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Abstract

The main result: If the vertices of a connected graph are labelled
by positive real numbers such that the number assigned to any vertex
is half of the sum of the numbers assigned to the vertices of its neigh-
bourhood, then each label is an integral multiple of the minimum of
all labels. Using this, a result proved earlier in [7] is derived: If V is
a linearly dependent subset of a root system in which all roots have
same norm, then one of the roots in V is an integral combination of
the other roots in V.
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In this paper, Z denotes the set of all integers and R* is the Euclidean
space of countably infinite dimension over the set of all real numbers, with
the usual innerproduct (-,-)—for all z = (z1,%2,...) € R* and for all
Y= (1,¥2-..), Loy & < 00 and (z,y) = 332, Ziyi- A linearly depen-
dent subset V of R™ is called critical if every proper subset of V is linearly
independent. If v;,vs,...,v, are vectors in R* and #,,12,...,t, are inte-
gers, then t,v; +tavg + - - - +inuy is called an integral combination of vy, v,
ey Un.

All graphs considered in this paper are finite; they have neither loops
nor multiple edges. For graph theoretic terms and notation employed in
this paper we follow [8].

Let G be a graph and V be its vertex set. A map 6 from V to the set
of all positive real numbers is called a 2-fold labelling of G if the following
holds.

(¥*)Forallv € V, 20(v) = Y 6(z) where N(v) is the neighbourhood of v.
zEN(v)
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If a graph has a 2-fold labelling then it is said to be a 2-fold graph. The
main result of this paper is the following.

Theorem 1. If§ is a 2-fold labelling of a connected graph G whose vertex
set is V and m is the minimum of {6(v) : v € V}, then G is one of the
graphs in the figure and each label is an integral multiple of m—i.e., for
eachveV, 9%1 €Z.
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The family of all 2-fold graphs.
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Proof.  First suppose that G contains a cycle C = (v,vs,...,v,). As-
sume that 8(v,) is the minimum of {6(v;) : i = 1,...,n}. Now for i = 1,

258



.2m, by (%), 2m = 20(v;) > 0(vi—1) + 0(vi41) 2> 2m (here vp = v, and
Un+1 = v1) implying deg v; = 2 and 8(vi+1) = m. Consequently, being con-
nected, G has to be the cycle C and the conclusion holds. So, henceforth we
assume that G is a tree. Now, suppose A(G) > 4. Then, there is a vertex a
whose neighbourhood has at least 4 vertices, say ai,az, a3 and aq. By (**),
for each i € {1,2,3,4}, 8(a;) > 16(a) and 26(a) > 6(a1) + 8(az) + 6(as) +
8(as) > 26(a) yielding 8(a;) = 8(az) = 6(as) = 6(as) = 36(a). Therefore
for each i € {1,2,3,4}, dega; = 1 and dega = 4. Consequently, by connec-
tivity of G, V = {a, a1, a2, a3, a4} and the conclusion holds. So, we assume
that A(G) <3. Let X ={v€V:degv=3}andY ={v € V : degv=1}.
Now summing the relations given by (**) for all v € V' and simplifying we

get,
S 6(z) = % 6) (1)
z€X yEY
Therefore | X| # 0; suppose |X| 2> 2. Then there is a path (bos b1y -y bpm1,
b,) such that degby = degb, = 3 and the degree of each internal vertex
is 2. Let N(b) — {01} = {a1,a2} and N(b,) — {bp-1} = {c1,c2}. Now
summing the relations given by () for v = by, ..., b, and simplifying, we
get 8(bo) +6(b,) = 8(a1) +0(az) +0(c1)+0(cz). Since 6(a1),0(az) 2 £0(bo)
and 8(c1),6(c2) > 30(bn), it follows that 8(a1) = 8(a2) = 16(bo) and
8(c1) = 8(cz) = 30(br). Therefore degai = degaz = degcy = degez =1
and by connectivity of G, V = {a1,a2}U{bo,...,ba}U{c1, c2}; additionally,
for k=0,...,n—1, v = by in (**) yields 8(bx+1) = 0(bo); therefore the
conclusion holds. Now, assume that | X| = 1. This implies that G is formed
by three paths which can be expressed as (a1,...,ap = w), (b1,...,bg = w)
and (cy,...,¢ = w) where w is the vertex of degree 3. By (**), for k=2,
..., D, 0(ax) = kb(a,); we have similar relations for other two paths also;
thus 8(w) = p(a1) = gb(b1) = 76(c1); now by (1), 8(a1) + 8(b1) + 8(c1) =
6(w) yielding %+%+%=1. Let us assume that p > g > 7. If r > 3, then
1,1,1 < § implying p= g =r = 3 and therefore the conclusion holds. So,
let us assume that r = 2. Then 2+ = 3. If ¢ > 4, then it can be seen that
p = q = 4 and it follows that for each v € V, 6(v) is an integral multiple
of 8(a;) = O(b;) and G is the second graph from below in the figure. So
assume that ¢ = 3. Then p = 6 and it can be verified that for eachveV,

0 . .
=% €Z and G is the last graph in the figure. O

Corollary 4, an application of the above result, is the main tool for
proving Theorem 5; before deriving that, let us digress a little to observe
an important property of 2-fold graphs which can yield an alternative proof
for the above result. Let the adjacency matrix and the largest eigenvalue of
a graph G be denoted by A and A respectively—sometimes A(G) in place
of A to avoid ambiguity. If 8 is a 2-fold labelling of a graph whose vertex
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set is {v1,...,vn}, then Aa" = 2a" where a = (8(v1),...,0(v,)) and o7
is the transpose of o; thus it follows that 2 is an eigenvalue of any 2-fold
graph. In fact, by combining Theorem 1 and a result of [6] which says that
for a connected graph, A = 2 if and only if it is one of the graphs in the
figure, we have the following result.

Proposition 2. The following hold for a connected graph G.

(1) G has a 2-fold labelling.
(2) Its largest eigenvalue is 2.
(3) It is one of the graphs in the figure.

By using a simple method found in [4] for showing the equivalence of (2)
and (3), we can give a short proof for the above proposition; this proof is
based on the following result. (Each part of this result is implied by Perron-
Frobenius Theorem; for details, see [5, Theorem 31.11] and [2, Theorem
8.8.1].)

Theorem 3. For a connected graph G, the following hold.

(a) There exists an eigenvector of A corresponding to A such that all of
its coordinates are positive and every eigenvector of A, all of whose
coordinates are nonnegative, is a scalar multiple of the former.

(b) Any eigenvalue of any proper subgraph of G is less than A(G).

Derivation of Proposition 2. If G is one of the graphs in the figure, then
it is easy to verify that the labels of the vertices form a 2-fold labelling;
ie., (3) = (1). If G has a 2-fold labelling, then, the numbers assigned by
this labelling form a vector a satisfying Aa™ = 2o whence by (a) it can
be verified that A = 2; i.e,, (1) = (2).

Now, suppose A = 2. It can be seen that there exists a graph H in

the figure such that either G or H is a subgraph of the other. Noting that
A(H) = 2 because of (3) = (1) = (2), and using (b) we get G = H.
Thus, it follows that (2) = (3).
Alternative Proof of Theorem 1. The labelling given by 8 yields a
vector o satisfying Aa” = 2a". Since G is one of the graphs in the figure
by Proposition 2, we have ABT = 287 where 3 is the vector formed by the
labels assigned to the vertices of G in the figure. Since both vectors have
positive coordinates only, by (a) either is a scalar multiple of the other; since
all the coordinates of B are integers and one of them is 1, the conclusion
follows.

Corollary 4. If V is a finite subset of R™® such that the following hold,
then there exists a vector in V which is an integral combination of the other
vectors in V.
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(A) For all distinct u,v € V, (u,u) =2 and (u,v) = -1 or 0.
(B) There are positive real numbers ty, v € V satisfying 3, ey tvv =0.

Proof. Define a graph as follows: Its vertex set is V' and two vertices u,v
are joined, if (u,v) = —1; now for any v € V, from (3" ¢y tz2,v) =0, we
have 2t, = zme N(v) tz- Let U be a subset of V' such that the subgraph
induced on U is a connected component; then by Theorem 1, there is a
vector a € U such that € Z for all z € U. Since for all v € U and
veV-U, (uv) =0, by (B) we get ),y toz = 0 whence a serves our
purpose. ]

In [1], the following question has been raised. If V is a finite subset of R™
such that for all distinct u,v € V, {(u,u) = 2 and (u,v) = 0 or 1, does
there exist a vector in V' which is an integral combination of the rest in
V? A process to settle a generalization of this question has been found in
[7] by using the properties of Q defined below; the current proof involves a
simpler variation of that process.

Theorem 5. If X is a finite linearly dependent subset of R* such that for
all z,y € X, (z,x) = 2 and (z,y) € Z, then one of the vectors in X is an
integral combination of the rest in X.

Proof. Let Q be the set of all integral combinations of vectors in X, which
are of norm v/2; for all a,b € , we have the following.

(a,b) € {~2,-1,0,1,2} for |{a,b)| < lall [IB]l =

If {a,b) = 2, then [la — b||> = 0 and therefore a = b.

If (a,b) = 1, then |ja — b||*> = 2 and therefore a — b € Q.

Let U = {a1,4a2,...,ax} be a linearly dependent subset of {2 and M
be the k X k matrix whose rows are aj,as,...,a,—here we assume that
U C R*. Since M is singular and the entries of MM T are integers, there
exists a nonzero vector ¢ = (81,82,...,8k) in Z* such that cMMT = 0
implying oMM o™ = 0; i.e., (¢M)(eM)T = 0; therefore oM = 0. Thus
we have the following,.

(1) If {a1,az2,-..,ax} is a linearly dependent subset of (2, then there exist
integers s, s2, - . - , Sk, not all zero, such that s a1 + s2a2 + - - - + srax = 0.
When U is critical, choosing the above integers without any common divi-
sor, define p(U) = —(|s1]|+|s2|+- - -+|sx|). [Note that p(U) is independent of
the choice of k-tuple (sy, 82, . . ., 8k) for, the only other choice is (—s1, —s2,
.oy —sk).]
Let V = {v1,vs,...,vn} be a critical subset of Q. It is enough to

show that the conclusion holds with V' in place of X. We can assume the
following,.
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(2) The conclusion holds for any critical subset of Q with cardinality < n.
Let X = {x1,%2,...,Zm }; for any = € Q define n(z) = ((z, z1), (=, z2),.. .,
(z,Tm)). Then for any z,y € Q, n(z) = n(y) = = = y; therefore |Q] =
[{n(z) : = € Q}|; consequently ( is finite; so we can assume the following.

(3) If U is any critical subset of Q such that |U| = n and p(U) < p(V),
then the conclusion holds for U.

By (1), there exist integers ¢;,t2,...,t, having no common divisors and
satisfying
4 tivn + v+ -+ v, =0.

For any i < n, we can assume that ¢; > 0, for otherwise ¢; and v; can be
replaced by —t; and —uv; respectively. Thus (B) of Corollary 4 holds; so
we can assume the existence of two vectors in V, say v; and v, such that
their innerproduct is positive, for otherwise (A) of Corollary 4 also holds
and the conclusion follows from that corollary. Then, v; — v2 € . We can
assume {v; — vg,¥3,...,V,} to be linearly independent for otherwise it is
critical and by (2) the conclusion holds for this subset and therefore for V
also; then S := {v; — vo,v2,v3,...,¥,} is critical. Now by (4), we have

(5) t1(vy —v2) + (8 +t2)ve +tavz + - + E,v, = 0.
Since p(S) < p(V), by (3) the conclusion holds for § and therefore for V
also because one of the coefficients in the equation (5) is 1. a

Corollary 6. Let @ be a root system in which all roots have same norm
and V' be a linearly dependent subset of . Then one of the roots in V is
an integral combination of the other roots in V.

Proof. We use one of the (defining) properties of ®: for all u,v € ®, 2 :’v" €

Z. (cf. [3].) Let X = {n‘{,—%v :v € V}. 1t is easy to verify that for all z,
y € X, {(z,z) = 2 and (z,y) € Z. Therefore from Theorem 5, the result
follows. O
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