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Abstract

A (G, H)-multifactorization of AKm is a partition of the edge
set of AK, into G-factors and H-factors with at least one G-factor
and one H-factor. Atif Abueida and Theresa O’. Neil have conjec-
tured that for any integer n > 3 and m > n, there is a (Gn, Hn)-
multidecomposition of AK, where Gn = Ki1,n—1 and Hp = Cn. In
this paper it is shown that the above conjecture is true for m = n
when

(1) Gm = Kl.m-li Hp = Cm,
(ili) G = Prm; Hm = Cm.
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1 Introduction

Let G and H be subgraphs of Ky,. A G-factor of K, is a spanning subgraph
of K,, such that each component of it is isomorphic to G. A path with end
vertices u and v is denoted by P(u,v). A Hamilton cycle decomposition
of G is a partition of the edge set of G into Hamilton cycles. A (G, H)-
multifactorization of AK,, is a partition of the edge set of AK,, into G-
factors and H-factors with at least one G-factor and one H-factor. A
(G, H)-multidecomposition of \K,, is a partition of the edge set of AKm
into copies of G and H with at least one copy of G and H. The study
of (G, H)-multidecomposition was introduced by Abueida and Daven in [1]
and [2]. Recently, Atif Abueida and Theresa O’. Neil [3] settled the problem
of existence of (Gy, H,)-multidecomposition of AKy, when G, = K11
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and H,, = C,, for n = 3,4,5 and m > n. They have also conjectured that for
any integer n > 3 and m 2 n, there is a multidecomposition of AK,, into
small cycles and claws. In this paper, necessary and sufficient conditions
for the existence of (G, Hr, )-multifactorization of AK,, are obtained when
(Gm, Hp) belongs to one of the following.

(i) (Gm, Hm) = (Kl,m—h Cm)1
(ii) (Gm,Hmn) = (K1,m-1, Pm) and
(iii) (Gm,Hm) = (Pm,Cm).

In fact our results prove the above conjecture affirmatively when m = n
not only for (Gm, Hm) = (K1,m-1,Cm), and also for (Gm, Hn) = (K1,m-1,
P,,), and (G, Hp) = (P, Cra).

To prove our results we require the following.

Result 1.1. (Walecki's Construction [4] ) The graph Kon41 has a Hamil-
ton cycle decomposition.

Corollary 1.2.  The graph K>, has a Hamilton path decomposition.
Result 1.3.  For even m > 2, the graph 2K, has a Ca,, decomposition.

Proof. Let V(Kam) = {v,v1,3,...,%2m-1} and C = (vor1v2v2m-103
V2m—2y - - » s Um—1Um+2UmUm+1p) be a Hamilton cycle in K. Let the per-
mutation o be ¢ = (0)(1,2,3, ...,2m~1). Then {C, 0(C), s%(C),3(C),...,
a?m=2(C)} is a Car, factorization of 2Koy,. O

Corollary 1.4. The graph 2Ko,—1 has a Hamilton path decomposition.
Result 1.5.  The graph 2K, has a K1, factorization.

Proof. Let V(K,,) = {1,2,...,m}. We construct a star factorization of
2K,, as follows. Let (: i+ 1,4 4+2,...,i +m—1),1 < i < m, denote a
star Ky m-1 of K, with center at i, where the additions are taken modulo
m with residues 1,2,...,m. When ¢ varies we get a K) ;-1 factorization
of 2K,,. a

2 Multifactorization of \K,, into Stars and
Cycles

Let (qu Hm) = (Kl,m—lxom)'

Lemma 2.1.  There exists a (G, Hp)-multifactorization of AK,, for all
A>3 and odd m > 3. )
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Proof. Let m = 2n+ 1. We can write AKop11 = (A —2)Kap41 +2Kon41.
By Result 1.1, K3,,1 has a Cap41 factorization. Further, 2K5,41 has a
K 2, factorization by Result 1.5. Thus AK,, has a (G, Hp,)-multifactor-
ization for all A > 3 and odd m > 3. O

Lemma 2.2.  There exists a (Gan, Han)-multifactorization in 2AK,, for
allA>1andn>2.

Proof. We can write 2AKa, = (A—1)2K5, +2K>,. Also, 2K5, has a Cy,
factorization by Result 1.3 and (A — 1)2K>, has a K 2,1 factorization by
Result 1.5. Thus there exists a (Gan, H2n)-multifactorization in 2AKj, for
alA>1andn > 2. O

Theorem 2.3. For m > 3, AK,, has a (G, Hy,)-multifactorization if
and only if

(i) |[E(AKm)| = (m — 1)r + ms, wherer,s > 1,
(ii) A>3 and
(iii) r = 0(mod m).

Proof. Let AK,, has a (Gn, Hy,)-multifactorization. Then there exist
integers r,8 > 1 such that AK,, = 7K} m-1 ® sCpr,. Hence |E(AKy,)| =
(m = 1)r +ms. If A= 1,2 then |E(AKm)| = (m — 1)r + ms by (i). But no
r and s satisfy the above equation. Hence A > 3.

Now, to prove (iii), in (i) sm is the number of edges in s copies of Cy,
and it forms a spanning subgraph in AK,. Therefore, r copies of K m—1
should also form a regular subgraph in AK,,, which is possible only if each
vertex is a center vertex for the same number of copies of K »-1. Hence
r = 0(mod m).

Conversely, suppose (i), (ii) and (iii) are satisfied.

Case (a) misodd and A > 3.

By Lemma 2.1, we have a (G, Hyn )-multifactorization.
Case (b) m is even.

Suppose A > 3 is odd. Then by (i), |[E(MKm)| = (m — 1)r + ms.
i.e., Am(m —1)/2 = r(m — 1) + sm. By (iii) RHS of the above equation is
congruent to 0(mod m) but not the LHS. Hence A cannot be odd. Therefore,
by Lemma. 2.2, there exists a (Gm, Hm)-multifactorization of AK,, for all
even \ > 3. O

3 Multifactorization of \K,, into Stars and
Paths

Let (Gm, Hm) = (Kl,m—ls Pm)
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Lemma 3.1.  There ezists a (Gan, Han)-multifactorization of AK»,, for
A>2.

Proof. Casea. A=2.

We have |E(2K2,)| = 2n(2n — 1) = 2(2n — 1) + (2n — 2)(2n — 1). Now
we factorize 2K, into 2 stars and 2n — 2 paths as follows. Let V(K3,) =
{a,8,1,2,...,2n — 2}. By removing a, 8 from 2K>3,, we get 2K3,—2. By
Corollary 1.2, 2K,y -2, has a Hamilton path decomposition {P(i,n — 1 +
i), 1 < i < 2n—2} where the additions are taken modulo 2n — 2. We obtain
Hamilton paths of 2K>,, by joining the end vertices of the Hamilton paths
of 2K, with vertices a, 8 as aP(i,n—1+1)8,i=1,2,...,2n — 2. The
remaining edges of 2K>,, incident with a and 3 form two stars centered at
a, 8. Thus there exists a (Gap, Han)-factorization of AKp, for A = 2.
Case b. A>2.

We have AKy, = 2K, + (A — 2)K3,. The result follows from Case (a)
and Corollary 1.2. a

Lemma 3.2. There ezists a (Gaont1, Hont1)-multifactorization of
2Kans1 for A2 1.

Proof. When A = 1, we know that 2K5,;1 has a Hamilton cycle de-
composition. Label the vertices of the graph as a,1,2,...,2n. When we
remove the vertex o from 2Kony1, by Corollary 1.2, the resulting graph
2Ky, has a Hamilton path decomposition {P(i,n+1),1 < i < 2n, } where
the additions are taken modulo 2n. We obtain Hamilton paths of 2K5,, 41
by joining  to an end vertex of the path P(i,n+:). The remaining edges of
2K3pn41 incident with a form a star K 2,. Thus we have a (G2n+1, Hony1)-
multifactorization of 2K5,,4, and hence the result follows. O

Theorem 3.3. MK, has a (Gn,, Hp,)-multifactorization if and only if
() |[E(AKp)| = (m = 1)r+ (m —1)s, wherer,s > 1,
(i) A > 2 when m is even and

(#i) X is even when m is odd.

Proof. Let AK, has a (G, Hy,)- multifactorization. Then there exist
integers r,s > 1 such that AK,,, = rPp, @ sCr,. Hence | E(AK,) |= (m —
1)7 + (m — 1)s. To prove (ii) let m = 2n. If A < 2, then Kj, — K; 21 has
no Ps,, a contradiction to the hypothesis. Thus A > 2. To prove (iii) let
m = 2n+1. Then by (i), | E(AKa2n+1) |= 7(2n)+s(2n). i.e., A(2n+1)(2n)/2
= 2n(r + s). The RHS of the above equation is congruent to 0(med 2n),
but not the LHS when A is odd. Thus A is even.

The converse follows from Lemmas 3.1 and 3.2. O
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4 Multifactorization of \K,, into Paths and
Cycles
Let (G, Hm) = (P, Cim)-

Lemma 4.1. IfG is a regular incomplete graph of order m, then G does
not admit a P,,-decomposition.

Proof. Suppose G has a P, decomposition. Then every path in the P,
decomposition of G exhaust one degree at its end vertices and two degree
at its middle vertices. As G is regular, every vertex of G must be an end
vertex for equal number of paths in the path decomposition of G. Hence,
there exist at least % paths in the path decomposition of G. As each path is

of length m—1, G must have at least ﬂ";—'ll edges, which is a contradiction
to the hypothesis that | E(G) |< Z(2=1) m]

Theorem 4.2. Form > 3, AK,,, has (G, Hy,)-multifactorization if and
only if

(i) | E(AKp) |= (m — 1)r + ms, where r,s > 1 and
(is) A>2.

Proof.  Assume that AK,, has a (G, Hm)-multifactorization. Then there
exist integers 7, s > 1 such that AK,, = rPp, @ sCp,. Hence | E(AKy,) |=
(m — 1)r + ms. Also if A = 1, by hypothesis Ky, = rPpn ® sCp, 7,8 > 1.
Thus K, — $Cn = 7Ppn. But K; — 8Cr, is a regular incomplete graph
and is not decomposable into P, by Lemma 4.1. This contradicts that
K,, — $Cm = Pm. Thus A # 1. f A = 2, | E(2K,,) |= m(m — 1). By (i)
m(m — 1) = (m — 1)r + ms. But no r,s > 1 satisfy the above equation.
Thus A > 2.

Conversely, Suppose A > 2. Then MKy, = (A — 2)Kim + 2K If m
is even, (A — 2)K,, has a P, decomposition by Corollary 1.2 and 2K,
has a C,, decomposition by Result 1.3. If m is odd, (A — 2)K,, has a
Cyn decomposition by Result 1.1 and 2K, has a P, decomposition by
Corollary 1.4. O
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