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Abstract
The energy E(G) of a graph G is the sum of the absolute values of
the eigenvalues of G. Two graphs G) and G are said to be equiener-
getic if E(G1) = E(G2). In this paper we outline various classes of
equienergetic graphs. These results enables construction of pairs of
noncospectral equienergetic graphs of same order and of same size.
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1 Introduction

Let G be a graph of order n and size m. The eigenvalues of the adjacency
matrix of G denoted by \;, A2, ..., A, are said to be the eigenvalues of G
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and they form the spectrum of G. Two nonisomorphic graphs of same or-
der are said to be cospectral if they have same spectra [4]. The energy of a
graph G is defined as

n
E@G)=)_ I\l (1)
i=1

This concept was introduced by I. Gutman (7] in 1978 and is inten-
sively studied in chemistry, since it can be used to approximate the total
m-electron energy of a molecule [11]. Recently this concept started to at-
tract both mathematicians and chemists [6, 8 - 10, 13, 14].

Two graphs G, and G; are said to be equienergetic if E(G,) = E(Gz2).
Equienergetic graphs were first time considered in 2004 in [1, 17). For
obvious reasons, cospectral graphs are equienergetic. Therefore we are in-
terested in noncospectral equienergetic graphs.

The simplest nontrivial example of equienergetic graphs is formed by
the triangle G,, quadrangle G, and 2K (see Fig. 1) whose eigenvalues are
2, -1, -1;2,0,0, —2; and 1, 1, —1, —1 respectively. Therefore E(G,) =
E(Gs) = E(2K>2) = 4.

G. Gs 2K,

Fig. 1

The smallest pair of noncospecral connected equienergetic graphs with
same number of vertices are the pentagon G. and the tetragonal pyramid G4
(see Fig. 2) whose eigenvalues are 2, (vV5+1)/2, (V5 —-1)/2, —(vV5+1)/2,
—(v5-1)/2 and V5 +1, 0, 0, =2, —v/5 + 1 respectively and for which
E(G.) = E(Ga) = 2V5 + 2.

Fig. 2
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We are now interested in graphs that are noncospectral, connected,
having equal number of vertices, equal number of edges and equienergetic.

2 Equienergetic line graphs

The line graph of G will be denoted by L(G). For k = 1,2,... the k-th
iterated line graph of G is defined as L¥(G) = L(L*~*(G)), where L°(G) =
G and LY(G) = L(G) [12].

The line graph of a regular graph G of order ny and of degree ry is a reg-
ular graph of order ny = (ngro)/2 and of degree r; = 2ry — 2. Consequently
the order and degree of L*(G) are [2, 3]

_ Tk-17%-1
2

where n; and r; stands for order and degree of L(G), i =0,1,....
Therefore

and T = 21— — 2

i = 26rg — 2541 1 2 )
and
o k-1 70 k—1 ; -
nk=§;gn=§;i[=]0(2ro—2 +2) (3)

Theorem 2.1. [18, 19] If G is a regular graph of order n and of degree
T >3 then
E(L*(G)) = 2nr(r - 2).

Proof. Let A1, A2,...,An be the eigenvalues of a regular graph G of order
n and of degree r > 3, then by Sachs Theorem [4, 20] the eigenvalues of
L(G) are

-2 n(r—2)/2 times )

In view of the fact that L(G) is also a regular graph of order nr/2 and
of degree 2r —2, from Eqn.(4) the eigenvalues of L2(G) are easily calculated
as

M+r—2 i=1,2,...,n and}

Ai+3r—-6 i=12,...,n and
2r—6 n(r —2)/2 times and (5)
-2 ar(r —2)/2 times

If dpma is the greatest vertex degree of a graph then all its eigenvalues
belong to the interval [~dmaz, +@maz) [4]. In particular the eigenvalues of a
regular graph of degree r satisfy the condition —r < A\, <r,i=1,2,...,n.
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Ifr>3then A\;+3r—6>0and 2r—6 > 0.
Thus

E(L2(G))=Zn:l)u+3r-—6l+|2 |( =2) | |_gnrr=2)

i=1
n
= 2nr(r — 2) since Z A =0.

O

Corollary 2.2. [19] Let G be a regular graph of order ng, of degree rg > 3
and let for k > 1 the k-th iterated line graph of G be of degree ri and possess
ny. vertices then

E(L*Y(Q)) = 2nk(rx — 2).

Corollary 2.3. [19] If G is a reguler graph of order no and of degree
To > 3 then in the notation specified in Corollary 2.2, for any k > 1

k—1
E(L¥*Y(G)) = 2no(ro — 2) [ [ (2'ro - 2+ +2).
=0
Corollary 2.4. [19] If G is a regular graph of order ng and of degree
ro > 3 then in the notation specified in Corollary 2.2, for any k > 2
-2
Te+2

E(Lk(G)) = 4(nk — Np— 1) = 4nk
Lemma 2.5. [19] Let G; and G2 be two regular graphs of the same order
and of the same degree. Then for any k > 1 the folowing holds:

(a) L¥(G1) and L*(G3) are of the same order and have the same nmber
of edges.

(b) L¥(G,) and L*¥(G2) are cospectral if and only if G1 and G2 are cospec-
tral.

Proof. Statement (a) follows from the equations (2) and (3) and the

fact that the number of edges of L*(G) is equal to the number of vertices

of L*+1(G). Statement (b) follows from relation (4), applied a sufficient
number of times. O

Combining Lemma 2.5 with the Corollary 2.3 we arrive at:
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Theorem 2.6. [19] Let G, and G2 be two noncospectral regular graphs
of the same order and of the same degree r > 3. Then for k > 2 the iterated
line graphs L*(G,) and L*(G2) form a pair of noncospectral equienergetic
graphs of equal order and of equal number of edges. If in addition, G, and
G are chosen to be connected then L*¥(G1) and L*(G3) are also connected.

It is now easy to generate large families of equienergetic graphs satisfying
the requirements given in Theorem 2.6. For instance there are 2, 5, 19 and
85 connected regular graphs of degree 3 of order 6, 8, 10 and 12 respectively.
No two of these are cospectral [4]. Their second and higher iterated line
graphs form families consisting of 2, 5, 19, 85, ... equienergetic graphs.

3 Equienergetic Complement Graphs

Let G be the complement of G. The results of this section can be proved
in similar manner to that of Section 2.

Theorem 3.1. [15] If G is a regular graph of order n and of degreer > 3
then
E(L*(G)) = (nr —4)(2r—-3) — 2.

Corollary 3.2. [22] Let G be a regular graph of order ng and of degree
ro > 3. Let ny and vy be the order and degree respectively of the k-th iterated
line graph L*(G), k > 2 then

E(L*(G)) = (ng—2re—2 —4)(2rk-2—-3)—-2
= (2ng—1 —4)(rk—1—1)—2.
Corollary 3.3. [22] If G is a regular graph of order no and of degree
ro = 3 then in the notation specified in Corollary 3.2, for any k > 2

k-2
E(L*(G)) = [5212_2 [[@ro -2 +2) - 4] (25 tro — 25 +1) - 2.
=0

Corollary 3.4. [22] If G is a regular graph of order ng and of degree
T0 > 3 then in the notation specified in Corollary 3.2, for any k > 2

_— AnyT
E(IFG) =51,

—2(rx +1).

Corollary 3.5. [15] Let Gy and G2 be two noncospeciral regular graphs
on n vertices, of degree r > 3, then for k > 2 both L¥(G:) and L*(G:) are
regular, noncospectral possessing same number of vertices, same number of
edges and equienergetic.
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4 Equienergetic Graph Products

Definition 4.1.  The strong product of two graphs G and H is the graph
G ® H whose vertez set is V(G) x V(H) and two vertices (u,v) and (z,y)
are adjacent in G ® H if u is adjacent to z in G and v is adjacent to y in
H.

Bearing in mind that the eigenvalues of G; ® G» are just the products
of the eigenvalues of G, and G2 [4], R. Balakrishnan [1] observed that for
any two graphs G, and Gs,

E(G: ® G2) = E(G1)E(G?2).

Using this he has proved that for any graph G of order n, E(K; @ Ko ®
G) = E(C4 @ G) = 4E(Q).

Thus he has constructed pairs of equienergetic graphs for n = 0(mod4).

The same result was also reported independently by Stevanovié [21] and
he constructed equienergetic graphs for n = 0(mod5).

Following result gives that construction of equienergetic graphs for all
n29.

Definition 4.2.  The complete product of two graphs G, and G2 denoted
by G1V G2 is the graph obtained from Gy and G2 by joining each vertez of
G1 to all vertices of Gs.

If G, is r;-regular graph on n; vertices and G is ro-regular graph on
ngy vertices then the characteristic polynomial of G1V Gy is [4, 5]

(A=71)(A—T73) —mying
(A=r1)(A-72)

With this characteristic polynomial we get the following result.

#(G1VGs : \) =

¢(G1 . /\)¢(G2 : /\)

Theorem 4.3. [16] If G, is ry-regular graph on n; vertices and G2 is
r2-reqular graph on ng vertices then

E(G1VG2) = E(G1) + E(G2) + \/(1‘1 +72)2 + 4(ning — rire) — (1 + 'r’(z))
6

Corollary 4.4. (16] If H, and H}, are equienergetic regular graphs on
n vertices and of same degree v then for any regular graph G, the graphs
GVH, and GVH, are also equienergetic.

Theorem 4.5. [17] There ezists infinitely many pairs of noncospectral
equienergetic graphs on n vertices, n > 9.

Proof. Consider the graphs G; and G2 as shown in Fig. 3.
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Fig. 3
#(Gr: ) =A-49)A-1*r+2)* (M
H(Ga2: ) =(A—)A-2)A=-1)2(A+1)2(A+2)* (8)

Both G, and G, are regular, connected on 9 vertices and of degree 4.
And E(G,) = 16 = E(G2).

Let H be any regular graph on p vertices and of degree r, 0 <r <p—1.
Then by Theorem 4.3,

E(G1VH) = E(GoVH) = 12+ E(H) —r + /36p + (r — 4)2.

Thus G, VH and G, VH are equienergetic. By Eqns. (7) and (8), G1
and G, are noncospectral, so G1VH and Go VH are noncospectral. Further
G1VH and G2VH are connected and possesses equal number of vertices
n=9+4+p p=01,2,...

It is now easy to construct large families of pairs of equienergetic graphs
on n vertices, n > 9. a
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