Independent Domination Number of Cayley Graphs on \mathbb{Z}_n

T. TAMIZH CHELVAM AND I. RANI
Department of Mathematics
Manonmaniam Sundaranar University
Tirunelveli 627 012, India.
e-mail: tamche_59@yahoo.co.in

Abstract

A Cayley graph is a graph constructed out of a group Γ and its generating set A. In this paper, we determine the independent domination number, perfect domination number and independent dominating sets of $Cay(\mathbb{Z}_n, A)$, for a specified generating set A of \mathbb{Z}_n .

Keywords. Cayley graphs, dominating sets, independent domination number.

2000 Mathematics Subject Classification: 05C

1 Introduction

Let Γ be a finite group with e as the identity. A generating set of the group Γ is a subset A such that every element of Γ can be expressed as a product of finitely many elements of A. We assume that $e \notin A$ and $a \in A$ implies $a^{-1} \in A$. The graph G = (V, E), where $V(G) = \Gamma$ and $E(G) = \{(x,y)_a : x,y \in V(G) \text{ and there exists } a \in A \text{ such that } y = xa\}$ is called the Cayley graph associated with the pair (Γ,A) and it is denoted by $Cay(\Gamma,A)$ [5]. Clearly $Cay(\Gamma,A)$ is a connected simple, regular graph and degree of any vertex in G is |A|.

Let G=(V,E) be a graph and let $v \in V$. The open neighbourhood N(v) of v is the set of all vertices adjacent to v. The closed neighbourhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood N(S) is defined to be $\cup_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$ [4]. A set $S \subseteq V$ of vertices in a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or adjacent to an element of S [4]. A dominating set S is a minimal dominating

set if no proper subset is a dominating set. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets in G [4] and the corresponding dominating set is called a γ -set. A dominating set S is an independent dominating set if no two vertices in S are adjacent. The independent domination number i(G) of a graph G is the minimum cardinality taken over all independent dominating sets in G [1]. A dominating set S is called a perfect dominating set if for every vertex $u \in V - S$, $|N(u) \cap S| = 1$. The perfect domination number $\gamma_p(G)$ of a graph G is the minimum cardinality of a perfect dominating set. The domatic number d(G) of a graph G is the maximum number of elements in a partition of V(G) into dominating sets. The independent domatic number $d_i(G)$ of a graph G is the maximum number of elements in a partition of V(G) into independent dominating sets [4]. Similarly the perfect domatic number $d_p(G)$ is the maximum number of elements in a partition of V(G) into perfect dominating sets of G.

The minimum cardinality of the disjoint union of a dominating set S and an independent dominating set I, is denoted by $\gamma i(G)$ and such a pair of dominating sets (S,I) is called a γi -pair. The disjoint domination number $\gamma \gamma(G)$ is defined as follows: $\gamma \gamma(G) = \min \{|S_1| + |S_2| : S_1, S_2 \text{ are disjoint dominating sets of } G\}$. The two disjoint dominating sets, whose union has cardinality $\gamma \gamma(G)$, is a $\gamma \gamma$ -pair of G [2]. The disjoint independent domination number ii(G) is the minimum cardinality of the union of two disjoint independent dominating sets in a graph G [3].

Throughout this paper, $n \geq 3$ is a fixed positive integer, $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$ and $G = Cay(\mathbb{Z}_n, A)$, where A is a generating set for \mathbb{Z}_n . Unless otherwise specified A stands for the set $\{1, n-1, 2, n-2, \ldots, k, n-k\}$ where $1 \leq k \leq (n-1)/2$. Hereafter + stands for modulo n addition in \mathbb{Z}_n .

In [6] we have proved the following theorem, which determines the domination number of $Cay(\mathbb{Z}_n, A)$.

Theorem 1.1. [6] Let $G = Cay(\mathbb{Z}_n, A)$ where $A = \{1, n-1, 2, n-2, \ldots, k, n-k\}$ and n, k are positive integers with $1 \le k \le (n-1)/2$. Then $\gamma(G) = \lceil \frac{n}{|A|+1} \rceil$. Further $D = \{0, (2k+1), 2(2k+1), 3(2k+1), \ldots, (\ell-1)(2k+1)\}$, where $\ell = \lceil \frac{n}{|A|+1} \rceil$ is a γ -set of G.

In this paper we determine the independent domination number and perfect domination number of $Cay(\mathbb{Z}_n, A)$.

2 Main Results

Theorem 2.1. Let n and k be positive integers such that $k \leq \frac{n-1}{2}$ and (2k+1) divides n. Then $i(G) = \gamma_p(G) = \frac{n}{2k+1}$, where $G = Cay(\mathbb{Z}_n, A)$.

Proof. By Theorem 1.1, $D = \{0, (2k+1), 2(2k+1), 3(2k+1), \dots, (\ell-1)(2k+1)\}$ where $\ell = \lceil \frac{n}{2k+1} \rceil$ is a γ -set of G. Since (2k+1) divides n we have $\ell = n/(2k+1)$. Note that, for any j, $N[(2k+1)j] = \{(2k+1)j, (2k+1)j+1, (2k+1)j+(n-1), (2k+1)j+2, (2k+1)j+(n-2), \dots, (2k+1)j+k, (2k+1)j+(n-k)\}.$

Now, let $v_1, v_2 \in D$ and $v_1 \neq v_2$. We claim that $N[v_1] \cap N[v_2] = \emptyset$. Let $v_1 = (2k+1)i$ and $v_2 = (2k+1)j$ with $0 \leq i < j \leq (\ell-1)$. Suppose $N[v_1] \cap N[v_2] \neq \phi$ and let $x \in N[v_1] \cap N[v_2]$. Then $x = (2k+1)i+t_1$ or $(2k+1)i+(n-t_1)$ and $x = (2k+1)j+t_2$ or $(2k+1)j+(n-t_2)$ where $0 \leq t_1, t_2 \leq k$. Clearly $1 \leq j-i \leq (\ell-1), -k \leq t_1-t_2 \leq k, 0 \leq t_1+t_2 \leq 2k$ and $2k+1 \leq (2k+1)(j-i) \leq (2k+1)(\ell-1)$.

If $(2k+1)i+t_1=(2k+1)j+t_2$, then $(2k+1)(j-i)=t_1-t_2$. If $(2k+1)i+(n-t_1)=(2k+1)j+t_2$, then $(2k+1)(j-i)=n-(t_1+t_2)$. If $(2k+1)i+t_1=(2k+1)j+(n-t_2)$, then $(2k+1)(j-i)=t_1+t_2$. If $(2k+1)i+(n-t_1)=(2k+1)j+(n-t_2)$, then $(2k+1)(j-i)=n-(t_1-t_2)$. In each of these cases, the left hand side is a multiple of 2k+1, whereas the right hand side is not so, which is a contradiction. Hence $N[v_1]\cap N[v_2]=\phi$. Thus D is independent and $|D|=\ell=\frac{n}{2k+1}$ and hence $i(G)=\frac{n}{2k+1}$. Also every element of V-D is adjacent to exactly one element in D and hence D is perfect. Therefore $\gamma_p(G)=n/(2k+1)$.

Corollary 2.2. Let n and k be positive integers such that $k \leq \frac{n-1}{2}$ and (2k+1) divides n. Then for each h, $1 \leq h \leq 2k$, D+h is both an independent and perfect dominating set of G with minimum cardinality, where $G = Cay(\mathbb{Z}_n, A)$ and $D = \{0, (2k+1), 2(2k+1), 3(2k+1), \dots, (\lceil \frac{n}{2k+1} \rceil - 1)(2k+1)\}.$

Corollary 2.3. Let n and k be positive integers such that $k \leq \frac{n-1}{2}$ and (2k+1) divides n. Then $d_i(G) = d_p(G) = 2k+1$, where $G = Cay(\mathbb{Z}_n, A)$.

Proof. Any element of V is of the form (2k+1)t+h, $0 \le t \le (\lceil \frac{n}{2k+1} \rceil - 1)$, $0 \le h \le 2k$. Also if $D = \{0, (2k+1), 2(2k+1), 3(2k+1), \dots, (\lceil \frac{n}{2k+1} \rceil - 1)(2k+1)\}$, then $(D+h_1)\cap (D+h_2) = \phi$ for $0 \le h_1, h_2 \le 2k$ and $h_1 \ne h_2$. If not, let $x \in (D+h_1)\cap (D+h_2)$. Then $h_1-h_2=(2k+1)(j-i)$ for some i and j with i < j, and $0 \le i < j \le (\ell-1)$. Since $0 < h_1-h_2 < 2k$, it cannot be a multiple of 2k+1 and hence a contradiction. Hence $V = \bigcup_{h=0}^{2k} (D+h)$ and each D+h is both an independent and perfect dominating set of minimum cardinality. Therefore $d_i(G) = d_p(G) = 2k+1$.

Remark 2.4. For any $v \in G = Cay(\mathbb{Z}_n, A)$, |N[v]| = 2k + 1. In view of Theorem 1.1 and Theorem 2.1, the perfect domination number of G exists only when 2k + 1 divides n.

Theorem 2.5. If n, k are positive integers such that $k \leq \frac{n-1}{2}$ and (2k+1) does not divide n, then $i(G) = \lceil \frac{n}{2k+1} \rceil$.

Proof. Let $\ell = \lceil \frac{n}{2k+1} \rceil$ and t be the least positive integer satisfying $n \equiv t \pmod{(2k+1)}$. Take $D = \{0, 2k+1, 2(2k+1), \dots, (\ell-2)(2k+1), n-(k+\lceil \frac{t}{2} \rceil)\}$. Let $v_1, v_2 \in D$ and such that $v_1 \neq v_2$. Without loss of generality, one can assume that $v_1 = (2k+1)i$ and $v_2 = (2k+1)j$ or $n-(k+\lceil \frac{t}{2} \rceil)$ for some i, j with $0 \leq i, j \leq (\ell-2)$ and $i \neq j$. Suppose $v_1 \in N(v_2)$. Then $v_1 = v_2 + s$ or $v_1 = v_2 + (n-s)$ for some s with $1 \leq s \leq k$. Now the following cases arise:

Case 1. Let $v_1 = (2k+1)i$ and $v_2 = (2k+1)j$. The non-adjacency of v_1 and v_2 can be proved as in Theorem 2.1.

Case 2. Let $v_1 = (2k+1)i$ and $v_2 = n - (k + \lceil \frac{t}{2} \rceil)$. We have the following sub cases:

Sub case 2.1. Suppose $v_1 = v_2 + s$. Then $(2k+1)i = n - (k + \lceil \frac{t}{2} \rceil) + s$ and so $n = (2k+1)i + (k + \lceil \frac{t}{2} \rceil) - s$. Since $(k + \lceil \frac{t}{2} \rceil) - s < (2k+1)$, we get that $n = (2k+1)i + (k + \lceil \frac{t}{2} \rceil) - s < n$, which is a contradiction.

Sub case 2.2. Suppose $v_1 = v_2 + n - s$. Then $(2k+1)i = n - (k + \lceil \frac{t}{2} \rceil) + (n-s)$ and so $n - s = (2k+1)i + (k + \lceil \frac{t}{2} \rceil) < n - s$, which is a contradiction.

Hence in both the cases we have $v_1 \notin N[v_2]$. Therefore D is independent. It follows from Theorem 1.1 that D is a dominating set and hence $i(G) \leq \lceil \frac{n}{2k+1} \rceil$. Now the reverse inequality follows from $i(G) \geq \gamma(G) \geq \lceil \frac{n}{2k+1} \rceil$. \square

Corollary 2.6. For a positive integer $n \geq 3$, $1 \leq i(G) \leq \lceil \frac{n}{3} \rceil$.

Proof. When $n \geq 3$, we have $2 \leq |A| \leq (n-1)$. When |A| = n-1, i(G) = 1. Further, when |A| = 2, by Theorem 2.1 and Theorem 2.5, we have $i(G) = \lceil \frac{n}{3} \rceil$.

Corollary 2.7. Let n, k be positive integers such that $k \leq \frac{n-1}{2}$ and (2k+1) does not divide n. If D is an independent dominating set of G, then D+u is an independent dominating set for any u with $1 \leq u \leq n-1$.

Theorem 2.8. Let n and k be positive integers such that $k \leq \frac{n-1}{2}$. Then $ii(G) = \gamma i(G) = \gamma \gamma(G) = 2\lceil \frac{n}{2k+1} \rceil$, where $G = Cay(\mathbb{Z}_n, A)$.

Proof. Let $\ell = \lceil \frac{n}{2k+1} \rceil$. When 2k+1 divides n, the result follows from Corollary 2.2. When 2k+1 does not divide n, by Theorem 2.5, $D=\{0,2k+1,2(2k+1),\ldots,(\ell-2)(2k+1),n-(k+\lceil \frac{t}{2}\rceil)\}$ is an independent dominating set. When the points of \mathbb{Z}_n are represented as n equi-distant points on the circumference of a circle, then D is simply a successive set of points starting from 0 and distance 2k+1, except the last point, whose circular distance from 0 is less than 2k+1. Actually this circular distance is simply the remainder t when n is divided by 2k+1. If t>1, then D and D+1 are disjoint dominating sets and if t=1, then D and D+2 are disjoint dominating sets. Hence $ii(G)=i(G)+i(G)=2\ell, \gamma i(G)=\gamma(G)+i(G)=2\ell$ and $\gamma\gamma(G)=\gamma(G)+\gamma(G)=2\ell$.

Acknowledgement

The authors are thankful to the referee for his helpful suggestions. The work reported here is supported by the Project SR/S4/MS:328/06, awarded to the first author by the Department of Science and Technology, Government of India, New Delhi

References

- [1] E. J. Cockayne and S. T. Hedetniemi, Disjoint independent dominating sets in graphs, *Discrete Math.*, 15(1976), 213-222.
- [2] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin., 55(2000), 201-213.
- [3] T. W. Haynes and M. A. Henning, Trees with two minimum independent dominating sets, *Discrete Math.*, 304(2005), 69-78.
- [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [5] S. Lakshmivarahan and S.K. Dhall, Ring, torus, hypercube architectures algorithms for parallel computing, *Parallel Computing*, 25(1999), 1877-1906.
- [6] T. Tamizh Chelvam and I. Rani, Dominating sets in Cayley graphs on \mathbb{Z}_n , Tamkang Journal of Mathematics, 37(4)(2007), 341-345.