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Abstract

An Edge Roman dominating function of a graph G = (V,E) is
a function f' : E — {0, 1,2} satisfying the condition that every edge
x for which f'(z) = 0 is adjacent to at least one edge y for which
f'(y) = 2. The weight of an Edge Roman dominating function is
the value f'(E) = Y__cg f'(z). The minimum weight of an Edge
Roman dominating function on a graph G is called the Edge Roman
domination number of G. In this paper we initiate a study of this
parameter.
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1 Introduction

By a graph G = (V, E) we mean a finite undirected graph with neither
loops nor multiple edges. The order and size of G are denoted by p and ¢
respectively. For graph theoretic terminology we refer to Harary [5)].

For any vertex v € V, the open neighbourhood N(v) and the closed
neighbourhood N[v] are defined by N(v) = {v € V : wv € E} and N[v] =
N(v) U {v} respectively. Similarly for an edge z € E, we define N(z) =
{y € E : y is adjacent to z} and N[z] = N(x)U{x}. Alsoif S C V, we define
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N(S) = U N(v) and N[S] = N(S) U S. The degree of an edge z = uv is

defined by d(w) |N(z)| = d(u) + d(v) —

In a connected graph, the distance between two vertices u and v is the
length of a shortest path joining 4 and v and is denoted by d(u,v). If
v € Vand S C V, then d(u,S) denotes the minimum distance between
u and any vertex of S. The radius and diameter of G are defined by
rad(G) = mmmaxd(v, w) and diam(G) = Inax d(v, w). A caterpillar is a

tree T in whlch the removal of all end vertlces leaves a path which is called
the spine of the caterpillar. A lobster is a tree in which the removal of all
end vertices leaves a caterpillar. Let v € S C V. A vertex u is called a
private neighbor of v, with respect to S (denoted by u is an S - pn of v) if
u € N[v] = N[S — {v}] An S -pn of v is external if it is a vertex of V — S.
The set pn(v, S) = N[v]— N[S — {v}] of all S-pns of V is called the private
neighborhood of v with respect to S. Let £ € F C E. An edge z is called a
private neighbor of y with respect to F' (denoted by, z is an F-pn of ) if =
in N[y] — N[F — {y}]. An F-pn of y is external if it is an edge of E — F.
The set pn(y, F) = N[y] — N{F — {y}] of all F-pns of y is called the private
neighborhood set of y with respect to F.

A set S is a dominating set if N[S] = V, or equivalently, every vertex in
V — S is adjacent to at least one vertex in S. The domination number v(G)
is the minimum cardinality of a dominating set in G and a dominating set
S of minimum cardinality is called a 7 - set of G. A set S of vertices is
called independent if no two vertices in S are adjacent. The independent
domination number i(G) is the minimum cardinality of a set S of vertices
which is both independent and dominating . A set S of vertices is called
a 2-packing if for every pair of vertices u,v € S,NjulNn N[y = ¢. A
set S of vertices is called a vertex cover if for every edge uv € E, either
v € S or v € S. The recent book Fundamentals of Domination in Graphs
[5] lists, in an appendix, many varieties of dominating sets.

The concept of edge domination was introduced by Mitchell and Hedet-
nimi [9]. Arumugam and Velammal (1] have obtained further results on
edge domination. A subset X of E is called an edge dominating set of G if
every edge not in X is adjacent to some edge in X. The edge domination
number 4'(G) is the minimum cardinality taken over all edge dominating
sets of G. A set X of edges is called independent if no two edges in X are
adjacent. The independent edge domination number i'(G) is the minimum
cardinality of a set X of edges which is both independent and dominating.
A set F of edges is called a 2-edge packing if it is independent and for every
pair of edges z,y € F,N[z] N N[y] = ¢. An edge cover of G is a subset L
of E such that each vertex of G is an end of some edge in L.

A variant of the domination number was suggested by an article in
Scientific American by Ian Stewart [16]. Independently ReVelle [11]-[13]
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has suggested the concept of Roman domination a few years earlier. Since
then, several papers have been published on Roman domination number
[3],[7])-[10], [12])-[16]. A Roman dominating function of a graph G = (V, E)
is a function f : V(G) — {0,1,2} satisfying the condition that every ver-
tex u for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. Let (Vp,V1,V2) be the ordered partition induced by f where
Vi = {ve V: f(v) = i}. The weight of a Roman dominating function of
G is the value f(V) = }: f(v). The minimum weight of a Roman domi-

nating function of G is called the Roman domination number of G and is
denoted by Yr(G) [4]. The definition of a Roman domination function is
given implicitly in [2] and [16].

In this paper we introduce the concept of an Edge Roman dominating
function and Edge Roman domination number and initiate a study of this
parameter.

2 Main Results

We assume throughout that G = (V, E) is a graph without isolated vertices.

Definition 2.1. Let G = (V,E) be a graph. A function f' from E —
{0,1,2} satisfying the condition that every edge = for which f'(x) = 0 is
adjacent to at least one edge y for which f'(y) = 2 is called an Edge Roman
dominating function (EDRF) of the graph. The weight of f' is defined by
f(E) = E f(e). The minimum weight of an ERDF of G is called the

Roman dommatzon number of G and is denoted by v5(G). An ERDF f’
with f'(E) = vx(G) is called a vg-function of G.

Observation 2.2. For a graph G = (V,E), let f' : E — {0,1,2} and
let (Eo, E1,E,) be the ordered partition of E induced by f' where E; =
{e€ E: f'(e) =i} and |Ei| = ¢; , for i = 0,1,2. Note that there ezists a
1-1 correspondence between the functions f' : E — {0,1,2} and the ordered
partitions (Ey, E1, E2) of E. Thus we will write f' = (Ey, E1, E2).
Clearly f' = (Ey, E1, Ez) is an Edge Roman dominating function (ERDF)

if and only if E> > Ey, where > signifies that the set E3 dominates the set
Ey. Also the weight of f' is f'(E) = Y .cg f(€) =2¢2 + q1.

The proofs of the following results are straightforward.
Proposition 2.3.  For any graph G, 7' (G) < 7x(G) £ 2v(G).
Proposition 2.4. Let f' = (Ey, En, E2) be any vy - function. Then
(a) In G[E,] the mazimum degree of an edge is less than or equal to one.
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(b) No vertex of G is incident with E; and Es.

(c) Each edge of Eq is adjacent with at most two edges of E;.
(d) E; is a v set of H = G[EoU Ey)

(e) Each e € Ey has at least two E; —pns in H.

(f) If e is isolated in G[E;) and has precisely one external E; — pn(inH)
say w € Ey, then N(w) N Ey = ¢.

Proposition 2.5. Let f' = (Eo, E1,E2) be a v(G) - function of G,
such that q; is a minimum. Then

(o) E; is independent and Eo U E; is an edge cover.

(b) Eo >~ Ey

(c) Each edge of Ey is adjacent to at most one edge of Ey. i.e. E; isa 2 -
edge packing.

(d) Let e € G[Vz] have exactly two external E; — pns wy and we in Ey.
Then there do not ezist edges y1,y2 € Ey, such that (y1,w1, e, w2, Y2)
is the edge sequence of a path Ps.

3q
> ==,
(e) @ 2 7

Proposition 2.6. Let P, and C, denote respectively the path and cycle
on n vertices. Then

(a) Yr(Psk) =2k

() Yr(Psk+1) = 2k

(c) Yr(Psk+a) = 2k +1

(@) Yr(C3k) =2k

(e) Yr(Csk+1) =2k +1

(f) Yr(Cak+2) = 2(k + 1), where k >0.

Proposition 2.7.  For any graph G, v'(G) = vx(G) if and only if each
component of G is a Ks.

Proof.  Suppose ¥ (G) = 7;(G). Let f' = (Eo, Er, E2) be a v’ - function.
Then |E\| + |E2| = |E1| + 2|E3|, so that E; = . Hence Ep = @ and
Yr(G) = |E1| = |E| = ¢. Thus 4'(G) = g, so that each component of G is
K. The converse is obvious. O
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Proposition 2.8. Let G be a connected graph of size g and p > 2. Then
vY(G) =1 and v5(G) = 2 if and only if there exists an edge of degree g—1.

Proof. If G has an edge e of degree g — 1, then clearly 4/(G) = 1 and
Y(G) = 2. Conversely let ¥(G) = 1 and 73(G) = 2 and let f' =
(Eo, Ey, E2) be an ERDF with weight 2. Then either |Ez| =1 or [E2| = 0.
If |E;| = 1, then |E;| = 0 and since E; > Ej it follows that the unique
edge e € E; has degree ¢ — 1.

If |E;| = 0, then |Ep| = 0 and |Ey| = 2. In this case G is the path P;
and hence the result follows. O

Proposition 2.9. For any graph G, YR(G) = q if and only if each
component of G is either a Py or Ps.

Proof It is sufficient to prove the result for connected graphs. If G = P
or Py, then trivially v;(G) = g¢. Conversely suppose 7(G) = g. Then
2Byl +|Ey| = g and |By| + | Bx| + |Eo| = q.

Case i. |E2I = 0.

Then |Ep| = 0 hence |E; | = g. By Proposition 2.4(a), any edge in G[E,
has maximum degree less than or equal to one and hence G = P or Fs.
Case ii. |E| #0.

Then |E2| = |Ep| and each member of E is incident to exactly one
member of Ey. First we claim that A(G) = 2. Suppose A(G) = 3. Let w
be a vertex in G such that d(w) = A. Then clearly any v} - function f’
will label one of the edges incident at w as 2 and the remaining A — 1 edges
as 0, so that |E;| < | Ep| which is a contradiction. Then A(G) = 2. Hence
G is a path or a cycle. Since each edge of E, is incident with exactly one
member of Eg, G cannot be a cycle and hence G = P;. a

It follows from Propositions 2.3 and 2.7 that v/(G) < 7,(G) < 2v'(G)
and the lower bound is achieved only when each component of G is a Ka.
Thus if G is a connected graph of order p > 3, then v3(G) = 7v'(G) + 1.
We now proceed to characterize connected graphs with v5(G) = ¥'(G) + 1
and 7;(G) =(G) + 2.

Theorem 2.10. IfG is a connected graph of order p > 3 then vg(G) =
v'(G) + 1 if and only if there exists an edge e in E(G) such that d(e) =
ga—7(G).

Proof.  Suppose there exists an edge e in E(G) such that d(e) = ¢—7'(G).
Let E; = {e},Ey = E—~NleJand By = E— (B4 UE;). Then By UE; is
a v'-set of G and f’ = (Ey, E1, E,) is an ERDF with f/(E) = v'(G) + 1.
Since 74(G) = ¥/(G) + 1 for connected graphs of order p > 3 we have
YR(G) = v'(G) + 1. Conversely, let G be a connected graph with v5(G) =

179



v¥(G) + 1. Let f' = (Ey, E1, E2) be an ERDF with v/(G) + 1. Then either
(%) |E1l =4'(G) + 1 and |Ez| = 0 or (i) |Ey| = ¥'(G) — 1 and |E;| = 1.
In case (i) since |Ez2| = 0,E, = E. Therefore |E,| = |E|, so that
v(G) = q. Hence it follows from Proposition 2.9, that G is P;. Hence
there exists an edge e in G satisfying the given condition. Now, suppose
|E1] = YR(G) -1 and |E2| = 1. Let e € E3 . Since no edge of E, is incident
with e and {e} > Ey, d(e) = |Eo| =g — |E1| — |E2| = ¢ — ¥'(G). O

Corollary 2.11. If G is a connected graph, then v(G) = ¥'(G) + 1
if and only if G has a ¥'(G) - set E' which contains an edge e such that
{e} > E — E’ and the set E' — {e} is a 2-edge packing.

Corollary 2.12. IfG is a connected graph and v(G) =v'(G) +1 then
1 < rad(G) < 2 and 1 < diam(G) < 4. In particular if v5(G) 2 3, then
rad(G) = 2 and diam(G) = 4.

Corollary 2.13. Let T be a tree of order p > 2 and size q. Then
Yr(T) = v (T) + 1 if and only if one of the following holds.

(a) T is a star Ky p—3.
(b) T is a caterpillar whose spine is of length one.

(c) T is a lobster whose diameter is 4, spine is of length one and each
vertex not on the spine is of degree at most 2.

Proof.  Suppose Yg(T) = v'(T)+1. Then rad(T) = 1 or 2. If rad(T) =1,
then T = K, p—1. If rad(T) = 2, then diam(T) = 3 or 4. If rad(T) = 2
and diam(T) = 3, then T is a caterpillar given in (b). If rad(T) = 2 and
diam(T) = 4, then T is a lobster given in (c). The converse is obvious. O

Proposition 2.14. Let G be a connected (p,q) graph. Then v5(G) =
v (G) + 2 if and only if the following conditions are satisfied.

(a) G does not have an edge e such that d(e) = g — v'(G)-

(b) Either G has an edge e such that d(e) = q — 7'(G) — 1 or there exist
two edges z and y such that [N[z]UN[y}| =q - +'(G) +2.

Proof.  Suppose (a) and (b) are satisfied. It follows from Theorem 2.10
that v5(G) > 9'(G) + 1. If G has an edge e = uv such that d(u) + d(v) =
g—7'(G) +1 then f' = (Ey, E1, E2), where Ey = N(e), E; = E— Nle] and
E = {e} is an ERDF with f'(E) = v(G) + 2.

If there exist edges z and y such that |N[z]UN[y] = ¢—+/(G) +2, then
f' = (Eo, E1, B») where Eg = N[z]UNy] - {z,y}, E1 = E—(N[z]UN[y])
and E; = {z,y} is an ERDF with f/(E) = v'(G) + 2. Thus 74(G) =
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v'(G) + 2. Conversely, let G be a graph with v(G) = ¥'(G) + 2. Then (a)
follows from Theorem 2.10. Now, let f = (Eg, E1, E2) be an ERDF of G
with weight 7/(G) + 2. Then we have the following three cases.

Case i. |E1|=4'(G)+2 and |E;| =0.

In this case |E2| = 0 so that By = E and v,(G) = q. Hence it follows
from Proposition 2.9 that each component of G is isomorphic to P, or P;.
Now if m denote the number of components of G which are isomorphic to
P; then v(G) = ¥'(G) + m and hence m = 2. Let G; and G2 be the two
components of G, each isomorphic to P3 and let z € E(G,) and y € E(G2).
Clearly IN(z)UN(y)| = ¢ —-7(G) + 2.

Case ii. |E| =+'(G) and |E;| = 1.
Let E; = {e}. Clearly d(e) =g — 7'(G) — L.
Case iii. |E1|=v'(G) —2 and |E;| = 2.
Let E2 = {z,y}. Then |N[z]UN[y)| = ¢ - 7'(G) + 2. O

Corollary 2.15. IfG is a connected graph and YR(G) = v'(G) +2, then
2 < rad(G) < 4 and 3 < diam(G) < 8.
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