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Abstract

In this paper, we introduce an online tessellation partial automa-
ton to recognize partial array languages. We also introduce two
classes of partial array languages viz, Local Partial Array Languages
(PAL-LOC), Recognizable Partial Array Languages (PAL-REC) and
proved PAL-REC is exactly the family of partial array languages rec-
ognizable by online tessellation partial automaton.

Keywords. Partial array, recognizability, online tessellation partial
automaton (OTPA).

1 Introduction

Aldo de Luca [1] introduced the combinatorial method for the analysis of
finite words for the study of biological molecules and the partial words
were introduced by Berstel and Boasson [2] in the context of gene (or pro-
tein) comparison. To develop an overall picture of how genes are regulated
during hyphal development, the partial DNA array are used to study dif-
ference in gene expressions between wild type and the signaling mutants.
In [8] we introduced a combinatorial method for the analysis of finite par-
tial arrays. In this paper we introduce local partial array languages and
recognizable partial array languages and we construct an Online tessella-
tion Partial Automaton (OTPA). Using this OTPA, any living tissue can
be read by considering each cell as an array. The main motivation for the
introduction of partial array comes from molecular biology of nucleic acids.
There are several extensions to two-dimensional cases of the well-known
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notion of recognizability in terms of automata [5]. The first generalization
of finite state automata to two dimensions is given by Blum and Hewitt (3],
who introduced the notion of four-way automaton. An interesting model
of two-dimensional tape acceptor is the two-dimensional online tessellation
automaton introduced by Inoue and Nakamura [7]. This is a special type of
a cellular automaton. Giammarresi and Restivo have provided a definition
of recognizability in terms of local array languages [6]. In [9] we constructed
a three dimensional online tessellation automaton 3-OTA to recognize 3D
picture languages. This notion of recognizability is also established by dif-
ferent formalism namely 3D domino system and we proved that the family
of 3D languages recognized by 3D domino system coincides with 3D rec-
ognizable languages [10). In this paper we have extended the concept of
recognizability of picture languages to partial array languages and proved
that the family of recognizable partial array languages coincides with the
family of languages recognizable by online tessellation partial automata.

2 Basic Notations and Definitions

In this section we deal with basic concepts on arrays, partial words and
partial arrays.

Definition 2.1. Let T be a finite alphabet. A rectangular array over T
of size (m, n) is a rectangular arrangement of elements of £, having m rows
and n columns, where m,n > 0.

The set of all arrays over T (including an empty array A) is denoted by
I** and T+ =Z* — {A}.

Definition 2.2. Let ¥ be a finite alphabet and £* be the collection of all
words over . A word of length n over & can be defined by a total function,
u: {L,2,...,n} = X and is usually represented as u = ajaz...an, with
a; = u(t). The length of u is denoted by {u|. The word of length ‘0’ is called
the empty word and it is denoted by .

Definition 2.3. A partial word u of length n over T is a partial function
u: N — X, where n is the set of all natural numbers. For 1 < i < n, if
u(t) is defined, then we say that i belongs to the domain of u (denoted by
i € D(u)), otherwise, we say that i belongs to the set of holes of u (denoted
by i € H(u)). A word over T is a partial word over & with an empty set of
holes.

Definition 2.4. If u is a partial word of length n over X, then the com-
panion of u (denoted by u¢) is the total function ug : N — TU{0} defined
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by
. Juli) ifie D)
uo(i) = {o otherwise, where O ¢ £

The symbol ‘O’ is viewed as a ‘do not know’ symbol and not as a ‘do not
care’ symbol as in pattern matching.

Definition 2.5. A partial array A of size (m,n) over T is a partial
function A: 22 - . For 1 <i<m, 1< j<n, if A(4,j) is defined then
we say that (i,7) belongs to the domain of A (denoted by (i,j) € D(A)),
otherwise we say that (i,7) belongs to the set of holes of A (denoted by
(i,j) € H(A)). An array over X is a partial array over ¥ with an empty
set of holes.

Definition 2.6. If A is a partial array of size (m,n) over X then the
companion of A (denoted by Ag) is the total function Ag : Z2 — T U {0}
defined by
. A(i, ) i (3,5) € D(A)
Ao(i,5) =
o(i-) {0 otherwise, where Q € ¥

The symbol 0’ is viewed as a ‘do not know’ symbol and not as a ‘do not
care’ symbol as in pattern matching.

a b a
Example 2.1.  The partial array Ap = ( O b a ) is a companion
a O b
of partial array A of size (3,3) where
D(A) ={(1,1),(1,3),(2,2),(2,8),(2,2),(2,3),(3,1),(3,2),(3,3)} and
H(A) ={(1,2),(2,1)}.

Definition 2.7. If A and B are two partial arrays of equal size then A
is contained in B, denoted by A C B if D(A) C D(B) and A(i, j) = B(i, j)
for all (i,7) € D(A). The partial arrays A and B are compatible denoted by
A T B if there ezists a partial array C such that AC C and BC C.

a b a O b 0
As an example Ay = ( O b a |andBy=| a b a | arethe
a O b a O b
companions of two partial arrays A and B that are compatible.

The set of all partial arrays is denoted by X;*, where &, = ZU{0}. We
denote the empty array with no symbols by A and T}* = X7* — {A}. The
set of all partial arrays over ¥ of sizes (k,r), k < m, r < n is denoted by
Eer.

? Given any finite partial array A, we denote by B (A), the set of all
subarrays of A of size (k, ) such that if A is of size (m,n), then k < m,r <

239



n. For any array A € Z3*, of size (m,n) we denote by A, the array of size
(m + 2,n + 2) obtained by surrounding A by a special boundary symbol
# & . We call a tile a square array or partial array of size (2, 2).

Example 2.2. Let A € Z7°, then Bg,g(/i) is the collection of all subar-
rays or partial subarrays of A of size (2,2). For example if

a
A= a | ,then,
b
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3 Online Tessellation Partial Automata
(OTPA)

Inoue and Nakamura [7] have introduced the notion of online tessellation
automata to accept finite array languages and it was extended to infinite
array languages by V.R. Dare et al. [4]. In this section we introduce the
notion of acceptance of finite partial array languages by online tessellation
partial finite automata.

Definition 3.1. A deterministic (nondeterministic) online tessellation
partial automaton is M = (Zp,Q, Qn, Qo, F, 6) where T, = T U {0} is an
input alphabet, Q is o finite set of states, Qn is a finite set of hole states,
Qo C Q is a set of initial states, F C QU Qp, is a set of final states and
6:(QUQR) x (QUQL) x Tp = (QUQR)(29V2r) is a transition function
and it is defined as follows:

() g1,92,0) =a3:91,92,3 € Q, a €T

(i) 8(g:gn.0)=q1: 0,01 €Q, gn €Qn, 0 €X
(iii) o(gn.g0)=q1: 4,1 €Q, g €Qn,a €T
(iv) 0(gny1qhs1@) =q: G € Q, Qhy1qh; € Qr, A EX
(v) 8(91,92,0) = : 01,92 € Q, g €EQ

240



(vi) 69,95, 0) =an, 1 9 € Q, qhsqn. €Qn
(Vll) J(Q’u q, o) =@n, ‘g€ Q1 Gh,qn, € Qh
(Viii) é(th 1qha s 0) = @Ghns : Ghy, GhayGhs € Qh

A computation by a two-dimensional OTPA on a finite partial array A
of size m x n where

# # # - # #
# Qnl1 OGm2 *°* Qmn #
Ag= & : :
# an a2 -+ am #
# an a2 -+ an #

# # # - # #

with a;; € £, and # is a special symbol not in T is done as follows.

At time ¢t = 0, an initial state go € Qo is associated with all the po-

sitions of A holding #. The state associated with each position (4, j) by
the transition function §, depends on the states already associated with
the positions (4,5 — 1), (i — 1,7) and the symbol a;;. Let s;; be the state
associated with the position (i, §) if a;; € £ and sp; be the state associated
with the position (3, j) if a;; = 0. At time ¢ = 1, a state from &(go, 0, @11)
is associated with the position (1,1) holding a;;. If a1; € ¥ then, sy; is
the state associated with the position (1,1) and if a;; = 0, then s, is the
state associated with the position (1, 1). At time ¢ = 2, states are associated
simultaneously with positions (2,1) and (1,2) respectively holding a2; and
ayan.
Case i. If s;; is the state associated with the position (1,1) then the
state associated with the position (2,1)is an element of §(go, 811,a21) and
to the position (1,2) is an element of §(s11,g0,a12)- If a1 € %, then
8(qo, 811,a21) = s21 and if az; = O then 8(qo, 511, 0) = 3h,.

Similarly 8(s11, g0, 212) = 812 if a12 € Z if not §(s11,90, Q) = Sh,-

Case ii. If sp, is the state associated with the position (1,1) then the
state associated with the position (2,1) is an element of 8(qo, Ss,,a21) and
to the position (1,2) is an element of §(sn,,q0,@12), and they are given as
follows:

(i) 6(go, Sk, a21) =821 ifan €
(ii) 6(‘107 Shi» <>) = Shy
(iii) 6(sh,,g0,a12) =s12ifa12 €L

(iv) 6(31'51 » 40, 0) = Sh,-
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We then proceed to the next diagonal. The automaton stops its compu-
tation by reading the symbol a,,, and associating the state s, if @Gmn =
then sp, is the state associated. A run (or a computation) of a finite par-
tial array is an element of (Q U @x)™". A run for a finite partial array is a
sequence of states

8118921812531822813 . .. where sij € QU@

and it is denoted by r(M). The language of finite partial arrays recognized
by the non deterministic online tessellation automaton M is denoted by
L{M) and let L{OT P A) be the set of all partial array languages recognized
by OTPA’s.

Example 3.1. Let

# # H# H#H#
# a b O b #
i _# a b a O #
Ado= 4 6 b a b #
# a O b a #
# OH# #H# ##

An OTPA to recognize the above portial array A with boundary symbols is
given by
M= (EP’ Q) Qh) QO! F9 6)

T= {aab}; Q = {(Io,'h, 42}

Qo = {g0}; F = {g}

Qh = {ahyGha» Tnsr Gy}

(g0, 90,@) = q1; (g0, 91,0) = gn,
6(q1,90,0) = an,; 8(40,qr500) = @1
6(ths¢1h: [ b) = q2; J(th qo, b) =4q2
6(g0,q1,0) = q1; 0(q1,92,b) = 2
8(q2,92,0) = q1; 4(a2,90,0) = q
0(q1,92,b) = q2; 0(g2,q1,0) = qu
0(q1, q1,b) = q2; 0(q2,91,9) = gn,
0(q1,92,0) = Gns; 0(qhysQnsr b) = @2

4 Local and Recognizable Partial Array
Languages
In this section we introduce local partial array languages, recognizable par-

tial array languages and establish a relation between £(OT P A) and recog-
nizable partial array languages.
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Definition 4.1.  Let I, be a finite alphabet where T, =T U {0}. A two-
dimensional partial array language L C T'p* is local if there exist a finite set
6 of tiles over the alphabet T, U{#} such that L ={A€T}*/ B, 2(A) C 6}.

Therefore 8 represents the set of blocks or hollow blocks for pictures
belonging to the local language L. The language L is local if, given such a set

8, we can ezactly retrieve the language L. We call the set 8 a representation
by tiles for the local language L and write L = L(6).

Example 4.1. Let I', = {a,b} U {0} be an alphabet and let & be the
Jollowing set of tiles over T'p.

9={## Z1#] #F[Z] [E5] [515] [B15

#lol'[bolo’o[#][#]|al'[a][O]']|O]d]’
bl # #la al 0 Olb ala albd
bl#|'[#]a|'|ala|' |alb]"[#[#]|' | #1#]
#la b | # b|b al|0 010 O1b
#{# P [#[#P [0[0]' a0 [O]O]"[CO]0]
bl# 010 #la
bl#|'{alal|l’|#]ea

Then L(6) is a partial array language over T'p with equal sides of length,

the symbols along the first row and last column are b's, the symbols along

the last row and the first column except the first and last elements of the

principal diagonals are a's. The remaining elements of the array are holes.
The first two members of this language are given below

b b b b
BT RS
)aoob’
a a b
a a a b

Definition 4.2. Let © be o finite alphabet. A partial array language
L C 3}* is called recognizable if there exists a local partial array language
L' over an alphabet T'p and a mapping 7 : T, — I, such that L = n(L’).

Example 4.2. The set of all partial array languages over one letter
alphabet ‘a’ with all sides of equal length and the symbols along the first row,
first column, the last row and last column are holes is not a local partial
array language, but it is a recognizable partial language. This language
is obtained from Example 4.1 by taking o mapping w : I — T, where
I' = {a,b}, = = {a} such that n(b) = 7(a) = ¢ and 7(P) =a.

The family of all recognizable partial array languages is denoted by
PAL-REC.
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Definition 4.3. A partial array tiling system (PATS) is a 4-tuple (Z,,Tp,
m,0) where ¥ and T’ are two finite sets of symbols, T : T, — T, is a pro-
jection and 0 is a set of partial blocks or hollow blocks over the alphabet
TpU{#)}. The partial array language L C T3* is tiling recognizable if there
ezists a tiling system T = (Z,, Ty, ,0) such that L = w(L(0)). It is denoted
by L(T). The family of partial language recognizable by a partial array tiling
system is denoted by L(PATS).

It is easy to see that PAL-REC is exactly the family of partial array
languages recognizable by partial array tiling system (C(PATS)).
Theorem 4.1.  The class of all partial array languages recognized by
online tessellation partial automaton coincides with PAL-REC.

The proof of this theorem follows from the following lemmas.

Lemma 4.1. If a partial array language is recognizable by online tes-
sellation partial automaton then it is recognizable by partial array tiling
system.

Proof. Let L € ¥;* be a language recognized by an online tessellation
automaton M = (X, Q, g0, qn, 6, F), then there exist a partial array tiling
system T, that recognizes L.

Let T = (Zp,Tp, @, ) be a tiling system such that, T’y = (£, U {#}) x
(QUQx) and
7 (Zp U {#}) x (QU Qr) — I, is such that
7w(a,q) =a whereg€e QUQp,a € X
7(0,q) = O where g € QUQn

01 = (#d]o) (a'a 7')
(#a 40) (#v q0)

(#,90) | (0. qn)
(#,90) | (#:90)

(:#7 110) (b9 S) a,b ex
(##a q0) (a'7 1') s€ 6(Q07 7y b)

(#a QO) (bs s) beX }

ac€eX
r € 8(qo, 90, 2)

>
It

an € 6(‘101 40, 0)

T~

D
)
I

N
]

(#.:90) | (O,an) s € 6(qo, qn, b)

#.20) | ©.4n) / aex

(#1 QO) (0,, 7') an € 5 QO, Ty o)

(#, ) | (0,qn)
(#,90) | (Orqn)

(‘#"’QO) (#ﬂ]o)
(#,90) | (c\?)

S
Il

an € 6(qo,qn, 0)}

)
3
]

&
fI
e e, e N, e N, e N, e N N,

~—

ceX
go € 8(qo,t, #)




&
]
p—N—

8‘::33; ?g: ;1:; / g0 € 6(go, gn, #)}
(b,8) | (a,7) a,b€ X }
T e 6(37 qﬂva)

(#,90) | (#,90) /
(b,3) | (0,qn) bel
(#,90) | (#.90) gn € 6(s,90,90)

&
I
——

D
S
o

I

(01 Qh) (a, T)
(#aQO) (#a ¢10)

(01an) | (0,4n)
(#$ q0) (#1 q0)

(e,) | (d,u) a,b,c,d€X
(a,7) | (b,8) /uGJ(t,s,d) }

D
-
[

]

a€eX
TE 6(Qh, 40,0')

gn € 6(qn,40,90)

@«

K

N
Il

>

-

w
I

0.4 = (c,t) | (d, u) a,c,d€X
U=\ @) [(6,a) ]/ uedt.and
(ct) | (d,u)

bc,deX
u € §(t,s,d)

a,bdes }

(O1an) | (&, 5)
(o,Qh) (d:u)

)

S

(-]
It

~—T

o

-

@

]
N Vet Ve gt

(a,7) | (b,s) u € 8(gn, 8,d)
6., - Lt | [dw) ¢, d€X
T [(00gn) [ (0,an) u € 6(t, qn, d)
br = 4 [(Qutn) | (du) | [/ bdeX
(0.qn) | (b,8) u € 8(t, qn, d)
g — 4 [(Oan) | (dyu) a,deX
a (a,7) | (Oqn) u € 6(gn, gn, d)
0 — 4 1(0:00) | (dyu) deX
20 (O! Qh) (01 Qh) uec 5(q;,, qh, d)
6= U?: 6;

Let L’ be the local partial array language corresponding to the set 6
defined above, then it is easy to verify that w(L’) = L. Hence L is PAL-
REC. O

Lemma 4.2.  If a language is recognizable by partial array tiling system
then it is recognizable by an online tessellation partial automaton.

Proof. Let L C I;* be a partial array language recognized by partial
array tiling system (Zp,I'p,0,7) and L’ be a local partial array language
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represented by the set @ of blocks (or) hollow blocks then w(L’) = L. It
suffices to show that there exist an OTPA recognizing L' C I';*. O

Lemma 4.3. If L is a local partial array language then it is recognizable
by an OTPA.

Proof. Let L C T;* be a local partial array language. Then L = L(A)
where A is a set of blocks or hollow blocks over ¥, U {#}.
We construct an OTPA as follows:

.M={Zp,Q.Qh,I,J,F},whereQUQ;.=A
_)|#]a #10

’“{ #1#] £ # /“EE’}

_ ) ## #|#

F—{ aT#]' [CT# /aeE}

The transition § : Q U @Qn X Q U Qp x I, — 29U is defined in a way
that the run of M over a partial array A simulates a tiling of A by elements
of QUQx = A is given as follows: _

Given a bordered partial array A with A € L(A) for each symbol ‘a’ in
the (i, j)** position of A, where a € ,, we first find two symbols a, 8 of
T, U {#} in A, associated with a, using the following diagram

o, @?
B .
Let us consider the following cases.
Case i(a) Ifaec X and a =0 =#, then

wi(EH E - -
@5 B ) ~le
(B B o) -bdw
ws (B ) -
Case i(b) Ifa=9,bec X and a = = #, then
wi(ER BE ¢ -BR
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uyy ‘# A Y ‘#=0‘T3p99 0= (qQ)uased

g
= 2 8% ® [N %8 T R e wE e R W
b 0 N A A SN— g N N N’ g [ g N’ o
~ > o o o o > o, o, S H o o, S,
\W./ D N AN AN AN AN TN TN TN TN B NN
Y TR TR CETIENENEN BN ENEN EN SN ERESIE RIS S S 2 S S0 S I B3 52 B3 S o S
JTJTJT# (=Y
)
DO.DO.DO.DO.OO.DO..DO.DQ.DO.DO.DO.BAVOAVAVAVO.
- - " " - " - - " " - ™M - = =
###################### SR T BT ST ST BT TS
- [
oDAVDAVDOD ofejc|elio]elloyofio]|lle|Roe (3] ol otk <
T s s o e m b b b B T
e 8 L B L e o, 0o o
— T 1 [ Il ] [ I I N T T
1l Il h 'S [ I I
AvDAvavavavoonAvavvovanon ;##O#AV#AV
OAvoa.Ava.AvO.Pa.OAVAVAvPAvD.O..m.
OIS & o
S || O =<




o+(FY. B-)- B
o+ (1] [ )-8
o (81 2T 0) -0
(T3] [51.0) - 312
(T3] [5151.0)- (315
cos( 1 S ) -1
ens( (5151 (1S} -

Similarly we can do for the other combinations such as (i) o # #, but
B =#,a €L, (i) a # #,8 # #,a € Xp. It can be easily verified that
L = L(M). 0

Conclusion

In this paper we have introduced an online tessellation partial automaton
and proved that the family of partial array languages is recognizable by
this automaton.
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