceful labelings and a graph with q=p-1 is graceful if and only if it is Skolem graceful. Subsequent to this observation, subtle links of this notion with that of graceful graphs have been found (e.g., see [1]). A k-star $St(\alpha_1, \alpha_2, \ldots, \alpha_k)$ is a disconnected graph with k components $K_{1,\alpha_1}, K_{1,\alpha_2}, \ldots, K_{1,\alpha_k}$ where $K_{1,r}$ denotes the star with r+1 vertices and r edges.

A (p,m,n)-sigraph S is an ordered pair (G,s), where G=(V,E) is a (p,q)-graph and s is a function which assigns to each edge of G a positive or negative sign and $|E^+(S)| = m, |E^-(S)| = n$ where $E^+(S)$ and $E^-(S)$ denote respectively the set of positive and negative edges of S. If a bijection $f: V(S) \to \{1,2,\ldots,|V(S)|\}$ such that the induced edge function $g_f(uv) = s(uv)|f(u) - f(v)|, \forall uv \in E(S)$ assigns the numbers $1,2,\ldots,m$ to the positive edges and $-1,-2,\ldots,-n$ to the negative edges of S, then f is called a Skolem graceful labeling of S and the signed graph which admits such a labeling is called Skolem graceful sigraph. Note that if n=0, then above definition of Skolem graceful sigraphs coincides with the Skolem graceful graphs (e.g. see [2] - [6], [18], [19]).

By a k-signed star (or k-signed star, in short), we mean a sigraph on $St(\alpha_1, \alpha_2, \ldots, \alpha_k)$. In this paper, we investigate the Skolem gracefulness of a k-signed star. Some well known results on Skolem graceful graphs listed below will serve as background and are likely to be used in our investigation.

Theorem 1.1. [15] Let G = (V, E) be a (p, q)-graph. If G is Skolem graceful then

- (i) $p \ge q + 1$ and
- (ii) it is possible to partition V(G) into two subsets V_1 and V_2 such that the number of edges connecting vertices in V_1 with vertices in V_2 is exactly $\lfloor \frac{q+1}{2} \rfloor$.

Since a tree is Skolem graceful if and only if it is graceful, the problem of determining disconnected (p, p-1)—graphs that are Skolem graceful is open. The following result is known in literature towards this end.

Theorem 1.2. [15] The graph nK_2 is Skolem graceful if and only if $n \equiv 0$ or $1 \pmod{4}$.

The following results are known in literature for any disconnected (p, q)-graph for which $q \leq p - 1$.

Theorem 1.3. [16] A 2-star $St(\alpha_1, \alpha_2)$ is Skolem graceful if and only if $\alpha_1\alpha_2$ is even.

Theorem 1.4. [16] A 3-star $St(\alpha_1, \alpha_2, \alpha_3)$ is Skolem graceful if and only if $\alpha_1 \alpha_2 \alpha_3$ is even.

Theorem 1.5. [13] If a k-star $St(\alpha_1, \alpha_2, ..., \alpha_k)$ is Skolem graceful then either some α_i is even or $k \equiv 0$ or $1 \pmod{4}$.

Theorem 1.6. [9, 17] All 4-stars $St(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ are Skolem graceful.

Theorem 1.7. [13] All 5-stars are Skolem graceful.

Lee, Quach and Wang [14] showed that the disjoint union of the path P_n and the star of size m is Skolem graceful if and only if n=2 and m is even or $n\geq 3$ and $m\geq 1$. Harary and Hsu [12] studied Skolem graceful graphs under the name of node-graceful graphs. Frucht [10] has shown that $P_m\cup P_n$ is Skolem graceful when $m+n\geq 5$. Bhat-Nayak and Deshmukh [7] have shown that $P_{n_1}\cup P_{n_2}$ is Skolem graceful for all $n_1,n_2\geq 3$. In general, they have proved that $P_{n_1}\cup P_{n_2}\cup\cdots\cup P_{n_i},\ i\geq 4$, is Skolem graceful.

Theorem 1.8. [6, 18] Let S = (G, s) be any (p, m, n)-signaph with G = (V, E) as its underlying graph. If S is Skolem graceful then

- (i) $p \ge m + n + 1$ and
- (ii) it is possible to partition V(S) into two subsets V_o and V_e such that the numbers m⁺(V_o, V_e) and m⁻(V_o, V_e) of positive and negative edges of S respectively, each of which joins a vertex of V_o with one of V_e, are given by m⁺(V_o, V_e) = [m+1/2] and m⁻(V_o, V_e) = [n+1/2].

Theorem 1.9. [6, 18] The sigraph on k copies of K_2 is Skolem graceful if and only if one of the following statements holds:

- (1) $k \equiv 0 \pmod{4}$ and the number of negative edges is even
- (2) $k \equiv 1 \pmod{4}$
- (3) $k \equiv 2 \pmod{4}$ and the number of negative edges is odd.

In this paper we discuss about the Skolem gracefulness of a sigraph on k-star $St(r_1, r_2, \ldots, r_k)$. Let the central vertices of $St(r_1, r_2, \ldots, r_k)$ be labeled as c_i , $1 \le i \le k$. Whenever c_i receives an odd label it is called *odd* c_i and *even* c_i is defined similarly.

2 Main Results

In the following theorem we obtain a necessary condition for a sigraph on $St(r_1, r_2, ..., r_k)$ to be Skolem graceful.

Theorem 2.1. If a sigraph on $St(r_1, r_2, ..., r_k)$ is Skolem graceful then one of the following conditions holds:

- (1) If every r_i is odd then
- (i) $k \equiv 0 \pmod{4}$ and n is even or
- (ii) $k \equiv 1 \pmod{4}$ or
- (iii) $k \equiv 2 \pmod{4}$ and n is odd.
- (2) If every r_i is even then
- (i) $k \equiv 0 \pmod{4}$ and n is even (odd) if the number of odd c_i 's is even (odd) or
- (ii) $k \equiv 1 \pmod{4}$ and n is even (odd) if number of odd c_i 's is odd (even) or
- (iii) $k \equiv 2 \pmod{4}$ and n is even (odd) if number of odd c_i 's is odd (even) or
- (iv) $k \equiv 3 \pmod{4}$ and n is even (odd) if the number of odd c_i 's is even (odd).
- (3) If the number of odd r_i 's is odd then
- (i) $k \equiv 0, 1 \pmod{4}$ and the number of odd c_i 's is even or
- (ii) $k \equiv 2$ or $3 \pmod{4}$ and the number of odd c_i 's is odd.

Proof. Let us assume that the sigraph S on $St(r_1, r_2, \ldots, r_k)$ is Skolem graceful through a Skolem graceful labeling ψ . Let the central vertices of S be labeled by c_i , where $1 \leq i \leq k$. Let $a_{i,1}, a_{i,2}, \ldots, a_{i,\alpha_i}$ be the labels of the vertices adjacent to c_i such that $a_{i,j} > c_i$ for $1 \leq j \leq \alpha_i$, and let $b_{i,1}, b_{i,2}, \ldots, b_{i,\beta_i}$ be the labels of the vertices adjacent to c_i such that $b_{i,j} \leq c_i$ for $1 \leq j \leq \beta_i$ where $\alpha_i + \beta_i = r_i$.

The order and size of S are given by $p=r_1+r_2+\cdots+r_k+k=q+k$, and $q=|E|=r_1+r_2+\cdots+r_k$. By definition, the vertex labels are $1,2,\ldots,q+k$, the positive edges receive the labels $1,2,\ldots,m$ and the negative edges receive the labels $1,2,\ldots,n$. Then

$$\sum_{v \in V(S)} \psi(v) = 1 + 2 + \dots + q + k = \sum_{i=1}^{k} c_i + \sum_{i=1}^{k} \sum_{j=1}^{\alpha_i} a_{ij} + \sum_{i=1}^{k} \sum_{j=1}^{\beta_i} b_{ij}$$

Hence

$$\frac{(q+k)(q+k+1)}{2} = \sum_{i=1}^{k} c_i + \sum_{i=1}^{k} \sum_{j=1}^{\alpha_i} a_{ij} + \sum_{i=1}^{k} \sum_{j=1}^{\beta_i} b_{ij}$$
 (1)

Also
$$\sum_{e \in E(S)} g_{\psi}(e) = \sum_{e \in E^{+}(S)} g_{\psi}(e) + \sum_{e \in E^{-}(S)} g_{\psi}(e)$$
$$= \sum_{i=1}^{k} (\sum_{j=1}^{\alpha_{i}} (a_{ij} - c_{i})) + \sum_{i=1}^{k} (\sum_{j=1}^{\beta_{i}} (c_{i} - b_{ij})).$$
Hence
$$\frac{m(m+1)}{2} + \frac{n(n+1)}{2} = \sum_{i=1}^{k} (\sum_{j=1}^{\alpha_{i}} (a_{ij} - c_{i})) + \sum_{i=1}^{k} (\sum_{j=1}^{\beta_{i}} (c_{i} - b_{ij}))$$

Since q = m + n, the above equation can be written as

$$\frac{(q-n)(q-n+1)}{2} + \frac{n(n+1)}{2} = \sum_{i=1}^{k} (\sum_{j=1}^{\alpha_i} (a_{ij} - c_i) + \sum_{i=1}^{k} (\sum_{j=1}^{\beta_i} (c_i - b_{ij}))$$
 (2)

By summing (1) and (2) we get,

$$\frac{(q+k)(q+k+1)}{2} + \frac{(q-n)(q-n+1)}{2} + \frac{n(n+1)}{2}$$

$$=\sum_{i=1}^k c_i + \sum_{i=1}^k \sum_{j=1}^{\alpha_i} a_{ij} + \sum_{i=1}^k \sum_{j=1}^{\beta_i} b_{ij} + \sum_{i=1}^k (\sum_{j=1}^{\alpha_i} (a_{ij} - c_i)) + \sum_{i=1}^k (\sum_{j=1}^{\beta_i} (c_i - b_{ij}))$$

On simplification, we get

$$q(q+k+1-n)+n^2+\frac{k(k+1)}{2}=\sum_{i=1}^k(1+r_i)c_i+2\sum_{i=1}^k(\sum_{j=1}^{\alpha_i}a_{ij}-\alpha_ic_i)$$
 (3)

Case 1. All r_i 's are odd.

Then
$$q(q+k+1-n)+n^2+\frac{k(k+1)}{2} \equiv 0 \pmod{2}$$
. (4)

If $k \equiv 3 \pmod{4}$, then q is odd whence by substituting in (4) we get a contradiction.

If $k \equiv 0 \pmod{4}$, then since all r_i 's are odd, q must be even and hence from (4) n must be even.

If $k \equiv 1 \pmod{4}$, then, q is odd, so that n is either even or odd.

Also if $k \equiv 2 \pmod{4}$, then, q is even and it follows that n is odd. Case 2. All r_i 's are even.

Then the sum $\sum_{i=1}^{\kappa} (1+r_i)c_i$ in the right hand side of (3) is even or odd according as the number of odd c_i 's is even or odd. Hence the results given in statement (2) of the theorem follow.

The proof is similar if the number of odd r_i 's is odd.

Conjecture 2.2. Every sigraph on $St(r_1, r_2, ..., r_k)$ satisfying the necessary conditions stated in Theorem 2.1 is Skolem graceful.

It follows from Theorem 2.1 that any sigraph on 1- star is Skolem grace-ful. We now proceed to investigate the Skolem gracefulness of any sigraph on a 2-star.

Theorem 2.3. If neither r_1 and r_2 are both odd nor n is such that $1 < n < \frac{r_1+r_2}{2}$, then any sigraph on $St(r_1, r_2)$ is Skolem graceful.

Proof. To prove the above theorem it is sufficient to provide a Skolem graceful labeling to any sigraph on $St(r_1, r_2)$ in each of the cases for the values of r_1 and r_2 excepting the values as specified in the statement of the theorem.

Towards this end, let ψ be a vertex labeling from the set of positive integers $\{1, 2, ..., |V|\}$. Then, there arise the following cases:

If a sigraph S on $St(r_1, r_2)$ is homogeneous then the proof follows from Theorem 1.3 [16].

Hence, we assume that S is a heterogeneous sigraph on $St(r_1, r_2)$. Let the central vertices of $St(r_1, r_2)$ be c_1 and c_2 , let $a_1, a_2, \ldots, a_{r_1}$ and $b_1, b_2, \ldots, b_{r_2}$ be the pendant vertices adjacent to c_1 and c_2 respectively. We first consider the case where one component of S is all-negative and the other is all-positive. Then the numbering ψ defined by

$$\psi(c_1) = 1;$$

 $\psi(c_2) = r_1 + 2;$
 $\psi(a_i) = i + 1, \quad 1 \le i \le r_1;$ and
 $\psi(b_j) = r_1 + 2 + j, \quad 1 \le j \le r_2.$

is a Skolem graceful labeling of the sigraph (e.g., see Figure 1).

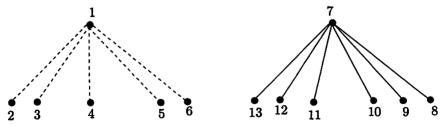


Figure 1. Example of Skolem graceful sigraph on $St(r_1, r_2)$.

Now suppose each component of S is heterogeneous. We have the following cases.

Case 1. r_1 and r_2 are both even.

Let the number of negative edges in K_{1,r_1} and K_{1,r_2} be $n_1 = \frac{r_1}{2} - k_1$ and $n_2 = \frac{r_2}{2} - k_2$ for some positive integers k_1 and k_2 . Let $r_2 = r_1 + 2x$, where x is some positive integer. We define a numbering as follows:

$$\begin{array}{l} \psi(c_1)=1;\\ \psi(c_2)=r_1+k_1+k_2+x+2;\\ \psi(a_i)=i+1,\ \ 1\leq i\leq \frac{r_1}{2};\\ \psi(a_i)=k_1+k_2+x+1+i,\ \ \frac{r_1}{2}+1\leq i\leq r_1;\\ \psi(b_j)=\frac{r_2}{2}+1+j,\ \ 1\leq j\leq k_1+k_2+x\ \text{and}\\ \psi(b_j)=r_1+2+j,\ \ k_1+k_2+x+1\leq j\leq r_2. \end{array}$$

It is easy to verify that the numbering so defined is a Skolem graceful labeling of the sigraph (e.g., see Figure 2).

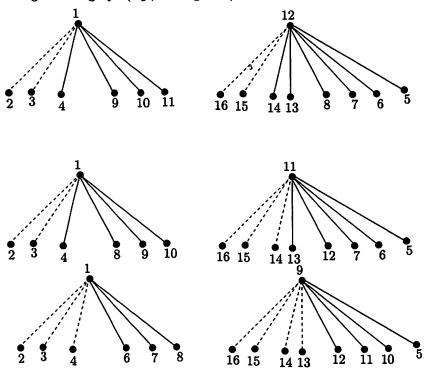


Figure 2. Three examples of Skolem graceful sigraphs on $St(r_1, r_2)$.

If $r_1 = r_2$ and $n = \frac{r_1}{2}$ in each copy of the signed star, then, we define a numbering as follows:

$$\psi(c_1) = 1;$$

 $\psi(c_2) = r_1 + 2;$
 $\psi(a_i) = i + 1, \quad 1 \le i \le r_1;$ and
 $\psi(b_j) = r_1 + 2 + j, \quad 1 \le j \le r_2.$

It is easy to verify that the numbering so defined is a Skolem graceful labeling of the sigraph (e.g., see Figure 3).

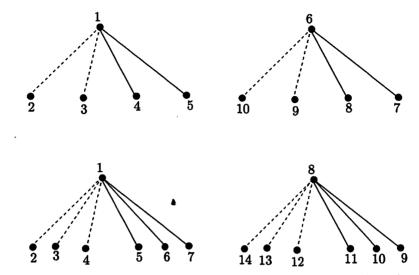


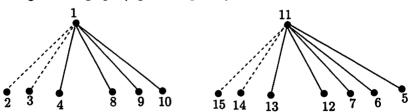
Figure 3. Two examples of Skolem graceful sigraphs on $St(r_1, r_2)$.

Case 2. r_1 is even and r_2 is odd.

Let the number of negative edges in K_{1,r_1} and K_{1,r_2} be $n_1 = \frac{r_1}{2} - k_1$ and $n_2 = \lfloor \frac{r_2}{2} \rfloor - k_2$ for some positive integers k_1 and k_2 . Let $r_2 = r_1 + 2x - 1$ where x is some positive integer. Then, we define a numbering of S as follows:

$$\begin{array}{l} \psi(c_1)=1;\\ \psi(c_2)=r_1+k_1+k_2+x+2;\\ \psi(a_i)=i+1,\ \ 1\leq i\leq \frac{r_1}{2};\\ \psi(a_i)=k_1+k_2+x+1+i,\ \ \frac{r_1}{2}+1\leq i\leq r_1;\\ \psi(b_j)=\frac{r_1}{2}+1+j,\ \ 1\leq j\leq k_1+k_2+x\ \mathrm{and}\\ \psi(b_j)=r_1+2+j,\ \ k_1+k_2+x+1\leq j\leq r_2. \end{array}$$

It is easy to verify that the numbering so defined is a Skolem graceful labeling of the sigraph (e.g., see Figure 4).



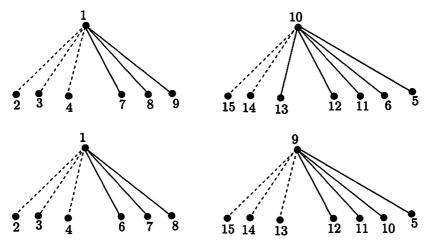


Figure 4. Three examples of Skolem graceful sigraphs on $St(r_1, r_2)$.

Case 3. Both r_1 and r_2 are odd.

If n = 1, we define a numbering as follows:

$$\begin{array}{l} \psi(c_1) = 1; \\ \psi(a_i) = i+1, \quad 1 \leq i \leq \lceil \left(\frac{r_1}{2}\right) \rceil; \\ \psi(a_i) = r_2+i, \quad \lceil \left(\frac{r_1}{2}\right) \rceil + 1 \leq i \leq r_1; \\ \psi(c_2) = r_1+r_2+2; \\ \psi(b_j) = \lceil \left(\frac{r_1}{2}\right) \rceil + 1+j, \quad 1 \leq j \leq r_2-1 \text{ and } \\ \psi(b_j) = r_1+r_2+1. \end{array}$$

It is easy to verify that the numbering so defined is a Skolem graceful labeling of the sigraph S (e.g., see Figure 5).

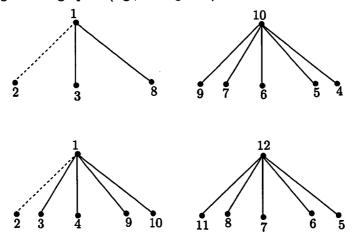


Figure 5. Two examples of Skolem graceful sigraphs on $St(r_1, r_2)$.

If $r_1 = r_2 = r$ and $n_1 = \lfloor \frac{r}{2} \rfloor$, $n_2 = \lceil \frac{r}{2} \rceil$, we define a numbering as follows:

$$\psi(c_1)=1;$$

$$\psi(a_i)=i+1, \quad 1\leq i\leq r_1;$$

$$\psi(c_2) = r_1 + 2$$
; and $\psi(b_j) = r_1 + 2 + j$, $1 \le i \le r_2$.

It is easy to verify that the numbering so defined is a Skolem graceful labeling of the sigraph S (e.g., see Figure 6).

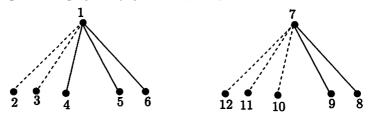


Figure 6. Skolem graceful sigraph on $St(r_1, r_2)$.

Thus the proof is seen to be complete.

Note that when r_1 and r_2 are both odd and number of negative edges in each copy is more than one but less than $(\frac{q}{2})$, then the Skolem gracefulness of 2-signed star is not yet known but seems to be true.

We have started investigating the Skolem gracefulness of disjoint union of k signed caterpillars. We have obtained some preliminary results, which will be reported in a subsequent paper.

References

- [1] J. Abrham, Graceful 2-regular graphs and Skolem sequences, *Discrete Math.*, **93**(1991), 115-121.
- [2] B.D. Acharya, (k, d)-graceful packings of a graph, In. Proc. of Group Discussion on graph labeling problems (Eds.: B.D. Acharya and S.M. Hegde) held in Karnataka Regional Engineering College, Surathkal, during August 16-25, 1999.
- [3] M. Acharya and T. Singh, Graceful signed graphs, Czech. Math. Journal, 54(2) (2004), 291-302.
- [4] M. Acharya and T. Singh, Graceful signed graphs: II. The case of signed cycle with connected negative sections, *Czech. Math. Journal*, 55(130)(1)(2005), 25-40.

- [5] M. Acharya and T. Singh, Graceful signed graphs: III. The case of signed cycle in which negative sections form maximum matching, Graph Theory Notes of New York, XLV(2003), 11-15.
- [6] M. Acharya and T. Singh, Skolem graceful sigraphs, Extended Abstract in: Electronic Notes in Discrete Mathematics, 15(2003), 9-10; full text paper to be appear in Uitlitas Mathematica.
- [7] V.N. Bhat-Nayak and U.N. Deshmukh, Skolem graceful labelings of unions of paths, Preprint.
- [8] G.T. Chartrand, *Graphs as Mathematical Models*, Prindle, Weber and Schmidt, Inc., Boston, Massachusetts, 1977.
- [9] G. Denham, M.G. Leu and A. Liu, All 4-stars are Skolem graceful, Ars Combin., 34 (1993), 183-191.
- [10] R.W. Frucht, On mutually graceful and pseudograceful graphs, SCI-ENTIA series A: Mathematical Sciences, 4,(1991), 31-43.
- [11] J.A. Gallian, A dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, #6, (2007), 1-180.
- [12] F. Harary and D. Hsu, Node-graceful graphs, Comput. math. Appl., 15 (1988), 291-298.
- [13] S.P.M. Kishore, Graceful Labelings of Certain Disconnected Graphs, Ph.D.Thesis, I.I.T. Madras (1996).
- [14] S.M. Lee, L.H. Quach and S.S. Wang, Skolem gracefulness of graphs which are union of paths and stars, *Congresses Numer.*, 61(1988), 59-64.
- [15] S.M. Lee and S.C. Shee, On Skolem graceful graphs, *Discrete Math.*, 93 (1991), 195 - 200.
- [16] S.M. Lee and I. Wui, Skolem gracefulness of 2-stars and 3-stars, Bulletin of Malaysian Math. Society, 10(1987), 15-20.
- [17] S.M. Lee, I. Wui and S.S. Wang, Skolem gracefulness of 4-stars, Cong. Numer., 62 (1988), 235-239.
- [18] T. Singh, Advances in the Theory of Signed Graphs, Ph.D. Thesis, University of Delhi, Delhi, 2004.
- [19] Th. Skolem, On certain distribution of integers in pairs with given differences, *Math. Scand.*, 5 (1957), 57-68.

- [20] D.B. West, Introduction to Graph Theory, Prentice Hall Publication, Toronto, 1996.
- [21] T. Zaslavsky, Signed graphs, Discrete Appl. Math., 4 (1)(1982), 47-74.
- [22] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas (Manuscript, prepared with Marge Pratt), *Electronic J. Combinatorics*, 8 (1) (1998), Dynamic surveys # 8, pp. 124.