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Abstract

Many approaches to drawing graphs in the plane can be formu-
lated and solved as mathematical programming problems. Here, we
consider only drawings of a graph where each edge is drawn as a
straight-line segment, and we wish to minimize the number of edge
crossings over all such drawings. Some formulations of this problem
are presented that lead very naturally to other unsolved problems,
some solutions, and some new open problems associated with draw-
ing nonplanar graphs in the plane.
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1 Introduction

At least since 1954 with the publication of the paper by Zarankiewicz that
attempted to solve Turan’s Brick Factory Problem [45], the study of cross-
ing numbers of graphs has continued to progress both in theory and for
applications. The original problem remains unsolved; however, engineers
and entrepreneurs have developed an entire scientific and computational
culture centered on the applications of crossing numbers to the design of
printed circuit boards and VLSI circuits. Regarding theoretical approaches
the results are scattered. The theory of graphs that can be drawn with
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no crossings (i.e., planar graphs) is well understood, and there are nu-
merous efficient algorithms for determining that fact and exploiting it to
construct drawings such as VLSI layouts, information diagrams, flowcharts,
etc. However, minimizing the number of crossings is known to be NP-hard,
and exact solutions are exceedingly difficult to obtain (for example, Turan’s
Brick Factory Problem).

This paper concerns drawings of a simple graph G = (V, E) with vertex
set V and edge set E in the plane where the vertices are mapped to distinct
points. We are mainly concerned with good drewings; these are drawings
where each edge is mapped to a homeomorphic image of the closed interval
[0,1) with its ends as endpoints. The interior (called an arc) contains
no endpoint, arcs incident with a common endpoint do not intersect, and
no two arcs intersect in more than one point. Any drawing where the
edges are straight-line segments is called a rectilinear drawing. The goal
of (rectilinear) crossing minimization is to find a (rectilinear) drawing of G
with as few edge crossings as possible. This minimum value is called the
(rectilinear) crossing number cr(G) (respectively, &F(G)) of G. Both of the
corresponding decision problems are known to be NP-hard. Moreover, the
crossing number problem is known to be NP-complete [20], but so far no
one has determined whether the rectilinear crossing number problem is in
NP. This is somewhat surprising, since it is much easier to determine if two
straight-line segments intersect than it is to determine if two curved lines
do.

This paper presents some new results on rectilinear crossing minimiza-
tion. In Section 2 we construct a mathematical formulation of the problem
in terms of a linear objective function with simple quadratic constraints. In
Section 3 we give a comparative sizing of the problem for various graph fam-
ilies in an attempt to provide some evidence for ranking problems according
to how difficult they might be to solve computationally. In an earlier paper
[15] we predicted that as more advanced techniques were developed and
applied to the formulation given there, some of these problems would be
solved. Indeed they have, and so we return to this problem to clean up
some details, explain the connection to current ongoing research by others,
and to identify additional research topics. One of these topics is the screen
size of a graph which will be introduced in Section 4. Finally, in Section 5
we conclude with some related open problems.

2 Quadratic Constraints Formulation
In this section we construct a mathematical programming formulation of

the rectilinear crossing number problem where, for a given graph G on n
vertices, most of the variables are binary, they appear only in linear form,
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and the 2n continuous variables appear in quadratic form. Of course, many
mathematical problems have useful mathematical programming formula-
tions (for example, see [34] and [44] for related results), but until now no
such formulation has appeared for the rectilinear crossing number problem.

For any rectilinear drawing of a graph G = (V, E) with V = {1,2,...,n}
we define Area2(i, j, k) = Ziyj —Yi%; — Ti¥k+YiZTk+T;Yx —Y;Tx Where (i, 3:),
(%;,9;), (zk, yx) are the coordinates for the vertices i, j, k, respectively. It’s
an old exercise in Analytic Geometry to prove that Area2(3, j, k) is twice the
signed area determined by the triangle ijk where Area2(, j, k) is positive
if vertex k lies to the left of line ij, negative if it lies to the right, and zero
if & lies on the line 7j. When we speak of a line 5 (not a line segment) we
mean the two-way infinite directed line determined by the ordered pair of
vertices i, 7. We must traverse the line %, j so that i is encountered before j.
Thus, the order of the triple i, j, & is important.

For any graph G, let I(G) denote the set of independent (i.e., disjoint)
edge sets of size two. We wish to solve the following problem which we call
the Quadratic Constraints Formulation QCF2(G) for G, or simply QCF2
when there is no particular graph G under consideration.

Minimize E Cijkl
1<i<j,i<k<l,
{i5.kl}EI(G)

subject to
Area2(i, A k) < M(l - c,'jk[) + Mtijkl -1 (1)
—Area2(i,j,l) < M(L-ciyju)+ Mtju—-1 2
—Area2(i,j,k) < M(1—ciju) + M(1—tiji) - 1 )]
Area2(i,j,l) < M(Q1—ciju) +M(Q —ti) — 1 (4)
Area2(k,l,i) < M(Q1 - cijir) + Mpiji — 1 (5)
—Area2(k,l,5) < M(Q - ciju) + Mpijr — 1 (6)
—Area2(k,l,i) < M(1—ciju)+MQ - pyu)—-1 (7
Area2(k,l,j) < M(Q —ciju)+ M1 —pijr)—1 8)
AreaZ(i, 7 k) < qukz + Mt,'jkz + Mpijk[ -1 (9)
Area2(i,j,l) < Meciju + Mtiju + Mpiju — 1 (10)
—Area2(i,j, k) < Meiju + M(1 = tiji) + Mpijig — 1 (11)
—Area2(i,j,l) < Meiji + M1 — tijr) + Mpiju — 1 (12)
Area2(k,l,1) < Meiju + Mt + M(1 — pijr) — 1 (13)
Area2(k,l,j) < Meiju + Mty + M(1 — pijr) = 1 (14)
—Area2(k,l,i) < Mcyju + M@1- tijkz) +M(1- Pijkl) -1 (15)
—Area2(k,l,j) < Mciju+ M(1 - tiju) + M1 -piju)—1 (16)
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where the variables i, j, k, ! satisfy {ij,k€} € I(G),1 <i< ji<k <,
the functions ¢, t,p are 0-1 binary variables, and M is a sufficiently large
integer constant.

Now we explain why QCF2 determines the rectilinear crossing number
and produces an optimal rectilinear drawing of any graph. Notice first
that the —1 in the functional constraint forces the area determined by
any three points forming a 3-cycle to be nonzero, actually at least 1/2 in
absolute value. Rescaling can be used to make all nonzero areas satisfy this
condition, and so the —1 really only ensures that we never have an edge
passing through a vertex, and for complete graphs this forces the points
to be in general position (not considered in [15]). This is known as a good
drawing (see 18], [23], [30]). So, the function ¢;j; counts the number of
times edges ¢j and k! cross (i.e., 0 or 1), and the objective function counts
the total number of crossings for the drawing.

Suppose ¢ijxi = 1. Then constraints (9)-(16) become irrelevant, and
constraints (1)-(4) ensure that points k and I lie on opposite sides of the line
ij. Similarly, constraints (5)-(8) ensure that points ¢ and j lie on opposite
sides of the line kl. Therefore, the line segments ¢j and kI must cross.

Now suppose c¢;jxi = 0. Then constraints (1)-(8) are irrelevant, and
either pijr1 = 0 which ensures that points k and ! lie on the same side of
the line ij (see constraints (9)-(12)) or p;jri = 1 which ensures that points
i and j lie on the same side of the line k! (see constraints (13)-(16)). Thus,
ij and kl do not cross.

3 Comparative Sizing for Graph Families

Research in integer and nonlinear programming provides some hope that
some useful instances of QCF2 can be solved. One breakthrough was made
by Crowder, Johnson and Padberg [14] whose paper won the Lanchester
Prize for solving binary integer programming (BIP) problems with up to
2,756 variables and no special structure. Roy and Wolsey [40] succeeded in
solving mixed BIPs with nearly 1,000 binary variables and an even larger
number of real variables. Their paper won the Orchard-Hays Prize. In
this section we provide some data, such as the number of binary and real
variables and the number of functional constraints in QCF2, on certain
families of graphs, to help us decide which of these instances can be solved
now or in the foreseeable future. Also, we hope that implementation experts
in the field can somehow take advantage of the special structure and ranking
of problems revealed here so that the newest algorithmic developments can
be applied to solve these problems. In fact since our earlier paper [15]
on these families of graphs, several of the problems thought then to be
intractable have now been solved using methods (order types) which are
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essentially equivalent to QCF2 (see [4] and [1}).

Let 7(G), b(G), f(G) denote the number of real variables, the number
of binary variables, and the number of functional constraints in QCF2(G),
respectively. Also, let i(G) denote the number of matchings of size two in
G (ie., i(G) = |I(G)|). Then r(G) = 2n, b(G) = 3i(G) and f(G) = 16i(G).
Letting e denote the number of edges we have

i(G) = (e +e— T &(2) an

z€V

from which it follows that
i(Kn) = n(n—1)(n—2)(n —3)/8 = 3(2)

Drawings of these graphs have been investigated extensively in the liter-
ature because of various theoretical implications and applications to VLSI
and computer network design.

Some believe that eF(K,) > cr(Ky) for n > 10; however, no proof has
been published. Of course for rectilinear drawings, putting the vertices of
K., on the circumference of a circle creates the maximum number (3) of
crossings. The best upper bounds have been established by producing a
drawing, as Singer did in an unpublished manuscript (see [19]) to show
@r(K10) < 62. In the same paper he showed &7 (K1) 2> 61. In 2001 the
result 7(Kp) = 62 was proved by two independent groups of researchers,
one [13] by a purely combinatorial argument and the other [2] using a
computational approach requiring the enumeration of all inequivalent point
set configurations (i.e., order types, see Section 5) of size 10 . The value of
r(K,) for n > 11 is unknown. It is known that the parity of the number
of crossings in all drawings of K, is the same whenever n is odd (see [7),
(28], and [31]), and so &F(K11) # 101. Guy[25] proved that cr(Km,) =

(MVer(Ka) / (™=4) for m > n > 5, and this result provides lower bounds
for K;; and K2 of 100 and 150, respectively. However, the exact values
were found later by enumerating all inequivalent point sets of size 11 [3].
The exact value of cr(K,,) is known for all n < 17 [4]. The bounds list above
the line in the following chart are actually known, exact values. Those listed

below the line are upper bounds obtained from Aichholzer’s web site [1].
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n | r(K,) | 6(K,) | f(K.) | Best Bound for ¢r(K,,)
4 8 9 48 0

5 10 45 240 1

6| 12| 13| 70| 3 [23
7

8

4| 315 1680 | 9 [23
16| 63| 3360| 19 (23]
9 18| 1134 | 6048 | 36 [23]
10 20 | 1890 | 10080 | 62 [13], 2]
11 22 | 2070 | 15840 [ 102 ([3]
12 24 | 4455 | 23760 | 153 [3]
13 26 | 6435 | 34320 | 220 [4]
14 28 | 9009 | 48048 | 324 [4]
15 30 | 12285 | 65520 | 447 [4]
16 32 | 16380 | 87360 | 603 [4]
17 34 | 21420 | 114240 | 798 [4]
18 36 | 27540 | 146880 | 1029 [1)
19 38 | 34884 | 186048 | 1318 [1]
20 40 | 43605 | 232560 | 1657 [1]
21 42 | 53865 | 287280 | 2055 {1]
22 44 | 65835 | 351120 | 2528 [1]

The following equation known as Zarankiewicz’s Conjecture has been
solved only for min{p,q} < 6 by Kleitman [30] and for K77 and K7 ¢ by
Woodall [46].

& (Kp,q) = cr(Kp,q) = [§J lf’_;lj l%J [%J

The question “GF(Kp,q) = cr(Kp,q)?” could be treated as a separate prob-
lem. Because of a counting argument this leaves K711 and Ky 9 as the two
smallest unsolved cases. From Equation 17 we see that

i(Kpa) = o 1Ga - /2 =2(3) (9)

which is used to construct the following table.

r(Kp,q) | 8(Kpq) | f mp,q) Best Bounds on &r(Kp,q)
12 54 288 1
16 216 1152 4

20 600 | 3200 16 [30]
24| 1350 7200| 36 [30]
28 | 2646 | 14112 81 [46]
32| 4704 | 25088 | 144 [46]
36 | 6930 | 36960 | <175
3| 7776 | 41472 | <256

—
W =00 3 G b WIQ

© =300 1 O b WS
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The main conjecture on the crossing number of the product C, x C,
is due to Harary, Kainen and Schwenk [27] and states that cr(Cp x Cy) =
(p — 2)q for p < q. For a survey on this problem including a discussion
of the main proof techniques, see Myers [36]. The conjecture has been
verified for p < 7. The drawings used to establish the upper bound for
the conjecture are easy to transform into a rectilinear drawing, and so
e (Cp x Cy) < (p—2)q for p < g. Recently, both Bruce Richter and Gelasio
Salazar commented (personal communication) that the case Cg x Cg can
be settled using existing techniques, but the proof would require at least
100 pages! Our sizing of this problem is based on the formula

i(Cp X Cy) = pg(2pq — 7)
from Equation 17 and appears in the following table.

p | 7(C, x Cp) [ 5(Cp x Cp) | F(Cp X Cp) | Best Bounds on ¢r(Cp X Cp)
3 18 297 1584 | 3 [27)

4 32 1200 6400 | 8 [17]

5 50 3225 17200 | 15 [37]

6 72 7020 37440 | 24 [5]

7 98 13377 71344 35 [6]

8 128 23232 123904 | <48 [27]

9 162 37665 200880 | <63 (27]

Let Q, denote the p-dimensional cube; this is the graph whose vertex
set consists of all possible p-tuples of 0’s and 1’s where two vertices are
adjacent if and only if they differ in exactly one coordinate. Eggleton and
Guy (18] announced the inequality

5 P Iﬂ p—2
@) < o - | T2 | 2,
but an error was found in the construction [24]. So this upper bound is
now only a conjecture. In fact, they conjecture that equality holds, and (if
true) this would imply cr(Qs) = 56 and cr(Q,) = 352. So far, Madej (33
has proved the best upper bound er(Q,) < 4°/6, and Sykora and Vrto [43]
have proved the best lower bound cr(Qp) > 47/20 — (p? + 1)2P~1. These
bounds are useless for small p. Equation 17 gives

#(Qp) =2P"2p(2P 'p—2p+1)

from which we construct the following table.

131




™Qp) | 8(Qp) | F(Qp) | Best Bounds on cF(Q,)
16 126 672 10
32| 1200 6400 |8 (17,118
64 | 8520 | 45440
128 | 52128 | 278016

S Ut wilts

Let C, denote the graph obtained from K, by deleting a hamiltonian
cycle; that is, Cy, is the complement of C,. Guy and Hill [26] determined
the exact values of cr(C,, ) for n < 10 and &(C, ) for n < 9. In general,
they showed that

er(Cn) < 5147(11 ~3)%(n — 5)2 for n odd
and 1

Equality is conjectured in both cases. Application of Equation 17 gives the
formula

n(n — 4)(n — 6)2 for n even.

i(Cn) = %n(n —3)(n? - Tn + 14)
which is used to construct the following table.

n | Cqr) | B(Cs) | f(Cr) | Best ‘Bound for & (Cn )
5 10 15 80 0

6 12 54 288 0

7 14| 47| 784 1 [26]

8 16 330 1760 2 [26)

9 18| 648 3456 9 [26]
10 20 | 1155 | 6160 =15 [26]
11 22 1914 | 10208 | > 36 [26)

Jendrol’ and M. Séerbové [29] proved that cr(K)3 X P,) = n for n > 2.
Both Beineke and Ringeisen (see [10]) and Jendrol’ and Scerbov [29] proved
that er(K; 3 x Cp)=1forn=3,2forn=4,4forn=25,and n forn > 6.
The crossing numbers of the products of cycles with all other graphs of
orders 3 and 4 were determined earlier by Beineke and Ringeisen (see [9]).

Of the numerous unsolved instances of crossing number problems we
have presented in the previous five tables only two instances from five dif-
ferent families of graphs. It seems reasonable that the formulations with
fewer binary variables should be easier to solve. Based on this criterion we
obtain the following ordering of these ten graphs from easiest to hardest,
where two solved instances K13, K12 are included just for comparison.

Ci0,Cu » K11, K12, K7,11, Ko,9, @5, Cs x Cs,Co x Co, Q6
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4 Grid Drawings

Besides having just a few crossings, other aesthetic criteria for a nice draw-
ing of a graph include small area and a large angular resolution (i.e., the
minimum angle between incident edges) (see [38]). All of them are believed
to be computationally difficult to solve; for example, as mentioned earlier, it
is NP-hard to decide whether a graph has a rectilinear drawing with at most
a prescribed number of crossings [20]. Further, minimizing the number of
crossings seems to conflict with the goal of maximizing the angular resolu-
tion [21]. Let the size of a grid drawing of a graph G be the number of nodes
on the side of the smallest square grid that encloses the drawing, and let the
screen size s(G) of G be the smallest such number over all crossing minimal
drawings of G. For example, s(K1,8) = 3 and s(Ks) = 4 = 3(K33). If G
is planar, then s(G) < n [41]. However, the problem of deciding whether
a graph has a crossing minimal drawing of screen size bounded above by a
prescribed number seems to be very difficult, even for planar graphs (see

[32))-

5 Conclusions and Open Problems

It may seem that the crossing number and the rectilinear crossing number
are very closely related; however in this section we summarize by pointing
out some differences between these two parameters and some open problems
on the rectilinear crossing number. Along the way we consider other ap-
proaches to rectilinear crossing minimization. First, consider the simulated
annealing approach taken in [16] to minimize the number of crossings in a
rectilinear drawing of a graph. Starting with some initial drawing, nodes
were repeatedly moved to random locations, and the drawing was saved
if the number of crossings was reduced. This approach produced the best
results known at that time. A modification of that approach may still be
competitive. For example, if we use an integer lattice so that all coordinates
are integers, we can search for an optimal location to place a given vertex
k keeping all other vertices fixed. The corresponding formulation of QCP2
reduces to an integer program (IP) with only two nonbinary variables, zx
and y, Without the integer lattice,we simply have a mixed BIP where z\
and yj. are the only nonbinary variables.

There are several examples of graphs G with &(G) > cr(G) . Is the
difference &7(G) — cr(G) unbounded? Yes. In (12] the authors showed that,
for every integer k > 4, there is an infinite family of graphs of crossing
number k, but unbounded rectilinear crossing number. On the other hand,
they prove that any graph G for which cr(G) < 3 must also satisfy cr(G) =
@ (G), an extension of the classic theorem of Steinitz and Wagner (also
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called Fary’s theorem) that every planar graph has a rectilinear embedding
in the plane.

Fixing the binary variables in QCF2(G) except the c;;x:’s reduces to the
problem of deciding whether, for the given graph G , a set of coordinates
exists for a rectilinear drawing of G that is consistent with these constraints.
Call this problem the QCF2 Realization Problem. For a configuration of
points py, P2, . . ., Pn in general position, the order type of the configuration
is a mapping that assigns to each ordered triple (p:,p;,px) a sign + or
— depending on whether p; lies to the right or left of the oriented line
pipj. This is precisely what is accomplished by our use of the signed area
function Area2(i,j,k) Hence, the QCF2 realization problem is the same
as the problem of realizing a prescribed order type which is discussed by
other authors (for example, see [4]). This problem turns out to be NP-
hard; however even more is true. A pseudoline is a homeomorph in R? of
the closed unit interval. In an arrangement of pseudolines every two lines
meet at exactly one interior point where they must cross. A rectilinear
realization of an arrangement is an arrangement where each pseudoline is
a straight-line segment, and an arrangement is said to be stretchable if
such a realization exists. Shor [42] proved that the problem of determining
whether a pseudoline arrangement is stretchable is NP-hard. This also
follows from a paper by Mnev [35] which implies the stronger result that
deciding stretchability is equivalent to the existential theory of the reals.
Bienstock [11] proved that any given arrangement of p pseudolines can
be forced to occur in every crossing minimal drawing of an appropriate
graph, with O(p®) edges and 5p(p — 1) crossings by using some results of
Goodman, Pollack, and Sturmfels {22] on arrangements whose straight-
line realizations require vertex coordinates with exponentially many bits.
Therefore, assuming that the coordinates must be stored and that drawing a
graph consumes time proportional to the size of the drawing, this yields that
there is no polynomial-time algorithm for producing a rectilinear drawing
of a graph which achieves the rectilinear crossing number.

For the following questions we do not make the assumptions mentioned
above.

Open Problem 1. Is the QCF2 Realization Problem NP-hard, even
when restricted to complete graphs?

Open Problem 2. Is cr(G) < &F(G) for n sufficiently large?
Open Problem 3. Is testing whether cr(G) = &(G) NP-hard?

Open Problem 4. Determine all obstructions to stretchability of graph
layouts. (See [25], [39] and [37].)
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Open Problem 5. Is it NP-hard to decide whether a given graph has
a crossing minimal drawing of screen size bounded above by a prescribed
number?

Open Problem 6.  Is it NP-hard to decide whether a given planar graph
has a crossing minimal drawing of screen size bounded above by a prescribed
number?

Our final two questions are related to approaches for simplifying QCF2
to make it more practical.

Open Problem 7. Does some crossing minimal drawing of Kp41 con-
tain a crossing minimal drawing of Kn ?

Currently, all known optimal drawings of K, have the following prop-
erty.

Open Problem 8. (Problem 1 in [8]) Does every rectilinear drawing of
a graph K, (n > 3) with ezactly e (Ky,) crossings have a triangle as its
convez hull?
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