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Abstract

A Cayley graph is a graph constructed out of a group I' and
its generating set A. In this paper, we determine the independent
domination number, perfect domination number and independent
dominating sets of Cay(Zn, A), for a specified generating set A of
Zn.

Keywords. Cayley graphs, dominating sets, independent domination
number.
2000 Mathematics Subject Classification: 05C

1 Introduction

Let T be a finite group with e as the identity. A generating set of the
group T is a subset A such that every element of I' can be expressed as
a product of finitely many elements of A. We assume that e ¢ A and
a € A implies a~! € A. The graph G = (V,E), where V(G) = T and
E(G) = {(z,¥)a : T,y € V(G) and there exists a € A such that y = za}
is called the Cayley graph associated with the pair (I', A) and it is denoted
by Cay(l, A) [5]. Clearly Cay(T', A) is a connected simple, regular graph
and degree of any vertex in G is |A|.

Let G = (V,E) be a graph and let v € V. The open neighbourhood
N(v) of v is the set of all vertices adjacent to v. The closed neighbourhood
of v is N[v] = N(v) U {v}. For a set S C V, the open neighbourhood N(S)
is defined to be U,esN(v) and the closed neighbourhood of S is N(S] =
N(S)US [4]. A set S C V of vertices in a graph G = (V, E) is called
a dominating set if every vertex v € V is either an element of S or adja-
cent to an element of S [4]. A dominating set S is a minimal dominating
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set if no proper subset is a dominating set. The domination number v(G)
of a graph G is the minimum cardinality taken over all dominating sets
in G (4] and the corresponding dominating set is called a y-set. A domi-
nating set S is an independent dominating set if no two vertices in S are
adjacent. The independent domination number i(G) of a graph G is the
minimum cardinality taken over all independent dominating sets in G [1).
A dominating set S is called a perfect dominating set if for every vertex
u € V-35, |N(u)nS| = 1. The perfect domination number v,(G) of a
graph G is the minimum cardinality of a perfect dominating set. The do-
matic number d(G) of a graph G is the maximum number of elements in a
partition of V(G) into dominating sets. The independent domatic number
di(G) of a graph G is the maximum number of elements in a partition of
V(G) into independent dominating sets [4]. Similarly the perfect domatic
number d,(G) is the maximum number of elements in a partition of V(G)
into perfect dominating sets of G.

The minimum cardinality of the disjoint union of a dominating set S
and an independent dominating set I, is denoted by vi(G) and such a
pair of dominating sets (S,I) is called a vi-pair. The disjoint domination
number vy(G) is defined as follows: ¥y(G) = min {|S1| + |S2| : 81, S; are
disjoint dominating sets of G}. The two disjoint dominating sets, whose
union has cardinality vv(G), is a yy-pair of G [2]. The disjoint independent
domination number ii(G) is the minimum cardinality of the union of two
disjoint independent dominating sets in a graph G [3].

Throughout this paper, n > 3 is a fixed positive integer, Z, = {0, 1,2,
...,n—1} and G = Cay(Z,, A), where A is a generating set for Z,,. Unless
otherwise specified A stands for the set {1,n—1,2,n-2,...,k,n—k} where
1 <k < (n—1)/2. Hereafter + stands for modulo n addition in Z,,.

In [6] we have proved the following theorem, which determines the dom-
ination number of Cay(Zy,, A).

Theorem 1.1. (6] Let G = Cay(Z,,A) where A = {1,n —1,2,n —
2,...,k,n—k} and n,k are positive integers with 1 < k < (n—1)/2. Then
¥G) = [mﬁ—l]. Further D = {0,(2k +1),2(2k + 1),3(2k + 1),...,(¢ -
1)(2k + 1)}, where ¢ = [ g7 is a v-set of G.

In this paper we determine the independent domination number and
perfect domination number of Cay(Z,, A).

2 Main Results

Theorem 2.1. Let n and k be positive integers such that k < "T‘l- and
(2k + 1) divides n. Then i(G) = 1(G) = 5y, where G = Cay(Zyn, A).
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Proof. By Theorem 1.1, D = {0, (2k+1), 2(2k+1), 3(2k+1), , (£—
1)(2k + 1)} where £ = [52~] is a y-set of G. Since (2k + 1) d1v1des n we
have £ = n/(2k+1). Note that for any j, N[(2k+1)j] = {(2k+1)j, (2k+
Di+1, k+1)j+(n—-1), 2k+1)j+2, 2k+1)j+(n-2),...,(2k+
1)j+k, 2k+1)j+ (n—k)}.

Now, let v1,v2 € D and v; # v2. We claim that Nv;] N Nvg] = 0.
Let v; = (2k + 1)i and v = (2k +1)j with 0 < ¢ < j < (£ - 1). Suppose
N[N Nvs] # ¢ and let 2 € N[v1) N N[vg). Then z = (2k +1)i + ¢, or
(2k + 1)i + (n - t;) and = = (2k + 1)j + t2 or (2k + 1)j + (n —~ t2) where
0<t),ta <k Clearlyl < j—i < (8—1), ~k <t1—t3 <k, 0 < ty+t2 < 2k
and 2k +1 < (2k+1)(j — i) < (2k+1)(£ - 1).

If 2k + 1)i +t; = (2k+ 1)j + to, then (2k + 1)(j — i) = t1 — t2. If
(2k +1)i + (n — ;) = (2k + 1)j + t2, then (2k + 1)(j — ) = n — (t1 +t2).
If (2k+1)i+t; = (2k+1)j + (n — t2), then (2k + 1)(j — i) = t1 + t2. If
(2k+1)i+(n—t1) = (2k+1)j+(n—t2), then (2k+1)(j —i) = n—(t1 —t2).
In each of these cases, the left hand side is a multiple of 2k + 1, whereas the
right hand side is not so, which is a contradiction. Hence N{[v;]NN [vz] =
Thus D is independent and |D| = £ = 3% and hence i(G) = 357 Also
every element of V — D is adjacent to exactly one element in D and hence
D is perfect. Therefore v,(G) = n/(2k + 1). |

Corollary 2.2. Let n and k be positive integers such that k < "‘ and
(2k + 1) divides n. Then for each h, 1 < h < 2k, D+ h is both an inde-
pendent and perfect dominating set of G with minimum cardinality, where

G = Cay(Zy,, A) and D = {0, (2k+1), 2(2k+1), 3(2k+1), ..., ([585]-
1)(2k +1)}.

Corollary 2.3. Let n and k be positive integers such that k < and
(2k + 1) divides n. Then d;(G) = dp(G) = 2k + 1, where G = Cay(Zn, A).

Proof. Any element of V is of the form (2k + 1)t + h, 0 <t < ([587] -
1), 0 < h < 2k. Alsoif D = {0, (2k+1), 2(2k+1), 3(2k+1), .. (H—]
1)(2k+1)}, then (D+h1)n(D+h2) =¢for0 < hy,hy <2k a.nd h1 # h2
not, let z € (D+h1)N(D+hz). Then hy —hy = (2k+1)(j—1) for some 7 and
jwithi < j,and0 <i < j < (£—1). Since 0 < hy — hg < 2k, it cannot be a
multiple of 2k + 1 and hence a contradiction. Hence V' = Uh-o(D +h) and
each D+ h is both an independent and perfect dominating set of minimum
cardinality. Therefore d;(G) = dp(G) =2k + 1. O

Remark 2.4. For any v € G = Cay(Z,, A), [N[v]| = 2k + 1. In view of
Theorem 1.1 and Theorem 2.1, the perfect domination number of G exists
only when 2k + 1 divides n.

Theorem 2.5. Ifn, k are positive integers such that k < 251 and (2k+1)
does not divide n, then i(G) = 321
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Proof. Let £ = [527] and t be the least positive integer satisfying
n = t(mod (2k + 1)). Take D = {0, 2k + 1, 2(2k +1),...,(£ - 2)(2k +
1), n— (k+ [£])}. Let v1,v2 € D and such that vy # vo. Without loss
of generality, one can assume that v; = (2k + 1)i and v, = (2k + 1)j or
n — (k + [£]) for some i, j with 0 < i, j < (¢ —2) and i # j. Suppose
v; € N(v2). Then v; = va+sor vy = va+(n—s) for some s with 1 < s < k.
Now the following cases arise:
Case 1. Let vy = (2k + 1)i and v2 = (2k + 1)j. The non-adjacency of v;
and v, can be proved as in Theorem 2.1.
Case 2. Let v; = (2k +1)i and v; = n — (k + [£]). We have the following
sub cases:
Sub case 2.1. Suppose v; = vz + 5. Then (2k+1)i=n—(k+ [£]) +s
andson = (2k+1)i+ (k+ [ 1) —s. Since (k+[£]) — s < (2k + 1), we get
that n = (2k +1)i + (k + [£ ]) — 8 < n, which is a contradiction.
Sub case 2.2. Suppose v, = v2+n—s Then (2k+1)i = n—(k+[£])+(n—s)
and son —s = (2k+1)i+ (k + [£]) < n — s, which is a contradiction.
Hence in both the cases we have vy ¢ N[vz). Therefore D is independent.
It follows from Theorem 1.1 that D is a dominating set and hence i(G) <
[ 5% |- Now the reverse inequality follows from i(G) > ¥(G) > [525]. O

Corollary 2.6. For a positive integer n > 3, 1 < i(G) < [§].

Proof. When n > 3, we have 2 < |A| < (n — 1). When |[A| = n -1,
i(G) = 1. Further, when |A| = 2, by Theorem 2.1 and Theorem 2.5, we
have i(G) = [%]. O

Corollary 2.7. Let n, k be positive integers such that k < "—;—1 and (2k+1)
does not divide n. If D is an independent dominating set of G, then D +u
is an independent dominating set for any u with1 <u<n-1.

Theorem 2.8. Let n and k be positive integers such that k < "; Then
i#(G) = 7i(G) = 11(G) = 2[5, where G = Cay(Zn, A).

Proof. Let £ = [5f=]. When 2k + 1 divides n, the result follows from
Corollary 2.2. When 2k + 1 does not divide n, by Theorem 2.5, D =
{0,2k +1,2(2k +1),...,(£ — 2)(2k + 1),n — (k + [£])} is an independent
dominating set. When the points of Z, are represented as n equi-distant
points on the circumference of a circle, then D is simply a successive set
of points starting from 0 and distance 2k + 1, except the last point, whose
circular distance from 0 is less than 2k + 1. Actually this circular distance
is simply the remainder ¢ when n is divided by 2k+ 1. If ¢ > 1, then D and
D+1 are disjoint dominating sets and if £ = 1, then D and D+ 2 are disjoint
dominating sets. Hence ii(G) = i(G) +i(G) = 2¢,7vi(G) = ¥(G) +i(G) = 2¢
and vY(G) = 7(G) +7(G) = 2¢. O
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