Edge Roman Domination in Graphs

P. ROUSHINI LEELY PUSHPAM
Department of Mathematics
D.B. Jain College
Chennai-600 097, Tamil Nadu, India
e-mail: roushinip@yahoo.com
and
T.N.M. MALINI MAI

Department of Mathematics
S.R.R. Engineering College
Chennai-603 103, Tamil Nadu, India.

Abstract

An Edge Roman dominating function of a graph G=(V,E) is a function $f':E\to\{0,1,2\}$ satisfying the condition that every edge x for which f'(x)=0 is adjacent to at least one edge y for which f'(y)=2. The weight of an Edge Roman dominating function is the value $f'(E)=\sum_{x\in E}f'(x)$. The minimum weight of an Edge Roman dominating function on a graph G is called the Edge Roman domination number of G. In this paper we initiate a study of this parameter.

Keywords. Edge Roman dominating function, Edge Roman domination number.

2000 Mathematics Subject Classification: 05C69

1 Introduction

By a graph G = (V, E) we mean a finite undirected graph with neither loops nor multiple edges. The order and size of G are denoted by p and q respectively. For graph theoretic terminology we refer to Harary [5].

For any vertex $v \in V$, the open neighbourhood N(v) and the closed neighbourhood N[v] are defined by $N(v) = \{v \in V : uv \in E\}$ and $N[v] = N(v) \cup \{v\}$ respectively. Similarly for an edge $x \in E$, we define $N(x) = \{y \in E : y \text{ is adjacent to } x\}$ and $N[x] = N(x) \cup \{x\}$. Also if $S \subseteq V$, we define

 $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. The degree of an edge x = uv is defined by d(x) = |N(x)| = d(u) + d(v) - 2.

In a connected graph, the distance between two vertices u and v is the length of a shortest path joining u and v and is denoted by d(u, v). $v \in V$ and $S \subset V$, then d(u, S) denotes the minimum distance between u and any vertex of S. The radius and diameter of G are defined by $rad(G) = \min_{v \in V} \max_{w \in V} d(v, w)$ and $diam(G) = \max_{v, w \in V} d(v, w).$ A caterpillar is a tree T in which the removal of all end vertices leaves a path which is called the spine of the caterpillar. A lobster is a tree in which the removal of all end vertices leaves a caterpillar. Let $v \in S \subseteq V$. A vertex u is called a private neighbor of v, with respect to S (denoted by u is an S - pn of v) if $u \in N[v] - N[S - \{v\}]$ An S-pn of v is external if it is a vertex of V - S. The set $pn(v, S) = N[v] - N[S - \{v\}]$ of all S-pns of V is called the private neighborhood of v with respect to S. Let $x \in F \subset E$. An edge x is called a private neighbor of y with respect to F (denoted by, x is an F-pn of y) if x in $N[y] - N[F - \{y\}]$. An F-pn of y is external if it is an edge of E - F. The set $pn(y, F) = N[y] - N[F - \{y\}]$ of all F-pns of y is called the private neighborhood set of y with respect to F.

A set S is a dominating set if N[S] = V, or equivalently, every vertex in V-S is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G and a dominating set S of minimum cardinality is called a γ -set of G. A set S of vertices is called independent if no two vertices in S are adjacent. The independent domination number i(G) is the minimum cardinality of a set S of vertices which is both independent and dominating. A set S of vertices is called a 2-packing if for every pair of vertices $u,v\in S,N[u]\cap N[v]=\phi$. A set S of vertices is called a vertex cover if for every edge $uv\in E$, either $u\in S$ or $v\in S$. The recent book Fundamentals of Domination in Graphs [5] lists, in an appendix, many varieties of dominating sets.

The concept of edge domination was introduced by Mitchell and Hedetnimi [9]. Arumugam and Velammal [1] have obtained further results on edge domination. A subset X of E is called an edge dominating set of G if every edge not in X is adjacent to some edge in X. The edge domination number $\gamma'(G)$ is the minimum cardinality taken over all edge dominating sets of G. A set X of edges is called independent if no two edges in X are adjacent. The independent edge domination number i'(G) is the minimum cardinality of a set X of edges which is both independent and dominating. A set F of edges is called a 2-edge packing if it is independent and for every pair of edges $x, y \in F, N[x] \cap N[y] = \phi$. An edge cover of G is a subset G of G such that each vertex of G is an end of some edge in G.

A variant of the domination number was suggested by an article in Scientific American by Ian Stewart [16]. Independently ReVelle [11]-[13]

has suggested the concept of Roman domination a few years earlier. Since then, several papers have been published on Roman domination number [3],[7]-[10], [12]-[16]. A Roman dominating function of a graph G=(V,E) is a function $f:V(G)\to\{0,1,2\}$ satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. Let (V_0,V_1,V_2) be the ordered partition induced by f where $V_i=\{v\in V: f(v)=i\}$. The weight of a Roman dominating function of G is the value $f(V)=\sum_{v\in V}f(v)$. The minimum weight of a Roman dominating function of G is called the Roman domination number of G and is denoted by $\gamma_R(G)$ [4]. The definition of a Roman domination function is given implicitly in [2] and [16].

In this paper we introduce the concept of an Edge Roman dominating function and Edge Roman domination number and initiate a study of this parameter.

2 Main Results

We assume throughout that G = (V, E) is a graph without isolated vertices.

Definition 2.1. Let G = (V, E) be a graph. A function f' from $E \to \{0, 1, 2\}$ satisfying the condition that every edge x for which f'(x) = 0 is adjacent to at least one edge y for which f'(y) = 2 is called an Edge Roman dominating function (EDRF) of the graph. The weight of f' is defined by $f'(E) = \sum_{e \in E} f(e)$. The minimum weight of an ERDF of G is called the Roman domination number of G and is denoted by $\gamma'_R(G)$. An ERDF f' with $f'(E) = \gamma'_R(G)$ is called a γ'_R -function of G.

Observation 2.2. For a graph G = (V, E), let $f' : E \to \{0, 1, 2\}$ and let (E_0, E_1, E_2) be the ordered partition of E induced by f' where $E_i = \{e \in E : f'(e) = i\}$ and $|E_i| = q_i$, for i = 0, 1, 2. Note that there exists a 1-1 correspondence between the functions $f' : E \to \{0, 1, 2\}$ and the ordered partitions (E_0, E_1, E_2) of E. Thus we will write $f' = (E_0, E_1, E_2)$.

Clearly $f' = (E_0, E_1, E_2)$ is an Edge Roman dominating function (ERDF) if and only if $E_2 > E_0$, where > signifies that the set E_2 dominates the set E_0 . Also the weight of f' is $f'(E) = \sum_{e \in E} f(e) = 2q_2 + q_1$.

The proofs of the following results are straightforward.

Proposition 2.3. For any graph G, $\gamma'(G) \leq \gamma'_{R}(G) \leq 2\gamma'(G)$.

Proposition 2.4. Let $f' = (E_0, E_1, E_2)$ be any γ'_R - function. Then

(a) In $G[E_1]$ the maximum degree of an edge is less than or equal to one.

- (b) No vertex of G is incident with E_1 and E_2 .
- (c) Each edge of E_0 is adjacent with at most two edges of E_1 .
- (d) E_2 is a γ' set of $H = G[E_0 \cup E_2]$
- (e) Each $e \in E_2$ has at least two $E_2 pns$ in H.
- (f) If e is isolated in $G[E_2]$ and has precisely one external $E_2 pn(inH)$ say $w \in E_0$, then $N(w) \cap E_1 = \phi$.

Proposition 2.5. Let $f' = (E_0, E_1, E_2)$ be a $\gamma'_R(G)$ - function of G, such that q_1 is a minimum. Then

- (a) E_1 is independent and $E_0 \cup E_2$ is an edge cover.
- (b) $E_0 \succ E_1$
- (c) Each edge of E_0 is adjacent to at most one edge of E_1 . i.e. E_1 is a 2 edge packing.
- (d) Let $e \in G[V_2]$ have exactly two external $E_2 pns \ w_1$ and w_2 in E_0 . Then there do not exist edges $y_1, y_2 \in E_1$, such that (y_1, w_1, e, w_2, y_2) is the edge sequence of a path P_6 .
- (e) $q_0 \geq \frac{3q}{7}$.

Proposition 2.6. Let P_n and C_n denote respectively the path and cycle on n vertices. Then

- (a) $\gamma_R'(P_{3k}) = 2k$
- (b) $\gamma'_{R}(P_{3k+1}) = 2k$
- (c) $\gamma_P'(P_{3k+2}) = 2k+1$
- $(d) \gamma_R'(C_{3k}) = 2k$
- (e) $\gamma'_{R}(C_{3k+1}) = 2k+1$
- (f) $\gamma'_{R}(C_{3k+2}) = 2(k+1)$, where $k \geq 0$.

Proposition 2.7. For any graph G, $\gamma'(G) = \gamma'_R(G)$ if and only if each component of G is a K_2 .

Proof. Suppose $\gamma'(G) = \gamma_R'(G)$. Let $f' = (E_0, E_1, E_2)$ be a γ' - function. Then $|E_1| + |E_2| = |E_1| + 2|E_2|$, so that $E_2 = \emptyset$. Hence $E_0 = \emptyset$ and $\gamma_R'(G) = |E_1| = |E| = q$. Thus $\gamma'(G) = q$, so that each component of G is K_2 . The converse is obvious.

Proposition 2.8. Let G be a connected graph of size q and p > 2. Then $\gamma'(G) = 1$ and $\gamma'_{R}(G) = 2$ if and only if there exists an edge of degree q - 1.

Proof. If G has an edge e of degree q-1, then clearly $\gamma'(G)=1$ and $\gamma'_R(G)=2$. Conversely let $\gamma'(G)=1$ and $\gamma'_R(G)=2$ and let $f'=(E_0,E_1,E_2)$ be an ERDF with weight 2. Then either $|E_2|=1$ or $|E_2|=0$. If $|E_2|=1$, then $|E_1|=0$ and since $E_2 \succ E_0$ it follows that the unique edge $e \in E_2$ has degree q-1.

If $|E_2| = 0$, then $|E_0| = 0$ and $|E_1| = 2$. In this case G is the path P_3 and hence the result follows.

Proposition 2.9. For any graph G, $\gamma'_R(G) = q$ if and only if each component of G is either a P_2 or P_3 .

Proof. It is sufficient to prove the result for connected graphs. If $G = P_2$ or P_3 , then trivially $\gamma_R'(G) = q$. Conversely suppose $\gamma_R'(G) = q$. Then $2|E_2| + |E_1| = q$ and $|E_2| + |E_1| + |E_0| = q$. Case i. $|E_2| = 0$.

Then $|E_0| = 0$ hence $|E_1| = q$. By Proposition 2.4(a), any edge in $G[E_1]$ has maximum degree less than or equal to one and hence $G = P_2$ or P_3 . Case ii. $|E_2| \neq 0$.

Then $|E_2| = |E_0|$ and each member of E_2 is incident to exactly one member of E_0 . First we claim that $\Delta(G) = 2$. Suppose $\Delta(G) \geq 3$. Let w be a vertex in G such that $d(w) = \Delta$. Then clearly any γ'_R - function f' will label one of the edges incident at w as 2 and the remaining $\Delta - 1$ edges as 0, so that $|E_2| < |E_0|$ which is a contradiction. Then $\Delta(G) = 2$. Hence G is a path or a cycle. Since each edge of E_2 is incident with exactly one member of E_0 , G cannot be a cycle and hence $G \cong P_3$.

It follows from Propositions 2.3 and 2.7 that $\gamma'(G) \leq \gamma'_R(G) \leq 2\gamma'(G)$ and the lower bound is achieved only when each component of G is a K_2 . Thus if G is a connected graph of order $p \geq 3$, then $\gamma'_R(G) \geq \gamma'(G) + 1$. We now proceed to characterize connected graphs with $\gamma'_R(G) = \gamma'(G) + 1$ and $\gamma'_R(G) = \gamma'(G) + 2$.

Theorem 2.10. If G is a connected graph of order $p \ge 3$ then $\gamma'_R(G) = \gamma'(G) + 1$ if and only if there exists an edge e in E(G) such that $d(e) = q - \gamma'(G)$.

Proof. Suppose there exists an edge e in E(G) such that $d(e) = q - \gamma'(G)$. Let $E_2 = \{e\}$, $E_1 = E - N[e]$ and $E_0 = E - (E_1 \cup E_2)$. Then $E_1 \cup E_2$ is a γ' -set of G and $f' = (E_0, E_1, E_2)$ is an ERDF with $f'(E) = \gamma'(G) + 1$. Since $\gamma'_R(G) \geq \gamma'(G) + 1$ for connected graphs of order $p \geq 3$ we have $\gamma'_R(G) = \gamma'(G) + 1$. Conversely, let G be a connected graph with $\gamma'_R(G) = \gamma'(G) + 1$.

 $\gamma'(G) + 1$. Let $f' = (E_0, E_1, E_2)$ be an ERDF with $\gamma'(G) + 1$. Then either $(i) |E_1| = \gamma'(G) + 1$ and $|E_2| = 0$ or $(ii) |E_1| = \gamma'(G) - 1$ and $|E_2| = 1$.

In case (i) since $|E_2| = 0$, $E_1 = E$. Therefore $|E_1| = |E|$, so that $\gamma'(G) = q$. Hence it follows from Proposition 2.9, that G is P_3 . Hence there exists an edge e in G satisfying the given condition. Now, suppose $|E_1| = \gamma'_R(G) - 1$ and $|E_2| = 1$. Let $e \in E_2$. Since no edge of E_1 is incident with e and $\{e\} \succ E_0$, $d(e) = |E_0| = q - |E_1| - |E_2| = q - \gamma'(G)$.

Corollary 2.11. If G is a connected graph, then $\gamma'_R(G) = \gamma'(G) + 1$ if and only if G has a $\gamma'(G)$ - set E' which contains an edge e such that $\{e\} \succ E - E'$ and the set $E' - \{e\}$ is a 2-edge packing.

Corollary 2.12. If G is a connected graph and $\gamma'_R(G) = \gamma'(G) + 1$ then $1 \leq rad(G) \leq 2$ and $1 \leq diam(G) \leq 4$. In particular if $\gamma'_R(G) \geq 3$, then rad(G) = 2 and diam(G) = 4.

Corollary 2.13. Let T be a tree of order p > 2 and size q. Then $\gamma'_{R}(T) = \gamma'(T) + 1$ if and only if one of the following holds.

- (a) T is a star $K_{1,p-1}$.
- (b) T is a caterpillar whose spine is of length one.
- (c) T is a lobster whose diameter is 4, spine is of length one and each vertex not on the spine is of degree at most 2.

Proof. Suppose $\gamma'_R(T) = \gamma'(T) + 1$. Then rad(T) = 1 or 2. If rad(T) = 1, then $T = K_{1,p-1}$. If rad(T) = 2, then diam(T) = 3 or 4. If rad(T) = 2 and diam(T) = 3, then T is a caterpillar given in (b). If rad(T) = 2 and diam(T) = 4, then T is a lobster given in (c). The converse is obvious. \square

Proposition 2.14. Let G be a connected (p,q) graph. Then $\gamma'_R(G) = \gamma'(G) + 2$ if and only if the following conditions are satisfied.

- (a) G does not have an edge e such that $d(e) = q \gamma'(G)$.
- (b) Either G has an edge e such that $d(e) = q \gamma'(G) 1$ or there exist two edges x and y such that $|N[x] \cup N[y]| = q \gamma'(G) + 2$.

Proof. Suppose (a) and (b) are satisfied. It follows from Theorem 2.10 that $\gamma_R'(G) > \gamma'(G) + 1$. If G has an edge e = uv such that $d(u) + d(v) = q - \gamma'(G) + 1$ then $f' = (E_0, E_1, E_2)$, where $E_0 = N(e)$, $E_1 = E - N[e]$ and $E_2 = \{e\}$ is an ERDF with $f'(E) = \gamma'(G) + 2$.

If there exist edges x and y such that $|N[x] \cup N[y]| = q - \gamma'(G) + 2$, then $f' = (E_0, E_1, E_2)$ where $E_0 = N[x] \cup N[y] - \{x, y\}$, $E_1 = E - (N[x] \cup N[y])$ and $E_2 = \{x, y\}$ is an ERDF with $f'(E) = \gamma'(G) + 2$. Thus $\gamma'_R(G) = \sum_{i=1}^{n} (i - i)^n (i -$

 $\gamma'(G) + 2$. Conversely, let G be a graph with $\gamma'_R(G) = \gamma'(G) + 2$. Then (a) follows from Theorem 2.10. Now, let $f = (E_0, E_1, E_2)$ be an ERDF of G with weight $\gamma'(G) + 2$. Then we have the following three cases. Case i. $|E_1| = \gamma'(G) + 2$ and $|E_2| = 0$.

In this case $|E_2| = 0$ so that $E_1 = E$ and $\gamma_R'(G) = q$. Hence it follows from Proposition 2.9 that each component of G is isomorphic to P_2 or P_3 . Now if m denote the number of components of G which are isomorphic to P_3 then $\gamma_R'(G) = \gamma'(G) + m$ and hence m = 2. Let G_1 and G_2 be the two components of G, each isomorphic to P_3 and let $x \in E(G_4)$ and $y \in E(G_2)$. Clearly $|N(x) \cup N(y)| = q - \gamma'(G) + 2$.

Case ii. $|E_1| = \gamma'(G)$ and $|E_2| = 1$.

Let $E_2 = \{e\}$. Clearly $d(e) = q - \gamma'(G) - 1$.

Case iii. $|E_1| = \gamma'(G) - 2$ and $|E_2| = 2$. Let $E_2 = \{x, y\}$. Then $|N[x] \cup N[y]| = q - \gamma'(G) + 2$.

$$C = \frac{11}{2} = 0.15 = \frac{16}{2} = \frac{16}{2}$$

Corollary 2.15. If G is a connected graph and $\gamma'_R(G) = \gamma'(G) + 2$, then $2 \leq rad(G) \leq 4$ and $3 \leq diam(G) \leq 8$.

References

- [1] S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese Journal of Mathematics, 2(2)(1998), 173-179.
- [2] J. Arquilla and H. Fredricksen, Graphing an Optimal Grand Strategy, Military Operations Research, 1 (1995), 3-17.
- [3] E.J. Cockayne, Paul A. Dreyer Jr., S.M. Hedetniemi, S.T. Hedetniemi, Roman Domination in graphs, *Discrete Math.*, 78(2004), 11-12.
- [4] G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with Unique Minimum Dominating sets, Congr. Numerantium, 101(1994), 55-63.
- F. Harary, Graph Theory, Addition Wesley, Reading Mass., 1969.
- [6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998.
- [7] S.T. Hedetniemi and M.A. Henning, Defending the Roman Empire- A new strategy, *Discrete Math.*, **266**(2003), 239-251.
- [8] M.A.Henning, A characterization of Roman trees, Discussiones Mathematicae Graph Theory, 22(2)(2002), 325-334.
- [9] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math., 271(2003), 101-115.

- [10] S.L. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Numerantium, 19 (1977), 489-509.
- [11] C.S. ReVelle, "Can you protect the Roman Empire?" John Hopkins Magazine, 49(2)(1997), 70.
- [12] C.S. ReVelle, Test your solution to "Can you protect the Roman Empire?" John Hopkins Magazine, 49(3)(1997), 70.
- [13] C.S. ReVelle and K.E. Rosing, Defendens Romanum :Imperium problem in military strategy, *American Mathematical Monthly*, 107(7)(2000), 585-594.
- [14] Robert R. Rubalcaba and P.J. Slater, Efficient (j, k) domition, (Submitted).
- [15] Robert R. Rubalcaba, P.J. Slater, Roman Dominating Influence Parameters, Discrete Math., 307(24) (2007), 3194 - 3200.
- [16] I. Stewart, Defend the Roman Empire!, Scientific American, 281(6) (1999), 136-139.