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Abstract

For two vertices u and v in a graph G = (V, E), the detour distance
D(u,v) is the length of a longest u~v path in G. A u—v path of length
D(u,v) is called a u—v detour. A set S CV is called an edge detour
set if every edge in G lies on a detour joining a pair of vertices of
S. The edge detour number dni(G) of G is the minimum order of
its edge detour sets and any edge detour set of order dn1(G) is an
edge detour basis of G. A connected graph G is called an edge detour
graph if it has an edge detour set. Certain general properties of these
concepts are studied. The edge detour numbers of certain classes of
graphs are determined. We show that for each pair of integers k
and p with 2 < k < p, there is an edge detour graph G of order p
with dn;(G) = k. An edge detour set S, no proper subset of which
is an edge detour set, is a minimal edge detour set. The upper edge
detour number dn7 (G) of a graph G is the maximum cardinality of
a minimal edge detour set of G. We determine the upper edge detour
numbers of certain classes of graphs. We also show that for every
pair a, b of integers with 2 < a < b, there is an edge detour graph G
with dn1(G) = a and dnf (G) =b.

Keywords. Detour, detour set, detour number, edge detour set,
edge detour basis, edge detour number.
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1 Introduction
By a graph G = (V, E), we mean a finite undirected graph without loops
or multiple edges. The order and size of G are denoted by p and g respec-

tively. We consider connected graphs with at least two vertices. For basic
definitions and terminologies we refer to [1, 4].
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For vertices u and v in a connected graph G, the detour distance D(u, v)
is the length of a longest u—v path in G. A u-v path of length D(u,v) is
called a u—v detour. It is known that the detour distance is a metric on the
vertex set V. The detour eccentricity ep(v) of a vertex v in G is the max-
imum detour distance from v to a vertex of G. The detour radius, radpG
of G is the minimum detour eccentricity among the vertices of G, while the
detour diameter, diampG of G is the maximum detour eccentricity among
the vertices of G. These concepts were studied by Chartrand et.al. [2].

A vertex z is said to lie on a u~v detour P if z is a vertex of P including
the vertices u and v. A set § C V is called a detour set if every vertex
v in G lies on a detour joining a pair of vertices of S. The detour number
dn(G) of G is the minimum order of a detour set and any detour set of
order dn(G) is called a detour basis of G. A vertex v that belongs to every
detour basis of G is a detour vertez in G. If G has a unique detour basis S,
then every vertex in S is a detour vertex in G. These concepts were studied
by Chartrand et.al. (3.

For a cut-vertex v in a connected graph G and a component H of G —v,
the subgraph H and the vertex v together with all edges joining v to V/(H)
is called a branch of G at v. An end-block of G is a block containing exactly
one cut-vertex of G. Thus every end-block is a branch of G at the cut-vertex
v of G. The following theorems are used in the sequel.

Theorem 1.1. [3] Every end-vertez of a non-trivial connected graph G
belongs to every detour set of G. Also if the set S of all end-vertices of G
is a detour set, then S is the unique detour basis for G.

Theorem 1.2. (3] IfT is a tree with k end-vertices, then dn(T) = k.

Throughout this paper G denotes a connected graph with at least two
vertices.

2 Edge Detour Number of a Graph

In general, there are graphs G for which there exist edges which do not
lie on a detour joining any pair of vertices of V. For the graph G given in
Figure 2.1, the edge vy v2 does not lie on a detour joining any pair of vertices
of V. This motivates us to introduce the concept of edge detour graphs.

(51 V2
Figure 2.1: G
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Definition 2.1. Let G = (V, E) be a connected graph with at least two
vertices. A set S C V is called an edge detour set of G if every edge in
G lies on a detour joining a pair of vertices of S. The edge detour number
dn1(G) of G is the mintmum order of its edge detour sets and any edge
detour set of order dn,(G) is an edge detour basis of G. A graph G is called
an edge detour graph if it has an edge detour set.

Example 2.2. For the graph G given in Figure 2.2, it is clear that no
two element subset of V' is an edge detour set of G. It is easily seen that
S1 = {v1,v2,v4} is an edge detour set of G so that S1 is an edge detour
basis of G and so dn,(G) = 3. Thus G is an edge detour graph. Also
S2 = {v1,v2,vs} is another edge detour basis of G. Thus there can be more
than one edge detour basis for a graph G.

n
V2 V3
V4 Vs
Figure 2.2: G

The graph G given in Figure 2.1 does not contain an edge detour set
and so G is not an edge detour graph.

Remark 2.3.  For the graph G given in Figure 2.8, the sets Sy = {u,z}
and Sz = {u,v,x,y} are detour basis and edge detour basis of G respectively
and hence dn(G) = 2 and dny(G) = 4. Thus the detour number and the
edge detour number of a graph G are different.

u x

Figure 2.3: G

Theorem 2.4. For any edge detour graph G of order p 2 2, 2 <
dny(G) <p.
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Proof. An edge detour set needs at least two vertices so that dn;(G) > 2
and the set of all vertices of G is an edge detour set of G so that dn, (G) < p.
Thus 2 < dm(G) < p. O

Remark 2.5. The bounds in Theorem 2.4 are sharp. For the complete
graph K, (p =2 or 3), dn1(Kp) = p. The set of two end-vertices of a path
Pp(n 2> 2) is its unique edge detour set so that dny(P,) = 2. Thus the
complete graph K, (p = 2 or 3) has the largest possible edge detour number
p and the non-trivial paths have the smallest edge detour number 2.

This suggests the following question.
Problem 2.6. Is the upper bound in Theorem 2.4 sharp if p > 4?2

Definition 2.7. A vertez v in an edge detour graph G is an edge detour
vertex if v belongs to every edge detour basis of G. If G has a unique edge
detour basis S, then every vertex in S is an edge detour vertez of G.

Example 2.8. For the graph G given in Figure 2.2, Sy = {v,v2,v4},
Sz = {v1,v2,vs}, S3 = {v1,v3,v4}, S4 = {v1,v3,v5} and S5 = {v1,v4,v5}
are the only edge detour bases for G so that the vertez v, is the unique edge
detour vertez in G. For the graph G given in Figure 2.4 (a), S = {u,v,w}
is the unique edge detour basis so that every vertex of S is an edge detour
vertez in G. For the graph G given Figure 2.4 (b), Sy = {u,v,z}, S2 =
{u,v,y} and S3 = {u,v,w} are the only edge detour bases of G so that u
and v are edge detour vertices in G.

14
<X
<

x y
/ \ (a)
T s w t v
(b)
Figure 2.4: G

Theorem 2.9. If G is an edge detour graph of order p > 3 such that
{u,v} is an edge detour basis of G, then u and v are not adjacent.
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Proof. Suppose that u and v are adjacent. Let e be an edge such that
e # uv. If D(u,v) = 1, then e cannot lie on any u—v detour. If D(u,v) > 2,
then the edge uv cannot be on any u—v detour. Thus {u,v} is not an
edge detour set of GG, which is a contradiction. Hence u and v are not
adjacent. O

In the following theorem we show that there are certain vertices in a
non-trivial edge detour graph G that are edge detour vertices of G.

Theorem 2.10.  Every end-vertez of an edge detour graph G belongs to
every edge detour set of G. Also if the set S of all end-vertices of G is an
edge detour set, then S is the unique edge detour basis for G.

Proof. Let v be an end-vertex of G and uv an edge in G incident with
the end-vertex v. Then uw is either the initial edge or the terminal edge of
any detour containing the edge uv. Hence it follows that v belongs to every
edge detour set of G. If S is the set of all end-vertices of G, then by the
first part of this Theorem dn;(G) > |S|. If S is an edge detour set of G,
then dn;(G) < |S]. Hence dn,(G) = |S| and S is the unique edge detour
basis for G. a

Corollary 2.11. If T is a tree with k end-vertices, then dn(T) =
dn,(T) = k.

Proof. It is easy to see that the set of all end-vertices of T is the unique
edge detour basis and so T is an edge detour graph. Now the result follows
from Theorems 1.2 and 2.10. O

Corollary 2.12. Every end-vertex of an edge detour graph G is a detour
vertez and an edge detour vertez of G.

Proof. This follows from Theorems 1.1, and 2.10. ()

Corollary 2.13. For any edge detour graph G with k end-vertices,
maz{2,k} < dn1(G) < p.

Proof. This follows from the Theorems 2.4 and 2.10. O

Theorem 2.14. Let G be an edge detour graph with cut-vertices and S
an edge detour set of G. Then for any cut-vertex v of G, every component
of G — v contains an element of S.

Proof. Let v be a cut-vertex of G such that one of the components, say
C of G — v contains no vertex of S. Then by Theorem 2.10, C does not
contain any end-vertex of G. Hence C contains at least one edge, say uw.
Since S is an edge detour set, there exist vertices z,y € S such that vw
lies on some z—y detour P : = ug, t1, ¥2, ..., U, W, ..., Ut =¥ in G. Let
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P, be the x—u subpath of P and P» be the u—y subpath of P. Since v is a
cut-vertex of G, both P, and P, contain v so that P is not a detour, which
is a contradiction. Thus every component of G — v contains an element
of S. [m]

Corollary 2.16. Let G be an edge detour graph with cut-vertices and S
an edge detour set of G. Then every branch of G contains an element of S.

Remark 2.16. By Corollary 2.15, if S is an edge detour set of an edge
detour graph G, then every end-block of G must contain at least one element
of S. However, it is possible that some blocks of G that are not end-blocks
must conlain an element of S as well. For example, consider the graph G
of Figure 2.4 (b), where the cycle Cs: z, y, t, w, s, = is a block of G that
is not an end-block. By Theorem 2.10, every edge detour set of G must
contain u and v. Since the u—v detour does not contain the edges sw and
wt, it follows that {u,v} is not an edge detour set. Thus every edge detour
set of G must contain at least one vertex from the block Cs.

Corollary 2.17. If G is en edge detour graph with k > 2 end-blocks,
then dny(G) 2 k.

Corollary 2.18. If G is an edge detour graph with a cut-vertez v and
the number of components of G — v is r, then dny(G) > 7.

Theorem 2.19. Let G be an edge detour graph with cut-vertices. Then
no cut-vertez of G belongs to any edge detour basis.

Proof. Suppose that S is an edge detour basis that contains a cut-vertex
v of G. Let Gy, G, ..., G (k = 2) be the components of G —v and let By,
B,, ..., By be the branches of G at v such that B; contains G; (1 < i < k).
Then v is adjacent to at least one vertex of G; for each ¢ (1 <i < k). Also
by Theorem 2.14, each component G; contains an element of S, say u;. Let
S’ = S — {v}. We show that S’ is an edge detour set of G. Let uw be an
edge of G which lies on a detour P joining a pair of vertices, say z and v of
S. We may assume that z € V (G;) and so V(P) C V(B,). Let P, : z = zo,
Z1, ..., Ty, = v be a detour containing the edge uw and P, : v = vy, v,
...y Up = U any v—uz detour in G. Then since v is a cut-vertex of G, the
path Q: £ =1xp, 21, -.-, T =¥ = Vg, V1, ..., Up = Uz iS an z—us detour
containing the edge uw. We have = # v and uy # v. Thus we have shown
that every edge that lies on a detour joining a pair of vertices  and v of S
also lies on a detour joining a pair of vertices of S’. Hence it follows that
every edge of G is contained in a detour joining a pair of vertices of S’ so
that S’ is an edge detour set of G. Since |S’| = |S|—1, this contradicts that
S is an edge detour basis of G. Therefore v ¢ S and hence no cut-vertex of
G belongs to any edge detour basis of G. |
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For the graph H and an integer k > 1, we write kH for the union of the
k disjoint copies of H.

Theorem 2.20. Let G = (Kpn,UKn,U- - UK, UkK)+v be a block graph
of order p > 5 such that r > 2, eachn; > 2 andny+ng+---+n.+k =p—1.
Then G is an edge detour graph and dn,(G) = 2r + k.

Proof. Step 1. We prove that G is an edge detour graph. Let S be
the set formed by taking exactly two vertices v;,,v;, from each component
K,, of G—v (1 £ i < r) and the k end-vertices vy, vz, ..., vx of G so
that |S| = 2r + k. We show that S is an edge detour set of G. Let uw be
any edge in G. Then uw lies in any one of the branches, say B; of G at v
containing K,, (1 <i <r) or uw = vv; (1 < j < k). If vw # v;,v;,, since
B; is complete uw lies on some v;,—v;, detour in B; itself. If uw = v;, vy,,
let P, : v;,,i,,...,v be a v;;—v detour in B; and P; any v—v;, detour in a
branch B; (i # j), where vj, € S. Then since v is a cut-vertex of G, LUP;
is a v;,~vj;, detour in G which contains the edge uw. Now, if uw = vv;
(1 £ j <k), then uw lies on v;—v;, (1 <i <) detour. Hence S is an edge
detour set of G and so G is an edge detour graph.

Step 2. We prove that S is an edge detour basis of G. Let T be any
set of vertices of G such that |T| < |S|. Then |T| < 2r + k-1.

Case 1. T contains all the end-vertices of G. Then since |T'| < 2r+k—1,
there is a component of G — v, say Ky; (i <4 < r) such that T contains
at most one vertex of K,,. If T contains no vertex from the component
K., then no edge of the K, lies on any z—y detour, where z,y € T. If
T contains exactly one vertex, say u of Ky, then since n; > 2, the edge
uv does not lie on any z—y detour, where z, y € T. Thus T is not an edge
detour set of G.

Case 2. If T does not contain at least one end-vertex, say v;. Then
clearly the edge vv; does not lie on any z—y detour for =, y € T so that
T is not an edge detour set of G. Thus it follows that S is an edge detour
basis of G and hence dn,(G) = 2r + k. (|

Remark 2.21. If the blocks of the graph G in Theorem 2.20 are not
complete, then the theorem is not true. For the graph G given in Figure 2.5,
{vs, vs,v7,v0} is an edge detour basis so that dn,(G) = 4.

Vs
v3 (]
U1
vr
(N vs U9 wg
Figure 2.5: G
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In the following theorem we give certain graphs G for which dn;(G) = 2
and dny(G) = 3.

Theorem 2.22. IfG is the complete graph K3 or K, —e (p > 3) or an
even cycle Cy, or a non-trivial path P, or a complete bipartite graph K,
(m,n = 2), then G is an edge detour graph and dn,(G) = 2.

Proof. 1t is clear that the vertex set of K3, those two vertices of degree p—2
in K, —e (p > 3), any set of two antipodal vertices in an even cycle Cy, the
two end-vertices of a non-trivial path P, and any set of two non-adjacent
vertices of Kp, n (m,n > 2) are edge detour bases in Kz, K, —e (p = 3),
an even cycle C,, P, and Kp,n (m,n 2> 2) respectively. Hence the result
follows. [m]

Theorem 2.23. If G is the complete graph K, (p > 3) or an odd cycle
Ch, then G is an edge detour graph and dn,(G) = 3.

Proof.  For any two element subset {u,v} of V(K,) (p > 3), all the edges
of K, other than uv lie on a u~v detour. Hence it follows that no two
element subset of V(K,) (p > 3) is an edge detour set and any three
element subset of V(K,) (p > 3) is an edge detour set of K, (p > 3). Thus
K, is an edge detour graph and dn;(Kp) = 3 for p > 3.

If {u,v} is any set of two vertices of an odd cycle Cy, then no edge of
the u—v geodesic lie on the u—v detour in C,, and so no two element subset
of V(C,) is an edge detour set of C,,. Let S = {u,v,w} C V be any set of
three vertices of C,, .Then every edge in C,, lies on any one of the u—v, v—w
or u~w detours so that S is an edge detour basis of C,,. Hence the result
follows. O

The following theorems give realization results.

Theorem 2.24.  For each pair of integers k and p with 2 < k < p, there
exists an edge detour graph G of order p with dn,(G) = k.

Proof. For 2 < k < p, let P be a path of order p— k + 2. Then the graph
G obtained from P by adding ¥ — 2 new vertices to P and joining them to
any cut-vertex of P is a tree of order p. Then G is an edge detour graph
and so by Corollary 2.11, dn,(G) = k. a

Theorem 2.25. For each positive integer k > 2, there exists an edge
detour graph G and a vertexr v of degree k in G such that v belongs to an
edge detour basis of G and dn1(G) = k.

Proof. For k = 2, let G be the cycle C;. Then a set of two antipo-
dal vertices of G satisfies the requirements of the theorem. For & >
3, let G be the graph obtained from the complete graph Kjy.1, where
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V(Kik+1) = {v1,v2,...,0, 41}, by adding k — 2 new vertices u3, ua,
..., Ux—2 and joining each u; (1 < i < k —2) to v,. Then degv; = k. Let
S = {uy,ua,...,uk—2}. Then neither S nor SU{y;} (1 <i<k+1)isan
edge detour set of G. However, S U {v2,v3} is an edge detour set of G and
hence by Theorem 2.10, S U {v2,vs} is an edge detour basis of G so that
dnl(G) =k. (|

3 Minimal Edge Detour Sets in a Graph

Definition 3.1.  An edge detour set S in an edge detour graph G is called
a minimal edge detour set of G if no proper subset of S is an edge detour
set of G.

Example 3.2. For the graph G given in Figure 3.1, $1 = {v, v3, v7,

vi0}, S2 = {v1, v, v7, v, vs}, Sz = {1, vz, v7, V4, v}, Sy = {1, V2, v7,
vs, vg} and S5 = {v1, v, v7, Us,V9} are the minimal edge detour sets of G.

Uy Ug
Us
v V10 V6 vy
V2
V4 Vs
Figure 3.1: G

Remark 3.3. Every minimum edge detour set is ¢ minimal edge detour
set, but the converse is not true. For the graph G given in Figure 3.1, Sa =
{wn1, v, v7, v4, vs} is @ minimal edge detour set of G but not a minimum
edge detour set of G.

Definition 8.4. For an edge detour graph G, the upper edge detour num-
ber dnf (G) of G is defined to be the mazimum cardinality of a minimal edge
detour set of G.

Example 3.5. For the graph G given in Figure 3.1, it follows from
Ezample 3.2 that dn)(G) = 4 and dnf (G) = 5.

Theorem 3.6. For any edge detour graph G, dn,(G) < dn (G).

Proof. Let S be any edge detour basis of an edge detour graph G. Then
S is also a minimal edge detour set of G and hence the result follows. [l
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Remark 3.7. The bound in Theorem 3.6 is sharp. For any non-trivial
path P, dn,(P) = dn}(P) = 2. Also for the graph G given in Figure 3.1,
dny1(G) < dnf (G).

Theorem 3.8. IfS is a minimal edge detour set in an edge detour graph
G, then no cut-vertex of G belongs to S.

Proof.  Proof is similar to that of Theorem 2.19. |

In the following theorem, we give a class of graphs for which these two
parameters are equal.

Theorem 3.9.
(a) If G is the complete graph Ky(p > 3), then dny(G) = dni(G) = 3.

(b) If G is the complete bipartite graph Kp, n (m,n = 2), then dn,(G) =
dni (G) = 2.

(c) If G is an odd cycle Cp (p > 3), then dny (G) = dnf (G) = 3.
(d) If G is a tree with k end-vertices, then dn,(G) = dn](G) = k.

Proof.  a) By Theorem 2.23, dn1(G) =3 and so dn} (G) > 3. Let SC V
be an edge detour set of G with |S| > 4. As in the proof of Theorem 2.23,
any set of three vertices is an edge detour set of G so that S cannot be a
minimal edge detour set of G and hence the result follows.

b) By Theorem 2.22, dn,(G) = 2 and so dnf(G) > 2. Let S C V be
an edge detour set of G such that |S| > 3. Then there exists a subset
S1 = {u,v} of § such that u and v are nonadjacent and hence as in the
proof of Theorem 2.22, S; is an edge detour set of G. Thus S is not a
minimal edge detour set of G and hence the result follows.

c) If G = K3, then the result follows from Theorem 3.9 (a). If p > 5, then
by Theorem 2.23, dn1(G) = 3 and so dnj (G) > 3. Let S C V be an edge
detour set of G with |S| > 4. Then as in the proof of Theorem 2.23, any set
of three vertices is an edge detour set of G so that S cannot be a minimal
edge detour set of G and hence the result follows.

d) The set of all end-vertices of G is the unique edge detour basis of G and
so the result follows from Theorem 2.10 and Corollary 2.11. ]

Theorem 3.10. Let G be an even cycle of order p > 4. A set S = {u,v}

is an edge detour set of G if and only if u and v are antipodal vertices in
G.

Proof. If u and v are antipodal, then every edge e of G lies on a u-v
detour in G. Thus S is an edge detour set of G. Conversely, assume that
S is an edge detour set of G. If u and v are not antipodal, then the edges
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of u—v geodesic do not lie on the u—v detour in G so that S is not an edge
detour set of G, which is a contradiction. a

Theorem 3.11. IfG is an even cycle Cp, then dny(G) = 2, dn{ (G) = 2
for p=4 and dn}(G) =3 forp > 6.

Proof By Theorem 2.22, dni(G) = 2. Now, we show that dn; (G) = 2
for p = 4 and dn{ (G) = 3 for p > 6. We consider two cases.

Case 1. p=4. Since G = K» 3, by Theorem 3.9 (b), dn] (G) = 2.
Case 2. p>6.Let S = {u,v,w} CV be such that no two vertices of S
are pairwise antipodal in G. If w lies on the u—v detour, then all the edges of
the cycle that constitute the u—v detour lie on the u—v detour and the edges
on the u~v geodesic lie either on the w—u detour or w—v detour. Similarly,
if w lies on the u—v geodesic, then all the edges of the cycle that constitute
the u~v detour lie on the u—v detour and the edges on the u-v geodesic
lie either on the w-u detour or w—v detour and hence it follows that S is
an edge detour set of G. Since no two vertices of S are pairwise antipodal,
it follows from Theorem 3.10 that no proper subset of two vertices of S is
an edge detour set of G. Thus S is a minimal edge detour set of G and so
dnf(G) > 1S =3.

Now, if dnj (G) > 3, then let M be a minimal edge detour set of G
with |M| > 4. Let S be any subset of M such that |S| = 3. If S contains a
pair of antipodal vertices, then by Theorem 3.10, M is not a minimal edge
detour set of G, which is a contradiction. Otherwise, no two vertices of S
are pairwise antipodal. Then, as in the first part of Case 2 of this theorem,
S is an edge detour set of G so that M is not a minimal edge detour set of
G, which is a contradiction. Hence dn{ (G) = 3. m]

The Theorems 3.9 and 3.11 give a partial answer to the following
problem.

Problem 8.12.  Characterize graphs G for which dn,(G) = dn{ (G).

Theorem 3.13. For every pair a, b of integers with 2 < a < b, there
exists an edge detour graph G with dny(G) = a and dnf(G) =b.

Proof. Let a = b. Then for any tree T with a end-vertices dn)(G) =
dn}(G) = a, by Theorem 3.9 (d). So, assume that 2 < a < b. Let C: vy,
v, U3, Vs, Us, Vs, U1 be the cycle of length 6. The graph G is obtained from
C by adding b + 1 new vertices 21, 22, ..., 2a—1, W, L1, 2, .-+, Tb—a+1
and joining each 2; (1 < ¢ < a—1) to vz, w to vy, v3 and vs and each z;
(1 £i<b-—a+1) to both vy and vas. The graph G is shown in Figure 3.2.

Let X = {xla 22y ---, xb—a+1}7 Y= {vla v2, vS}’ W= {7)41 Vs, Vs, w}
and Z = {zl, 22y ¢ony za_1}.
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Figure 3.2: G

First, we show that G is an edge detour graph. Let S = Z U {v} where
v € W. Then, for v € W, D(z;, v) = 6 if v = v5 and D(2;,v) =T if v # vg
(1 €1 € a—1). Since every edge of G lies on some z;—v (1 < i <a—-1,v €
W) detour, S is an edge detour set of G and so G is an edge detour graph.

Now, we show that dn,(G) = a. By Theorem 2.10, every edge detour
set of G contains Z. Clearly, Z is not an edge detour set of G and so
dn1(G) 2 |Z|+ 1 = a. Also, as above S is an edge detour set of G and so
dn,(G) < |S| = a. Therefore, dn,(G) = a.

Next, we show that dnf(G) = b. Let § = X U Z. Since D(z, ;) = 7
(1<i<a-1,1<j<b—a+1) and every edge of G lies on some z;—z;
detour, S is an edge detour set of G. We claim that S is a minimal edge
detour set of G. Assume, to the contrary, that S is not a minimal edge
detour set of G. Then there is a proper subset T" of S such that T is an
edge detour set of G. Since T is a proper subset of S, there exists a vertex
8 € S and s ¢ T. Since every edge detour set contains all end-vertices of
G, we must have s = z; for 1 < i < b—a+ 1, say s = ;. Since the edge
z1v; does not lie on any z—y detour for z, y € T, it follows that T is not an
edge detour set of G, which is a contradiction. Thus S is a minimal edge
detour set of G and so dn}(G) = |S| =a—1+b—a+1=b. Assume, to
the contrary, that dny (G) > b. Let M be a minimal edge detour set of G
with |M| > b. Then there exists at least one vertex, say v € M such that
v¢S=XUZ Thus v € WUY = {uv, vz, vs, vy, s, vs, W}

Claim 1. MNW = ¢. Assume, to the contrary, that M N W # ¢.
Then there exists a vertex v € M and v € W. Clearly, Z U {v} is a proper
subset of M and an edge detour set of G by the first part of the proof of
the theorem. This is a contradiction to the fact that M is a minimal edge
detour set of G.

Claim 2. X Z M. Assume, the contrary, that X C M. Then X UZ is a
proper subset of M and an edge detour set of GG, which is a contradiction
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to M a minimal edge detour set of G.

Claim 3. M N X # ¢. Assume, to the contrary, that M N X = ¢.
Then M = ZUT, T C Y and T # ¢. Then the edge v1z; (or vsz;)
(1 i <b-a+1) does not lie on any x—y detour for z, y € M. Hence M
is not an edge detour set of G, which is a contradiction. Thus we conclude
that M = ZUT U X', where T C Y, T # ¢ and X’ is a proper subset of X.
Therefore, there exists a vertex v € X such that v ¢ M, say v = z,. Then
the edge x;v; does not lie on any z—y detour in G for z, y € M. Hence
M is not an edge detour set of G, which is a contradiction. Therefore,
dnf(G) =b. m]

Remark 3.14.  The graph G of Figure 3.2 contains exactly five minimal
edge detour sets namely Z U {v}, where v € {v4, vs, vs, w} and X U Z.
Hence this example shows that there is no “Intermediate Value Theorem”
for minimal edge detour sets in edge detour graphs, that is, if k is an integer
such that dny(G) < k < dnj (G), then there need not exist a minimal edge
detour set of cardinality k in G.

Using the structure of the graph G constructed in the proof of
Theorem 3.13, we can obtain a graph H, of order n with dn,(G) = 2
and dnj (G) = n —7 for all n > 9. Thus we have the following.

Theorem 3.15.  There is an infinite sequence { H,} of edge detour graphs
H, of order n > 9 such that dny(Hy,) = 2, nlirrgodﬂﬁﬁ)- =0 and lim

n—oo
dn"'l (H,) =1.
n

Proof Letn >9and C: v, v, v3, ¥4, Us, s, 1 be the cycle of length
6. Then the graph H,, is obtained from C by adding n — 6 new vertices z,
w, T, &3, ..., Tn—g and joining z to va, w to eachv;, vz and vs and each
z; (1 <i < n-8) toboth v, and v3. The graph H, is shown in Figure 3.3.

Tn-8

Figure 3.3: H,

203



Let X = {221, T2y +eey xn—S}, Y = {vl, V2, '03}’ W= {‘04, Vs, Vs, w}
and Z = {z}. It is clear from the proof of Theorem 3.13 that the graph
G contains exactly five minimal edge detour sets namely Z U {v}, where
v € W and X U Z so that dn,(H,) = 2 and dn; (H,) = n — 7. Hence the
theorem follows. a
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