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Abstract

For a path P, of order n and for any odd integer k, 1 < k <
n — 3, Chartrand et al. have §iven an upper bound for the radio
k-chromatic number of P, as £+2t+l, Here we improve this bound
for"—;—“-Sk<%mdg"fgskSn—&Theyaxe"—?’%Mand
"—""%’L’ respectively. Also, we improve the lower bound of Kchikech

et al. from 5532 to 4% for odd integer k, 3< k < n - 3.

Keywords. Radio k-coloring, span of a radio k-coloring,
radio k-chromatic number.
2000 Mathematics Subject Classification: 05C

1 Introduction

Let G be a connected graph. For any two vertices u and v of G, the distance
d(u,v) between u and v is the length of the shortest  — v path in G. The
eccentricity of a vertex v in G is the distance between v and a vertex in G
farthest from v. The diameter of G, denoted by diamG, is the maximum
eccentricity of the vertices of G. For any positive integer k, 1 < k < diamG,
a radio k-coloring is an assignment f of positive integers to the vertices
of G such that |f(u) — f(v)] = 1+ k — d(u,v) for every pair of distinct
vertices u, v of G. The maximum positive integer assigned to a vertex of G
is called the span of f which is denoted by rc(f). The minimum span of all
radio k-colorings of G is called the radio k-chromatic number, denoted by
rcx(G), of G. The radio 1-chromatic number is nothing but the chromatic
number x(G) of G. If diamG = d, then the radio d-coloring is called the
radio coloring of G and the radio d-chromatic number is the radio number
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of G that was introduced in [1). Radio k-coloring of a graph was defined
by Chartrand et. al. in [2, 3]. The problem of finding radio k-chromatic
number of a graph is highly nontrivial. In fact radio k-chromatic number
of a path P, of order n is not yet known for 1 < & < n — 3, only bounds
are there which are stated below.

Theorem 1.1. (3] For anyinteger k, 1 <k <n —3,

‘rck(P ) < £ gk 2’ if kis even
—_— 2 : .
" ki—tgk L, if kis odd.

Theorem 1.2. [6] For any integer k,1 <k <n -3,
%ﬁ, if kis even
K33 if kis odd.

reg(Pe) 2 {

In [4] and [5] the exact value of r¢, 1 (P,) and rc,—2(P,) are determined
respectively and the value of rckx(P,), kK = n are given in [6]. In this
paper we improve the bounds of rcg(P,), k odd, given in Theorem 1.1 and
Theorem 1.2 for 2% <k <n -3 and 3 < k < n — 3 respectively.

2 Results

Before we give the main result we will see an easy but important observation
which is also used in many papers, namely ([3], [6]).

Observation 2.1. For any positive integers m and n, if m < n then
rek(Pm) < rek(Pr).

This observation is true because a radio k-coloring of P, also gives a
radio k-coloring of P,y,.
The following theorem is the main result of this paper.

Theorem 2.2,  For a positive integer n and an odd positive integer k,

Py < k’izkjﬂ, if 2n3—5 <k <n-3
TCk( ") = k’izki‘i if n_‘:’_4 <k < 2n3—5

b}

Proof. Let P, be the path a; a2 a3... an. Note that d(ai,a;) = j — 1 if
i>i
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Case I: We first prove that for any odd positive integer k and n = 3k

2

the coloring f given as
fla)) = k—;:a'-i-(i—l)k,farlg i< ’1'2"_1
; . _ k+1
f(aig_aﬂ) = jk+1, for0 < j < -
1 k-1
flaryap) = %—+lk, for0 <1< =

is a radio k-coloring of P,

)

(ii)

(@)

(iv)

v)

Forl< i1 < @2 < 58, |f(an) = flan)l = |52 + G2 - Dk -
(542 + G2 - 1)
=|(0 —d)k|2k21+k—(i2—11)

Forl<i < blandl < j < A1, 15(e) - flogay )l = |52 +
(- k= (jk+1)| = |52 — (i— k] = B2+ (=9 - G-)k+1)| 2
"—;—1- + (i — j), for (¢ — j) <0. For i — j > 0, one can easily check that
(- Nk +1) 22(52 + G =)

Therefore for every 1 < 4,5 < &1, we get |f(a,~) - f(aLI""*':i)l >
£§l+(i—j)=k+1-(&gé+j—i) =k+1-d(a:,an,;).
For1< i < Blandl < 1 < 521, |f(ad) - flarsant)| =
%ﬂ+(z'—1)k—(k—';d+zk)|=|(i—t)—2+(k—1)(i-z-1)+2|2
(i-1)—2,foreveryiand l. Now (i =) —2=k+1—(k+3+1-1i) =
k+1—d(ai, ars+1)-

For 0 < ji < j2 < B, |f(a'z;£+j,) —f(as;_u,-,) =|(hk+1) -
ok + 1) =G — i2)Ml 2 k2 1+ k= (543 4o — 843 — ).

For 0<j <kl and 0 <1< 552, |f(a£2&+j) - f(ak+3+l)| =
|G+ 1) - (B2 +1k)| = |52 - G- Dk| = |52+ G- - G-D(k+
1|2 552 4+(-0) by (). 55+ (1) = 1+k— (k+3+1-E3—5) =

k+1-— d(ak_-gg_‘_j, ak+3+[).
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(vi) For 0 < &y < Iz < 531, |f(ak4341,) — flarsssa)| = |EEL + Lk —
—lgk| =1~ l)k| 2k >1+k—(k+3+Iy—k—3—1;) since

lg - ll > 1.
Therefore f is a radio k-coloring of Pssys and thus rei(Pags) < £4k+2,

From Observation 2.1, we can say that for any odd k, reg(Pp) < —+-—+—
for n < 358,

In other words rcx(P,) < —'t—'t- for k > 2255, Thus re(P,) <
—"’——"‘—— for 22828 <k <n-3.

Case IT : In thls case also we first prove that for any odd integer k and
n = 2k + 4, the coloring f defined as

flare) = 2+ik, for0<i <%
E+3 . k-1

f(ahzﬁ_'_j) = T-}-Jk, forOSJST
flarsss) = lk+1, forogzsk_;'_l.
kE+1 k-1

f(as_kétg.,.m) = T+ mk, forOSms_z._

is a radio k-coloring of P,.

(i) For 0 < iy < i < B, |f(@144,) — Flar4i,)| = 2 + 61k — 2 —igk| =
I(?:l —iz)k| > k 2 1+k—(1+i2—(1+i1)) = 1+k—d(a1+,~,,a1+i,).
(ii) For0<i< &l and0<j< 5L If(al.,.,) f(a_t_+1)|= 2+ ik —
(52 + k)| = |G- )k - 552 = |52 + G- 9) - G- )k + 1) 2
k=1 4 (i - 5) by (ii) of case I. Now l"—;-l+(i—j)=l+k—(%'—5+
j— (1+i)) = 1+k—d(a1+i,a£¥_s+j).
(iii) For 0 <i < %! and 0 <1 < &L, |f(a14i) — flar+a+)| = |2 + ik —
(k+1)| =

N+ GE=-Dkl={-D-1+(E-DEk-1)+2[2|E-1)-1 =
(i—l)—-1=1+k—(k+3+l—(1+l))=1+k—d(a1+i,ak+3+1).

(iv) For0 <i < 2l and 0 <m < &2 lf(au., - (aa_kz-ﬂ_’_m)l =
2+zk—(—g—+mk)}=|(z—m) —"2'—+(z—m)(k—1)+4|2
(i-m) -2 =14k (B2 4 m—(1+1)).
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(v) For 0 < ji < j2 < 551, |f(a!=_+£+_,-,) (a_-h_.,.”) I%" + 51k —
(42 +7ak) —|(Jl—J2)k|>k>1+k—(—+—+.72— &5.45)) =

1+k—d(a£#+j1,a%§_+j2).

(vi) For 0 < j < &L and 0 < 1 < &L |f(a,£§_a_+j) -f(a,,+3+,)| =
|£;';—3+jk—(zk+1)|=
G- Dk+ 52| = |52+ G-+ G-Dk-1|2G-D+52 =
1+k—(k+3+z—(%5-+j))=1+k—d Gigs o Ok4s1)-

(vii) For0<j <%l and0<m < 5 |f(a_;_+3)—f(aﬂ=;g+m)‘=
|42 + gk - (52 + mk)| = G+ 1 = G- m) ~ 14 -
m(k—1)+2]2 (G -m) - 1=1+k~ (%22 4m — (&8 4 ) =
1+k—d(0.k_-2ié+j,aak 9+m)- .

(viii) For 0 < I < Iy < &2, |f(ak+a+t,) — flarsasty)l = |(hk +1) -
(Lk+1)|=|( —lb)kl 2k21+k—(k+3+L—-(k+3+14)) =
1+ k — d(@k+3+1; s Gk+3+12)-

(ix) For 0 < 1 < &L and 0 < m < k51 |f(ak+3+,)- (aak +m)|=
|(lk+1)—(—',£,‘—+mk)|=|(l-m)k—T|=|’°; — (1 - m)k| =
I’%l+(l—m)—(l-m)(k+l)|2"2;1+(l—m)=1+k—(%’3+
m—(k+3+1) =1+k —d(ak+3+z,a%§ﬂa_+m).

(x) For 0 S mj <mg < &2 lf(a++m)—f agg}g_*_m) =
I-—"2'—+m1k-—(—"2‘—+m2k)|—|(m1—m2)k|2k21+k—(3—"§—9+

mg — (a—'kng +m1)).

Therefore f is a radio k-coloring of Pak44 and thus rcx(Pak44) < k—z"'ziﬂ.

By the same argument as in Case I, rcx(Pp) < ﬁ*%‘ﬁ, for k > 232, Hence
Theorem 2.2 is proved. (i

Example 2.3. Here we illustrate Theorem 2.2 by giving example of radio
k-colorings of some paths below.

(i) Fork =5 andn = 353 = 10, the labeling below of Case I (Theorem 2.2)
improves the upper bound from 18 (of Theorem 1.1) to 16.
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a, a2 as aq as as a7 as ag a10
4 9 14 1 6 11 16 3 8 13

(ii) For k = 5 and n = 2k + 4 = 14, the labeling below of Case II
(Theorem 2.2) improves the upper bound from 18 (of Theorem 1.1) to 17.

a a2 a3 a4 a3 @G Gy ag Q9 a0 11 C12 @13 Q14
2 7 12 17 4 9 14 1 6 11 16 8 8 18

Next we use a result of Khennoufa and Togni [4], given below, and
improve the lower bound of rcx(P,), for k an odd integer and 3 <k < n-3.

Theorem 2.4. [4] Forn = 2p+ 1, p > 2 is an integer, rcp—a2(Pr) =
2p% —2p+3.

Theorem 2.5. 2For n > 5 and an odd positive integer k with 3 < k <
n—3, rex(Pa) 2 55

Proof. Since k < n — 3, from Observation 2.1, we have rcp(Piyz2) <

rcx(Py,). From Theorem 2.4 it is easy to check that reg(Pry2) = ﬁzi'—s, if
k is odd.
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