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Abstract

For two vertices u and v in a graph G = (V, E), the detour distance
D(u,v) is the length of a longest u—v path in G. A u—v path of length
D(u,v) is called a u—v detour. A set S C V is called a detour set
of G if every vertex in G lies on a detour joining a pair of vertices
of S. The detour number dn(G) of G is the minimum order of its
detour sets and any detour set of order dn(G) is a detour basis of
G. A set S C V is called a connected detour set of G if S is detour
set of G and the subgraph G[S] induced by S is connected. The
connected detour number cdn(G) of G is the minimum order of its
connected detour sets and any connected detour set of order cdn(G)
is called a connected detour basis of G. Certain general properties of
these concepts are studied. The connected detour numbers of certain
classes of graphs are determined. The relationship of the connected
detour number with the detour diameter is discussed and it is proved
that for each triple D, k, p of integers with 3 < k < p-D-+1 and
D > 4, there is a connected graph G of order p with detour diameter
D and ¢dn(G) = k. A connected detour set S, no proper subset of
which is a connected detour set, is a minimal connected detour set.
The upper connected detour number cdn*(G) of a graph G is the
maximum cardinality of a minimal connected detour set of G. It is
shown that for every pair a, b of integers with 5 < a < b, there is a
connected graph G with cdn(G) = a and cdn*(G) = b.
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1 Introduction

By a graph G = (V, E), we mean a finite undirected graph without loops
or multiple edges. The order and size of G are denoted by p and g respec-
tively. We consider connected graphs with at least two vertices. For basic
definitions and terminologies we refer to [1, 4].

For vertices u and v in a connected graph G, the detour distance D(u,v)
is the length of a longest u—v path in G. A u—v path of length D(u,v) is
called a u—v detour. It is known that the detour distance is a metric on the
vertex set V. The detour eccentricity ep(v) of a vertex v in G is the max-
imum detour distance from v to a vertex of G. The detour radius, radpG
of G is the minimum detour eccentricity among the vertices of G, while the
detour diameter, diampG of G is the maximum detour eccentricity among
the vertices of G. These concepts were studied by Chartrand et al. [2].

A vertex z is said to lie on a u—v detour P if z is a vertex of P including
the vertices u and v. A set § C V is called a defour set if every vertex
v in G lies on a detour joining a pair of vertices of S. The detour number
dn(G) of G is the minimum order of a detour set and any detour set of
order dn(G) is called a detour basis of G. A vertex v that belongs to every
detour basis of G is a detour vertez in G. If G has a unique detour basis S,
then every vertex in S is a detour vertex in G. These concepts were studied
by Chartrand et al. [3].

For a cut-vertex v in a connected graph G and a component H of G —v,
the subgraph H and the vertex v together with all edges joining v and
V(H) is called a branch of G at v. An end-block of G is a block containing
exactly one cut-vertex of G. Thus every end-block is a branch of G at the
cut-vertex v of G. The following theorem is used in the sequel.

Theorem 1.1. [3] Every end-vertez of a non-trivial connected graph G
belongs to every detour set of G. Also if the set S of all end-vertices of G
18 a detour set, then S is the unique detour basis for G.

Throughout this paper G denotes a connected graph with at least two
vertices.

2 Connected Detour Sets of a Graph

Definition 2.1. Let G = (V, E) be a connected graph with at least two
vertices. A set S C V is called a connected detour set of G if S is a detour
set of G and the subgraph G[S] induced by S is connected. The connected
detour number cdn(G) of G is the minimum order of its connected detour
sets and any connected detour set of order cdn(G) is called a connected
detour basis of G.
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Example 2.2. For the graph G given in Figure 2.1, the sets Sy = {v,
vs}, So= {1, vs} and Sz= {v1, v4} are the three detour bases of G so that
dn(G) = 2. It is clear that no two element subset of V' is a connected detour
set of G. However the set Sy = {v1, v2, v3} is a connected detour basis of
G so that cdn(G) = 3. Also the set S5 = {v1, v2, vs} s another connected
detour basis of G. Thus there can be more than one connected detour basis

for a graph G. vs
(2
v V2
V3
Figure 2.1: G

Example 2.3.  For the graph G given in Figure 2.2, the set S ={v1, va},
is a connected detour basis for G so that cdn(G) = dn(G) = 2.

V4 V3

n v2
Figure 2.2: G

Theorem 2.4. For any graph G of order p > 2, 2 < dn(G) < cdn(G) < p.

Proof. A detour set needs at least two vertices so that dn(G) > 2. Since
a connected detour set is also a detour set, dn(G) < cdn(G). Also, since
the graph G is connected, the set of all vertices of G is a connected detour
set of G so that cdn(G) < p. Thus 2 < dn(G) < cdn(G) < p. O

Corollary 2.5. For any connected graph G, if cdn(G) = 2, then dn(G) = 2.
We leave the following question as an open problem.
Problem 2.6.  Characterize graphs G for which dn(G) = cdn(G).

Remark 2.7. The bounds in Theorem 2.4 are sharp. For the path P3,
cdn(P3) = p. For the graph G given in Figure 2.1, dn(G) = 2. For the
graph G given in Figure 2.2, dn(G) = cdn(G). Also all the inequalities in
Theorem 2.4 can be strict. For the graph G given in Figure 2.3, p = T,
dn(G) = 3 and cdn(G) =5 so that 2 < dn(G) < cdn(G) < p.
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Definition 2.8. A vertez v in a graph G is a connected detour vertez if
v belongs to every connected detour basis of G. If G has a unique connected
detour basis S, then every vertex in S is a connected detour vertex of G.

Example 2.9. For the graph G given in Figure 2.4, S; = {u, w, z}, Sz
= {u, w, y}, Ss = {v, w, =} and Ss= {v, w, y} are the only four connected
detour bases. Thus the vertex w is the unigque connected detour verter of
G. For the graph G given in Figure 2.1, S4 and Ss are the two connected
detour bases of G as in Example 2.2 so that v; and vz are the two connected
detour vertices of G.

w

Figure 2.4: G

In the following we show that there are certain vertices in a non-trivial
connected graph G that are connected detour vertices of G.

Theorem 2.10. Every end-vertex of a connected graph G belongs to
every connected detour set of G.

Proof. Since every connected detour set of G is also a detour set of G
the result follows from Theorem 1.1 O

Theorem 2.11. Let G be a connected graph with cut-vertices and S a
connected detour set of G. Then for any cut-vertez v of G, every component
of G — v contains an element of S.

Proof. Let v be a cut-vertex of G such that one of the components, say
C of G — v contains no vertex of S. Let u € V(C). Since S is a connected
detour set of G, there exist vertices z,y € S such that the vertex u lies on
some z—y detour P : z = ug,¥1,...,4,...,4 =¥ in G. Let P, be the z—u
subpath of P and P, be the u—y subpath of P. Since v is a cut-vertex of G
both P; and P contain v so that P is not a detour, which is a contradiction.
Thus every component of G — v contains an element of S. O
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Corollary 2.12. Let G be a connected graph with cut-vertices and S a
connected detour set of G. Then every branch of G contains an element of
S.

Theorem 2.13. Let G be a connected graph with cut-vertices. Then
every cut-vertez of G belongs to every connected detour set of G.

Proof. Let G be a connected graph and v be a cut-vertex of G. Let G,
Ga, ..., Gk (k > 2) be the components of G — v. Let S be any connected
detour set of G. Then by Theorem 2.11, S contains at least one element
from each component G; (1 < < k) of G — v. Since G[S] is connected, it
follows that v € S. a

Corollary 2.14.  All the end-vertices and the cut-vertices of a connected
graph G belong to every connected detour set of G.

Proof.  This follows from Theorems 2.10 and 2.13. O

Corollary 2.15. If G is a graph of order p > 2 such that every vertez v
of G is either an end-vertex or a cut-vertez, then cdn(G) = p.

Proof. 'This follows from Corollary 2.14. O
Corollary 2.16. IfT is a tree of order p > 2, then cdn(T) = p.
Proof. This follows from Corollary 2.15 O

Remark 2.17. By Corollary 2.12, if S is a connected detour set of a
connected graph G, then every end-block of G must contain at least one ele-
ment of S. However, it is possible that the blocks of G that are not end-blocks
must contain an element of S that are not cut-vertices as well. For exam-
ple, consider the graph G of Figure 2.5, where the cycle Cy : vz, v3,v4, Ve, V2
is a block of G that is not an end-block. By Corollary 2.14, every con-
nected detour set of G must contain v1,va,v4 and vs. It is clear that the
set {v1,v2,v4,V5} is not a connected detour set of G. Thus every connected
detour set of G must contain at least one vertex from the block Cy4 that is
not a cut-vertez.

Vs
(L) 4 U5
v3
Figure 2.5: G
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Corollary 2.18. For any connected graph G with k end-vertices and |
cut-vertices, cdn(G) > maz{2,k +1}.

Proof. This follows from the Theorem 2.4 and Corollary 2.14 O

For the graph H and an integer k > 1, we write kH for the union of the
k disjoint copies of H.

Theorem 2.19. Let G = (K, UKy,U- - UK, UkK,)+v be a block graph
of order p = 4 such thatr 2 1, each n; = 2 and ny+nz+...+n.+k=p—1.
Then cdn(G) =7+ k+ 1.

Proof. Let uj,us,..., ux be the end-vertices of G. Let S be any connected
detour set of G. Then by Corollary 2.14, v € S and u; € S(1 < ¢ < k). Also
by Theorem 2.11, S contains a vertex from each component K,,(1 < i <r).
Now, choose exactly one vertex v; from each K, such that v; € S. Then
S| >r+k+1.Let T = {v, v, va, ..., vr, 11, Uz, ..., ug}. Since every
vertex of G lies on a detour joining a pair of vertices of T, it follows that T
is a detour basis of G. Also, since G[T is connected, cdn(G) =r+k+1. O

Remark 2.20. If the blocks of the graph G in Theorem 2.19 are not com-
plete, then the theorem is not true. For the graph G given in Figure 2.6,

there are two blocks and {vs, vg, vs, v7} is a connected detour basis so that
cdn(G) = 4.

Figure 2.6: G

In the following theorems we list down for certain classes of graphs G
for which cdn(G) = 2.

Theorem 2.21. Let G be o Hamilton graph of order p > 3. Then
cdn(G) = 2.

Proof. Let S = {u, v} be any set of two adjacent vertices in a Hamilton
cycle of G. Then clearly S is a connected detour set of G so that cdn(G) = 2.
a
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Remark 2.22.  The converse of Theorem 2.21 is not true. For the graph
G given in Figure 2.7, cdn(G) = 2 but G is not a Hamilton graph.

n ]

Figure 2.7: G

Theorem 2.28. Let G be the complete graph K, (p 2 2) or the cycle Cp
or the complete bipartite graph Kmn (m,n > 2). Then a set S of vertices
is a connected detour basis if and only if S consists of two adjacent vertices
of G.

Proof. If G is the complete graph K, (p > 2) or the cycle Cp, then it is
clear that any set of two adjacent vertices is a connected detour basis of G.
Let G be the complete bipartite graph Ky, », (2 <m <n). Let X and Y be
the bipartite sets of Ky n (2 <m < n) with X = {2,,22,...,Zm}. Let u €
X and v € Y. It is clear that D(u,v) = 2m—1.Let y € Y—{v}. Then the ver-
tex y lieson a u—v detour P : u = 21,%, T2, Y1, T3, ¥2, - - + 1 Tm—1y Ym—2: Tm, ¥,
where y1,¥2, - - -, Ym—2 € Y — {v,3}. Thus the set {u, v} is a connected de-
tour basis of Kp, 5.

Now, let S be a connected detour basis of G. Let S’ be any set consisting
of two adjacent vertices of G. Then as in the first part of this theorem S’
is a connected detour basis of G. Hence |S| = |S’| = 2 and it follows that
the two vertices of S are adjacent. The converse is obvious. O

Corollary 2.24. If G is the complete graph K, (p > 2) or the cycle Cy
or the complete bipartite graph Kmn (m,n > 2), then cdn(G) = 2.

Proof. This follows from Theorem 2.23. O

Theorem 2.25. For each positive integer k > 2, there ezists a connected
graph G and a vertex v of degree k in G such that v belongs to a connected
detour basis of G and cdn(G) = k.

Proof Fork=2,let G=K;+v. Thendeggv=2=k,cdn(G)=2=k
by Corollary 2.24 and v belongs to a connected detour basis of G. For k > 3,
let G =(K3U (k—2)K;)+v. Then clearly deggv = k and by Theorem 2.13,
v belongs to every connected detour basis of G. Also, by Theorem 2.19,
cdn(G)=1+k-2+1=k. a
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It is proved in Theorem 2.4 that 2 < dn(G) < cdn(G) < p for any
connected graph G. Now, the following theorem gives a realization result
when 2<a<bd<p.

Theorem 2.26. For any three integers a,b and p with 2 < a < b < p,
there erists a connected graph G of order p with dn(G) = a and cdn(G) = b.

Proof. We consider two cases.

Case 1. 2 < a < b= p. Let P be a path of order p—a+ 2 and let G be the
graph obtained from P by adding a — 2 new vertices to P and joining them
to any cut-vertex of P. Then G is a tree of order p so that by Theorem 1.1,
dn{G) = a and by Corollary 2.16, cdn(G) =p=b.

Case 2. 2 <a<b<p Let C: z,2,...,2p-p+2,71 be a cycle of order
p—b+2andlet P:y1,¥2, ..., Yb—a+1 be a path of order b—a+1. Let H be
the graph obtained from C and P by identifying z; of C with y; of P. Let G
be the graph obtained from H by adding a —2 new vertices z1,z2,...,Zq—2
to H and joining each z;(1 < i < a—2) to the vertex ys—_q. Then the graph
G is connected of order p and is shown in Figure 2.8.

Let X = {z1,%2,...,%a-2,Yb—a+1} be the set of all end-vertices of G
and let Y = {y1,¥2,...,Yb—a} be the set of all cut-vertices of G. Now, we
show that dn(G) = a and cdn(G) = b. It is clear that the set X is not a
detour set of G so that dn(G) 2 [X|+1 = a. Let § = X U{22}. Since every
vertex of G lies on a detour joining a pair of vertices of S, S is a detour set
of G and hence it follows from Theorem 1.1 that S is a detour basis of G so
that dn(G) = a. By Corollary 2.14, every connected detour set of G contains
X UY. Since X UY is not a detour set of G and since T = X UY U {2} is

a connected detour set of G, it follows that cdn(G) = [T'| = b. a
Z3 22
Y2 Ys Yo—a Yo—a+1
21 = yl o 0 0 & 9
e o o zl
Zp-b+2 T2 . . Ta-2
Figure 2.8: G
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3 Connected Detour Number and Detour
Diameter of a Graph

In (3], an upper bound for the detour number of a graph is given in terms
of its order and detour diameter D as follows:

Proposition A [3] If G is a nontrivial connected graph of order p and
detour diameter D, then dn(G) <p—- D + 1.

Remark 3.1.  In the case of connected detour number cdn(G) of a graph
G, there are graphs G for which cdn(G) =p—D+1, edn(G) >p—-D+1
and cdn(G) < p— D + 1. For the graph G in Figure 3.1(a), p=8, D = 4.
Also by Theorem 2.19, cdn(G) = 5 so that cdn(G) = p — D + 1. Similarly
for the graphs G in Figure 3.1(b) and Figure 3.1(c), cdn(G) > p— D +1
and cdn(G) < p— D + 1 respectively.

(a) (b) (0

Figure 3.1: G

In the following we give conditions for the graph G so that cdn(G) >
p—D+1.

Theorem 3.2. Let G be a graph of order p > 2. If D = p -1, then
cdn(G) 2p—D+1.

Proof.  For any graph G, cdn(G) > 2. Since D = p—1, we have p—D+1 =
2 and s0 cdn(G) > p— D + 1. a

Remark 3.3. The converse of Theorem 3.2 is not true. For the groph
G given in Figure 3.2, p =7 and D = 3 so that p— D + 1 = 5. Also by
Theorem 2.19, cdn(G) = 6. Thus dn(G) >p—-D+1,but D#p—1.
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Figure 3.2: G

Theorem 3.4. Let G be a graph of order p > 2 such that every vertez v
of G is either an end-vertex or a cut-vertez, then cdn(G) 2 p—D + 1.

Proof. By Corllary 2.15, cdn(G) = p. Since D > 1, it follows that
cdn(G) 2p—D+1. O

The following theorem gives a realization result.

Theorem 3.5. For each triple D, k, p of integers with3 < k <p—-D+1

and D > 4, there exists a connected graph G of order p with detour diameter
D and cdn(G) = k.

Proof. Let G be the graph obtained from the cycle Cp: u;, us, ..., up,
u; of order D by adding k — 2 new vertices v;, vg, ..., Ux—2 and joining
each vertex v; (1 <i < k—2) to u; and adding p— D — k + 2 new vertices
w1, Wa, ..., Wp-p—k+2 8nd joining each vertex w; (1 <i < p—D—k+2) to
both u; and u3. The graph G is connected of order p and detour diameter
D and is shown in Figure 3.3.

Now, we show that cdn(G) = k. Let S = {w, v, va, ..., Vk—2} be the
set of all end-vertices together with the cut-vertex u; of G. It is clear that
S is not a detour set of G. Let T = SU {up}. Then every vertex of G lies
on a detour joining a pair of vertices of T and also G[T] is connected so
that T is a connected detour set of G. Now, it follows from Corollary 2.14
that T is a connected detour basis of G and so cdn(G) = k. O

U Uk—2

Wp—D—k+2

Figure 3.3: G
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4 Minimal Connected Detour Sets in a Graph

Definition 4.1. A connected detour set S in a connected graph G is
called a minimal connected detour set of G if no proper subset of S is a
connected detour set of G. The upper connected detour number cdn™(G) of
G is the mazimum cardinality of a minimal connected detour set of G.

Example 4.2.  For the graph G given in Figure 2.3, $1= {u, s, w, t, v}
and S; = {u, s, x, y, t, v} are the minimal connected detour sets of G so
that cdn(G) = 5 and cdn*(G) = 6.

Remark 4.3. Every minimum connected detour set is a minimal con-
nected detour set, but the converse is not true. For the graph G given in
Figure 2.3, S; = {u, 8, =, y, t, v} is @ minimal connected detour set of G
but not a minimum connected detour set of G.

Theorem 4.4. For any connected graph G, cdn(G) < cdn™ (G).

Proof.  Let S be any connected detour basis of G. Then S is also a minimal
connected detour set of G and hence the result follows. [m]

Corollary 4.5. Let G be any connected graph. If cdn(G) = p, then
cdnt(G) =p.

Remark 4.6. The bound in Theorem 4.4 is sharp. For the path Ps,
cdn(Ps) = cdn* (P3) = 3. Also for the graph G given in Figure 2.3, cdn(G) <
cdn*(G).

Now, we proceed to determine cdn™*(G) for some classes of graphs.

Theorem 4.7. Let G be the complete graph K,(p > 2) or the cycle Cy, or
the complete bipartite graph Km 5 (m,n 2> 2). Then a set S of vertices is a
minimal connected detour set of G if and only if S consists of two adjacent
vertices of G.

Proof. If S conmsists of any two adjacent vertices of G, then by
Theorem 2.23, S is a connected detour set of G so that S is minimal.
Conversely assume that § C V be a minimal connected detour set of G
with |S| > 3. Since G[S] is connected, there exists a subset ;= {u, v} of
S such that » and v are adjacent vertices in G. Then by Theorem 2.23, 5,
is a connected detour set of G so that S is not a minimal connected detour
set of G, which is a contradiction. 0

Theorem 4.8. a) If G is the complete graph Kp(p > 2) or the the
cycle C, or the complete bipartite graph Km n (m,n 2> 2), then cdn(G) =
cdn*(G) = 2.

b) If G is any nontrivial tree of order p, then cdn(G) = cdn*(G) = p.
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Proof.  a) This follows from Corollary 2.24 and Theorem 4.7.
b) By Corollary 2.15, the set of all end-vertices and cut-vertices of G is the
unique detour basis of G and so the result follows. a

Problem 4.9.  Characterize graphs G for which cdn(G) = cdn™*(G).
The following theorem gives a realization result.

Theorem 4.10. For every pair a, b of integers with 5 < a < b, there
exists a connected graph G with cdn(G) = a and cdn™(G) = b.

Proof. Let 5 < a=>b. Then by Theorem 4.8(b), cdn(T) = cdn*(T) = a
for any tree T with a vertices. Let 5 < a < b. Let G be the graph obtained
from the cycle C: vy, va, ..., Up—g+4, v1 Of order b — a + 4 by adding a — 3
new vertices ui, Uz, . .., 4a—3 and joining u; to v; and each u;(2 <i < a-3)
to vp—q+3 Of C. The graph G is connected of order b + 1 and is shown in
Figure 4.1. Let X = {'02, U3y ooy ’Ub—a+2}, Y = {u1, U2, ...y Ug—3, V1,
Vb—a+3} and Z= {Up—a+4}.

U

Vp-a+2

Ug-3

Figure 4.1: G

First, we show that cdn(G) = a. By Corollary 2.14, every connected
detour set of G contains Y. Clearly Y is not a connected detour set of G
and so cdn(G) 2 |Y]+ 1 = a. On the other hand, it is clear that the set
S =Y U Z is a connected detour set of G and so cdn(G) < a. Therefore
cdn(G) = a.

Now, we show that cdn*(G) = b. Let §' = X UY. Then it is clear that
S’ is a connected detour set of G. We show that S’ is a minimal connected
detour set of G. Assume, to the contrary, that S’ is not a minimal connected
detour set of G. Then there is a proper subset T of S’ such that T is a
connected detour set of G. Since T is a proper subset of S’, there exists
a vertex v € §' and v ¢ T. By Corollary 2.14, every connected detour set
contains Y and so we must have v =v; € X forsome ¢ (2 <i<b—a+2).
Then it is clear that G[T] is not connected and so T is not a connected
detour set of G, which is a contradiction. Thus S’ is a minimal connected
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detour set of G and so cdn*(G) > |S’| = b. Now, if cdn*(G) > b, then let
M be a minimal connected detour set of G with |M| > b + 1. Since G has
b+ 1 elements and S’ is & minmal connected detour set of G, it follows that
M is not a minimal connected detour set of G, which is a contradiction.
Therefore, cdnt(G) = b. a

Remark 4.11. The graph G in Figure 4.1 contains exactly 2 minimal
connected detour sets namely X UY and Y U Z. Hence this example shows
that there is no “Intermediate Value Theorem” for minimal connected de-
tour sets, that is, if k is an integer such that cdn(G) < k < cdn*(G), then
there need not exist a minimal connected detour set of cardinality k in G.

Using the structure of the graph G constructed in the proof of
Theorem 4.10, we can obtain a graph H, of order n with cdn(G) = 5
and cdn*(G) = n — 1 for all n > 6. Thus we have the following.

Theorem 4.12.  There is an infinite sequence {H,} of connected graphs
H, of order n > 6 such that cdn(H,) = 5, cdn*(H,) = n — 1,

+
lim, oo ﬂ"ni‘l =0 end lim, o °—d"n—(&l =1.

Proof. Let H, be the graph obtained from the cycle C: vy, v3, ..., ¥n—2,
v of order n—2 by adding two new vertices u;, uz and joining u; to v1 and
ugp t0 vp—3 of C. The graph H,, is connected and is shown in Figure 4.2.

Un-4
Figure 4.2: H,

Let X = {v2, v3, ..., Un—a}, Y = {1, u2, v1, vn—3} and Z = {v,—2}.
It is clear from the proof of Theorem 4.10 that the graph H, contains
exactly 2 minimal connected detour sets namely X UY and Y U Z so that
cdnt(H,) =n — 1 and cdn(H,) = 5. Hence the theorem follows. a
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