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Abstract

A subset D of the vertex set V(G) of a graph G is said to be
a dominating set of G, if each v € V — D is adjacent to at least
one vertex of D. The minimum cardinality of a dominating set of
G is called the domination number of G and is denoted by ¥(G). A
dominating set D with cardinality v(G) is called a v-set of G. Given
a graph G, a new graph, denoted by 7 -G and called v-graph of G, is
defined as follows: V(«-G) is the set of all y-sets of G and two sets D
and S of V(v-G) are adjacent in v-G if and only if |DNS| = v(G)-1.
A graph G is said to be y-connected if v - G is connected. A graph
G is said to be a v-graph if there exists a graph H such that v. H
is isomorphic to G. In this paper we show that trees and unicyclic
graphs are v-graphs. Also we obtain a family of graphs which are
not «y-graphs.
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1 Introduction

We consider only simple graphs. For all graph theoretic terminology we
refer to Bondy and Murty [1). If G is a graph, a subset D of V(G) is called
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dominating set of G if every vertex in V — D is adjacent to at least one
vertex of D. The domination number (G) of G is the minimum cardinality
of a dominating set of G. A dominating set with minimum cardinality is
called a v-set of G. Two «y-sets D and S of G are said to be y-exchangeable
if |DN S| = ¥(G) — 1, or equivalently, there is a vertex € D and a vertex
v € § such that D — {u} =S — {v}.

In (2], we have introduced the concept of y-graph of a graph G.

The vertex set V(7 - G) of the vy-graph « - G is the set of all y-sets of G
and for two sets D, S € V(v-G), D and S are adjacent in - G if and only
if the y-sets D and S of G are y-exchangeable.

In [2], we have obtained «-graphs of some standard graphs. A graph G is
said to be y-connected if the y-graph -G is connected. If G is y-connected,
then given y-sets D and S, there exist y-sets D = Dy, D,,...,D, = 8 (for
some k) such that [D; N Diy| =9(G) —1fori=1,2,...,k—1.In [3] it
was shown that every tree is y-connected.

The following question naturally arises.

“For which graphs G, does there exist a graph H such thaty- H =G ?”

In this paper we prove that trees and unicyclic graphs are v-graphs.
If S is a v-set of the graph G and = € S, then pn(S,z) = {y € V(G) :
Ny]n S = {z}}, is called the private neighbourhood of = with respect to
the y-set S.

2 Main Results

Theorem 2.1. For every tree T, there ezists a graph G such that v-G =
T.

Proof. 'We prove the theorem by induction on n = |V(T)|. f n = 1,2 or
3, we take G to be Ky, with m > 2 or P» or P;. We observe that in all
these case if S is a y-set of G and z € S, then pn(S,z) # {z}. We now
assume that, each tree of order < k is v - G for some graph G and for every
v-set S of G and to each z € S,pn(S,z) # {z}. Let T be a tree of order
k + 1. Let u be a pendant vertex of T and w be the vertex of T adjacent
to u.

Let T' = T — {u}. By induction hypothesis, there exists a graph G
with v- G = T'. For each ¢ € V(T”), let S; be the corresponding 7-
set of G. Note that pn(S;,a) # {a} for all a € S,. Let v(G) = m, let
Sw = {v1,v2,v3,...,vm} be the y-set of G corresponding to the vertex w
to T".

We now construct a graph H as follows:

1. V(H) = V(G)U{z,y,a1,az,...,az2m} where the set {z,y,a1,az,...,
azm} is disjoint from the set V'(G).
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2. E(H)=E(G)U {a:y, ra;:1<i< 2m} 8 {v;agi,viagi_l, 1< m}
It can be easily verified that H has the following properties

(i) v(H)=v(G)+1=m+1and {y,v1,v2,...,Vm} is a y-set of H.

(ii) For every D C V(G),D is «v-set of G if and only if DU {z} is a
~-set of H.

(iii) The number of y-sets of H is |V(T)|.

(iv) If S is a v-set of H, then either S = {y,v1,v2,...,9m} or § =
S, U {z} for some a € V(T").
(This follows from the fact that pn(S,,b) # {b} in T, for all
beS,).

In v - H, the vertex representing the vy-set {y,v1,v2,...,9m} is adjacent
only to the vertex representing {z,v1,v2,...,Um}. Thus y- H = T, and for
every v-set S of H, pn(S,u) # {u} for all u € S.

O

Remark 2.2. Using the proof technique of Theorem 2.1, we obtain the
following:

Let G be a graph such that v- H = G for some graph H and for every
v-set S of H, pn(S,u) # {u} for all u € S. Let G* be the graph obtained
from G by attaching a pendant vertez to any vertez of G. Then there exists
a graph H* such that v- H* = G*.

We now proceed to prove that unicyclic graphs are y-graphs.

The Harary graph Hp, 2, is defined as follows:

Let V(Hpar) = {0,1,...,m — 1} and E(Hp2r) = {i(i £ j) : ¢ =
0,1,...,nand j =1,2,...,7}. Here i + j is computed modulo m.

Theorem 2.3. < Hant1,2n = Cans1-

Proof. Clearly {{i,i+2n},{i,i+2n+1}:i=0,1,2,...,2n} is the set
of all y-sets of Hyn41,2n and hence it follows that - Hani1,20 = Can+1. O

Theorem 2.4. For every cycle Cp, there exists a graph G such that
v-G=Cp(n=3)

Proof. Casei. C, is an odd cycle.

By Theorem 2.3, if G = Hyn41,2n then v+ Hyny1 20 = Cani1. Thus it is
enough to prove that for the odd cycle Cyn 43 there exists G such that v-G =
Cin+3. Consider the graph Go = Han41,2n With V(Go) = {vo,v1, ... »Van}
and E(Go) = {vi,vir : 7 = £1,%2,...,£0;0 < i < 4n} (where addition
is done under modulo (4n + 1)).

Let us construct a graph G from Gy as follows:
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V(G) = V(Go) U {a,a’,b,¥,¢,¢,d,d'} and

E(G) = E(Go) U {aad’, ab,ab’,ad,ad’'} U {a'b,a't',d’c,a’c'}

WU{vic,vic’ : 0 <@ < 2n— 1} U {v;d, vid' : v; = vap, Vsn}-
Clearly v(G) = 3.

Note that if a v-set S of G contains a’ then a € S and either v, or
van € S. If o’ € S then v; € S for some 4,0 < i < 2n—1. The v-sets of G are
{0, v2n, '}, {¥2n, V4n, a'}; {V2n—1,Van, @’} and {v;, vis2n, a}; {vi, Visrzn+1, 0}
forall7,0<i<2n-1.

Hence v - G = Cyn43.

Case ii. C, is an even cycle.
‘We construct a graph G as follows:
V(G) = {a,-,bi,ug, v;:1<:1< n}
U{zij,0i5:1=1,2,...,mn—2,i<j <2} and
E(G) = {a:b;, aiui, aiv;, bius, biv; }
U{aix,-,-,b,-y,-_.,- :1<i<ji< n}
U{b;zij, a541%i5, 4595, b1ty : 1 S < j < n}.
If S is a v-set of G, then S N {a;, b;, ui,v:} # O for each 4,1 < ¢ < n and
hence ¥(G) = n. Also {a; : 1 <i < n} is a dominating set of G and hence
¥(G) =n.

Now, let S be any v-set of G. If SN {a;,b;} = @ for some i, then both
©i,v; € S and hence |S| > n, which is a contradiction. Hence SN{a;,b;} # @
and in fact |SN{a:b;}| = 1 for all . Hence S can be represented by a vector
(a1,00,...,05) where

L 0 ifa; €8
H=11 ifbh €S

Note that the y-sets {a; : 1 < ¢ < n} and {b; : 1 < i < n} are respectively
represented by (0,0,...,0) and (1,1,...,1). We claim that in the represen-
tation (a),asz,...,a,) of a v-set S of G, zeros will appear together and
ones will appear together.

Suppose oy = 0 and o; = 1 for some i > 1. Thena; € S, b; ¢ S and
b; € S. Since S dominates the vertex g, it follows that b;+; € S and hence
;41 = 1. Thus a; =1 for all j > i. By a similar argument we can prove
that if oy =1 and a; = 0 for some ¢ > 1, then a; =0 for all j > <.

Further any such vector (o3, s, ...,0s) represents a «y-set of S. Hence
there are exactly 2n ~v-sets of G, namely, (0,0,...,0),(1,0,0,...,0),
1,1,0,...,0),..., (1,1,...,1,0), (1,1,1,...,1), (0,1,1,...,1),
0,0,1,1,...,1),...,(0,0,...,0,1) and 7y - G = Cyn. O

Remark 2.5. Note that if G is the graph constructed in the proof of
Theorems 2.1 and 2.8, then whenever S is a y-set of G and = € S, we have

(S, z) # {z}.
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Using these observation and also Theorem 2.1 and 2.3 we have the
following;:
Theorem 2.6. IfG is either a tree or a unicylic graph then there exists
a graph H such thatv-H =G.

We now present a class of graphs which are not «y-graphs.

Theorem 2.7.  Let Az be the graph given in Figure 1. If Ag is an induced
subgraph of a graph H, then there exists no graph G such that v-G = H.
e d c

a b
Figure 1
Proof. Assume that Az is an induced subgraph of H. Let k = y(H).
Suppose there exists a graph G such that v- G = H. For each vertex u
of H, let S, be the v-set of G. Now, let abu be a triangle in H and let

S, = {wn,v2,vs,...,vx} and Sp = {wa,v2,v3,...,vx} where wy ¢ Sy, and
wa & Sg.

Ifwy ¢ Sy, then S, = {ws, vy, ..., s} for some w3 # w1, ws. fwz € S,
then v; ¢ S, for some i > 2 and hence Sy = {w2, w4, v2,..., Vi1, Vit1,-- -,
vk} for some w4 # v;. Since |SaNSy| = k—1 and w2 ¢ S,, we get wy € S,
so that wy = w;. Hence Sy, = {w1, w2, v2,...,Vi—1,Vis1y-.., Uk}

Hence S, is either (S, — {v:}) U{w2} for some ¢,i > 2 or (S, — {wr}) U
{ws3} where w3 # wy,w2. The set S, is said to be of type L'if S, = (Sa —
{wr}) U {ws} where wz # wy,w: and is said to be of type II if S, =
(Sa = {v:}) U {wz} for some ¢ > 2. Since Aj is an induced subgraph of H;
abc, abd and abe are triangles in H. Hence at least two of Sc, Sy, Se, say Sc
and Sy are the same type.

If S, and S; are of type I then S; = (S, — {wr}) U {ws} and Sy =
(Sa — {w1}) U {ws} for some w3, ws # wy, wz. Then S — {w3} = Sq ~ {w4}
and hence cd is an edge in H, a contradiction. Also if S, and Sy are of
type II, then S. = (Sa — {v1:}) U {wa} and Sy = (S, — {vi2}) U {wa} for
iy # iz > 2. Then S; — {vi1} # Sa — {vi2} and hence cd is an edge in H, a
contradiction.

Thus, there is no graph of G such that H =~ - G. O

Theorem 2.7 shows that H is a forbidden subgraph for y-graphs. Hence
the following problems arise naturally.

Problem 2.8. Does there ezxist other forbidden subgraphs for y-graphs?
Problem 2.9. Obtain o characterization of y-graphs.
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