On the Connected Geodetic Number of a Graph
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Abstract

For a connected graph G of order p > 2, aset S C V(G) is a
geodetic set of G if each vertex v € V(G) lies on an z-y geodesic for
some elements = and y in S. The minimum cardinality of a geodetic
set of G is defined as the geodetic number of G, denoted by g(G). A
geodetic set of cardinality g(G) is called a g-set of G. A connected
geodetic set of G is a geodetic set S such that the subgraph G[S]
induced by S is connected. The minimum cardinality of & connected
geodetic set of G is the connected geodetic number of G and is de-
noted by g-(G). A connected geodetic set of cardinality g.(G) is called
a g.-set of G. Connected graphs of order p with connected geodetic
number 2 or p are characterized. It is shown that for positive integers
r,d and n > d + 1 with r < d < 2r, there exists a connected graph
G of radius r, diameter d and g.(G) = n. Also, for integers p,d and
nwith2<d<p-1,d+1<n<p, there exists a connected graph
G of order p, diameter d and g.(G) = n.
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1 Introduction

By agraph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and ¢
respectively. For basic graph theoretic terminology we refer to Harary [4].
For vertices = and y in a connected graph G, the distance d(z,y) is the
length of a shortest z-y path in G. An z-y path of length d(z, y) is called an
z-y geodesic. A vertex v is said to lie on an z-y geodesic P if v is a vertex of
P including the vertices « and . For any vertex u of G, the eccentricity of u
is e(u) = max{d(u,v) : v € V}. The radius rad G and diameter diam G are
defined by rad G = min{e(v) : v € V} and dieam G = max{e(v) : v € V}
respectively. The neighborhood of a vertex v is the set N(v) consisting of
all vertices u which are adjacent with v. A vertex v is an extreme vertez of
G if the subgraph induced by its neighbors is complete. For a cut-vertex v
in a connected graph G and a component H of G — v, the subgraph H and
the vertex v together with all edges joining v and V(H) is called a branch
of G at v.

The closed interval I[z,y] consists of all vertices lying on some z-y

geodesic of G, while for S C V, I[S] = |J I[z,y]. A set S of vertices

z,y€

is a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set
is the geodetic number g(G). A geodetic set of cardinality g(G) is called a
g-set. The geodetic number of a graph was introduced in [1, 5] and further
studied in [2]. It was shown in [5] that determining the geodetic number of
a graph is an NP-hard problem. Geodetic concepts were first studied from
the point of view of domination by Chartrand, Harary, Swart, and Zhang
in [3], where a pair z,y of vertices in a nontrivial connected graph G is
said to geodominate a verter v of G if v € I[x,y], that is, v lies on an z-y
geodesic of G. In [3], geodetic sets and the geodetic number were referred
to as geodominating sets and geodomination number.

The concept of connected geodomination number was introduced by
Mojdeh and Rad in [6]. A connected geodominating set of G is a geodomi-
nating set S such that the subgraph G[S] induced by S is connected. The
minimum cardinality of a connected geodominating set of G is the con-
nected geodomination number of G and is denoted by g.(G). A connected
geodominating set of cardinality g.(G) is called a g.-set of G. We refer to a
connected geodominating set and the connected geodomination number of
a graph G as a connected geodetic set and the connected geodetic number
of G.

Consider the graph G of Figure 1.1. For the vertices u and y in G,
d(u,y) = 3 and every vertex of G lies on an u-y geodesic in G. Thus
S = {u,y} is the unique minimum geodetic set of G and so g(G) = 2. Here
the induced subgraph G[S] is not connected so that S is not a connected
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geodetic set of G. Now it is clear that T = {u,v,z,y} is 2 minimum con-
nected geodetic set of G and so g.(G) = 4. The following theorems will be
used in the sequel.

z

w
G

Figure 1.1

Theorem 1.1. [2] Every extreme vertex of a connected graph G belongs
to every geodetic set of G.

Theorem 1.2. [5] For any tree T with k end vertices, g(T') = k.

Throughout the following G denotes a connected graph with at least
two vertices.

2 Some Results on the Connected Geodetic
Number

Theorem 2.1. Every extreme vertez of a connected graph G belongs
to every connected geodetic set of G. In particular, every end vertez of G
belongs to every connected geodetic set of G.

Proof.  Since every connected geodetic set is also a geodetic set, the result
follows from Theorem 1.1. O

Corollary 2.2.  For the complete graph K,(p > 2), g.(Kp) = p.

Theorem 2.8. Let G be a connected graph with cut vertices and let S be
a connected geodetic set of G. Ifv is a cut vertez of G, then every component
of G — v contains an element of S.

Proof.  Suppose that there is a component B of G at a cut vertex v such
that B contains no vertex of S. Let u € V(B). Since S is a connected
geodetic set, there exists a pair of vertices x and y in S such that u lies in
some z-y geodesic P : T = ug,U1,...,%,...,Un = ¥ in G. Since v is a cut
vertex of G, the z-u subpath of P and the u-y subpath of P both contain
v, it follows that P is not a path, contrary to assumption. O
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Corollary 2.4. Let G be a connected graph with cut vertices and let S be
a connected geodetic set of G. Then every branch of G contains an element
of S.

Theorem 2.5. Ewvery cut vertez of a connected graph G belongs to every
connected geodetic set of G.

Proof. Let v be any cut vertex of G and let G;,Gy,...,G.(r > 2) be the
components of G — {v}. Let S be any connected geodetic set of G. Then
by Theorem 2.3, S contains at least one element from each G;(1 < i < 7).
Since G[S] is connected, it follows that v € S. O

Corollary 2.6. For a connected graph G with k extreme vertices and |
cut vertices, g.(G) = max{2,k +1}.

Proof. This follows from Theorems 2.1 and 2.5. 0
Corollary 2.7.  For any non-trivial tree T of order p, g.(T) = p.
Proof.  This follows from Corollary 2.6. 0

Theorem 2.8.  For a connected graph G of order p, 2 < g(G) < g.(G) <
p.

Proof. Any geodetic set needs at least two vertices and so g(G) > 2.
Since every connected geodetic set is also a geodetic set, it follows that
9(G) < g.(G). Also since V[G] induces a connected geodetic set of G, it is
clear that g.(G) < p. O

Remark 2.9. The bounds in Theorem 2.8 are sharp. For any non-
trivial path P, g(P) = 2. For any tree T, g.(T) = p by Corollary 2.7.
For the complete graph K,, g(Kp) = g.(Kp). Also, all the inequalities in
the theorem are strict. For the graph G given in Figure 2.1, g(G) = 3,
9:(G) =5 and p=6 so that 2 < g(G) < g(G) < p.

Z
X
y
u v
w
G
Figure 2.1
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Corollary 2.10. Let G be any connected graph. If g.(G) = 2, then
9(G) =2.

The following Theorems 2.11 and 2.12 characterize graphs for which
9:(G) = 2 and g.(G) = p respectively. ’

Theorem 2.11. Let G be a connected graph of order p > 2. Then G =
K> if and only if g.(G) = 2.

Proof. If G = K, then g.(G) = 2. Conversely, let g.(G) = 2. Let § =
{u,v} be a minimum connected geodetic set of G. Then uv is an edge. If
G # K>, then there exists a vertex w different from u and v. Then w can not
lie on any u-v geodesic, so that S is not a g.-set, which is a contradiction.
Thus G = Ka. O

Theorem 2.12. Let G be a connected graph. Then every vertez of G is
either a cut vertex or an extreme vertex if and only if g.(G) = p.

Proof. Let G be a connected graph with every vertex of G is either a cut
vertex or an extreme vertex. Then the result follows from Theorem 2.1 and
Theorem 2.5.

Conversely, suppose g.(G) = p. Suppose that there is a vertex z in
G which is neither a cut vertex nor an extreme vertex. Since z is not an
extreme vertex, N (z) does not induce a complete subgraph and hence there
exist u and v in N(z) such that d(u,v) = 2. Clearly z lies on a u-v geodesic
in G. Also, since z is not a cut vertex of G, G — z is connected. Thus
V —{x} is a connected geodetic set of G and s0 g¢(G) < |V —{z}| =p-1,
which is a contradiction. O

We leave the following problem as an open question.
Problem 2.18.  Characterize graphs G for which g.(G) = g(G).

We denote the vertex connectivity of a connected graph G by x(G)
or k.

Theorem 2.14. IfG is a non-complete connected graph such that it has
a minimum cut set, then g.(G) <p— &(G) +1.

Proof. Since G is non-complete, it is clear that 1 < x(G) < p — 2. Let
U = {u1,u2,...,us} be a minimum cut set of G. Let G1,Ga,...,Gr(r 2 2)
be the components of G — U and let S = V(G) — U. Then every vertex
u;(1 < i £ k) is adjacent to at least one vertex of G; forevery j (1 < j < 7).
It is clear that S is a geodetic set of G and G[S] is not connected. Also, it
is clear that G[S U {z}] is a connected geodetic set for any vertex z in U
so that g.(G) < p—«k(G) + 1. O
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Remark 2.15. The bound in Theorem 2.14 is sharp. For the cycle G =
C4, 9¢(G) = 3. Also k(G) =2, p—k(G)+1 = 3. Thus g.(G) = p—k(G)+1.

Corollary 2.16. IfG is a connected non-complete graph having no cut
vertices, then g.(G) <p-—1.

Proof. Since k(G) > 2, the result follows from Theorem 2.14. a

For every connected graph G, rad G < diam G < 2 rad G. Ostrand
[7] showed that every two positive integers a and b with a < b < 2a are
realizable as the radius and diameter, respectively, of some connected graph.
Mojdeh and Rad [6] showed that g.(G) > diam G + 1. Ostrand’s theorem
can be extended so that the connected geodetic number can be prescribed
when ¢.(G) = diam G + 1.

Theorem 2.17.  For positive integersr,d andn > d+1 withr < d < 2r,
there exists a connected graph G with rad G = r, diam G = d and g.(G) =
n.

Proof. Ifr=1thend=1o0r2 Ifd=1,let G= K, Then by
Corollary 2.2, g.(G) = n. If d = 2, let G = K} »—1. Then by Corollary 2.7,
9c(G) = n. Now, let » > 2. We construct a graph G with the desired
properties as follows:

Case 1. Suppose r =d. For n =d+ 1, let G = Cs,. Then it is clear that
r = d. It is easily seen that g.(G) = d+1 = n. Now, let n > d + 2. Let
Kn_r41 be the complete graph with V(Kn_r41) = {21,22,...,Zn—r+1}
and let Ca, be the even cycle with V(Cs,) = {u1,ua,...,us,}. Let G be
the graph obtained from K, _,4; and Co, by identifying the edge ;22 in
Ky —r41 With yjup in Cy. The graph G is shown in Figure 2.2.

G

Figure 2.2

It is easily verified that the eccentricity of each vertex of G is r so that
rad G = diam G = r. Let S = {23,24,...,Zn—r+1}. Then S is the set of
all extreme vertices of G with |S] = n —r — 1. It is clear that S is not a
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connected geodetic set of G. Let T = S U {u1, ua,us,...,ur41}. It is clear
that T is a connected geodetic set of G and so g.(G) < |T| = n. Now, if
gc(G) < n, then there exists a connected geodetic set M of G such that
|M| < n. By Theorem 2.1, M contains S and since |M| < n, M contains
at most r vertices of Cs,. Since M is a connected geodetic set of G, z; or
T2 must belong to M. We consider two cases.

Case a. Suppose x; € M and =2 ¢ M. Since M is a connected geodetic set
of G and [M| < n, M contains at most the vertices z, = uy, u2r, ¥2r-1,-...,
Ur42 Of Car. Then u,,.; does not lie on any geodesic joining a pair of vertices
of M and so M is not a connected geodetic set of G, which is a contradiction.

Case b. Suppose z;, T2 € M. Now we may assume without loss of gener-
ality that M contains at most the vertices z; = u;, T2 = ua, u3,...,ur of
C2,. Then u,4; does not lie on any geodesic joining a pair of vertices of M
and so M is not a connected geodetic set of G, which is a contradiction.
Thus g.(G) = n.

Case 2. Suppose r < d < 2r. Let Car : v1,v2,...,v2,v1 be a cycle of
order 2r and let Py_,4) : ug, %1,...,Ud-r e a path of order d —r + 1. Let
H be a graph obtained from C, and Pj—,41 by identifying v, in Ca, and
ug in Py_y41. Now, we add n—d — 1 new vertices wy, w2, ..., Wn—q4~1 to the
graph H and join each vertex w;(1 <% < n—d — 1) to the vertex ug_r—1
and obtain the graph G of Figure 2.3.

Vrel n 2 Ug-r-1 Ud-r

w .o Wn-d-1

Figure 2.3

Then rad G = r and diam G = d. Let S = {v,u3,uz,...,Ud—r, W1, W,
.-+ »yWn-d—1} be the set of all cut vertices and extreme vertices of G.
By Theorems 2.1 and 2.5, every connected geodetic set of G contains S.
It is clear that S is not a connected geodetic set of G. Let T = S U
{v2,vs,...,vr+1}. It is clear that T is a connected geodetic set of G and so
9¢(G) £ |T| = n. Then by an argument similar to that given in the proof
of Case 1 of this theorem, it can be proved that g.(G) = n. a

Theorem 2.18. If p,d and n are integers such that2 <d < p—1 and
d+1 < n < p, then there exists a connected graph G of order p, diameter
d and g,(G) =n.
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Proof. We prove this theorem by considering two cases.

Case 1. Letd=2.If n=d+1, then n = 3. Let P3 : u;,us,u3 be the
path of order 3. Now, add p — 3 new vertices wy,ws,...,wp-3 to P;. Let G
be the graph obtained by joining each w; (1 <% < p—3) to u; and u3. The
graph G is shown in Figure 2.4. Then G has order p and diameter d = 2.
Clearly, S = {u,, u2,u3} is a minimum connected geodetic set of G so that
9:(G) =3=mn.

u /4] U3
&

WP..S
G

Figure 2.4

Now, let d +2 < n < p. Let K,_; be the complete graph with the
vertex set {w1,ws,...,Wp—n+1,V1,V2,...,Vn—2}. Now add the new vertex
z to Kp_,. Let G be the graph obtained by joining z with each w;(1 < ¢ <
p —n + 1). The graph G is shown in Figure 2.5. Then G has order p and
diameter d = 2.

Figure 2.5
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By Theorem 2.1, every connected geodetic set of G contains S = {vy,v2,
.« +;Un—2} of all extreme vertices of G. It is clear that S is not a connected
geodetic set of G. Now, let S’ = S U {z}. Clearly, I[S'] = V(G) and
I[SU{w;})# V(G) for i =1,2,...,p— n+ 1. Since the induced subgraph
G[S’] is not connected, g.(G) > n—1. Let T = §'U {wn }. Clearly, T is a
connected geodetic set of G and s0 g.(G) = n.

Case 2. Let3 <d < p—2.Let Py41 : up,u1,us,...,uq be apath of length
d. Add p — d — 1 new vertices wy,w2,. .., Wpen,¥1,¥2,--+,Vn-d-1 t0 Fa41
and join wy, Wo, ..., Wp—n to both up and u2 and join vy, v2,...,Vn-d-1 tO
u4-1, there by producing the graph G of Figure 2.6. Then G has order
p and diameter d. Let S = {u2,us,...,ud, V1,V2,...,Un—d—1} be the set
of all cut vertices and extreme vertices of G. By Theorems 2.1 and 2.5,
every connected geodetic set of G contains S. It is clear that S is not a
connected geodetic set of G. Now, let S’ = S U {uo}. Clearly, I[S’] = V(G)
and I[SU {y}] # V(G) for y € {u1, w1, w2, ...,wp—g—1}. Since the induced
subgraph G[S’] is not connected, gc(G) > n—1. Let T = §'U{, }. Clearly,
T is a connected geodetic set of G and so g.(G) = n.

Uo u uz us Uy Ud-2 Ug-1 Ug
—@ @ —0— ..o
v . s Vy_d-1
V2
Wp-n
G
Figure 2.6

Case 3. Let d =p— 1. Then n = p. Let G be the path of order n. Then,
by Corollary 2.7, g.(G) = n. a

We proved (Theorem 2.8) that 2 < g(G) < go(G) < p. The following
theorem gives a realization for these parameters when 2 <a < b < p.

Theorem 2.19. Ifp,a and b are positive integers such that2 <a <b <
P, then there exists a connected graph G of order p, g(G) = a and g.(G) = b.
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Proof. 'We prove this theorem by considering two cases.

Case 1. 2 <a<b=p. Let G be any tree with a pendent vertices. Then
by Theorem 1.2, g(G) = a and by Corollary 2.7, g.(G) = p.

Case 2. 2<a<b<p Let Pp_gya : u1,U2,...,Up—qg42 De a path of
length b—a+1. Add p—b+a—2 new vertices wy, wa, ..., Wp—b, V1,V2y...,Va—2
to Py_g4+2 and join wy,wz,...,Wwp-p to both u; and u3 and join vy, vs,...,
Vg—2 t0 Up—_q41, there by producing the graph G of Figure 2.7. Then G has
order p and S = {Up—a+2,v1,V2,...,Va—2} is the set of all extreme vertices
of G. It is clear that S is not a geodetic set of G. On the other hand, SU{u;}
is a geodetic set of G and it follows from Theorem 1.1 that g(G) = a. By
an argument exactly similar to the one given in Case 2 of Theorem 2.18, it

can be proved that g.(G) = b. O
w uz u3 Us Upgn Ub-a®2
—® & ®— oo
vl . ® . va—2
V)
Wp -b
G
Figure 2.7
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