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Abstract

A sum composite labeling of a (p,q) graph G = (V,E) is an
injective function f : V(G) — {1,2,...,2p} such that the function
f* : E(G) — C is also injective, where C denotes the set of all
composite numbers and f* is defined by f+(uv) = f(u) + f(v) for
all uv € E(G). A graph G is sum composite if there exists a sum
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composite labeling for G. We give some classes of sum composite
graphs and some classes of graphs which are not sum composite. We
prove that it is possible to embed any graph G with a given property
P in a sum composite graph which preserves the property P, where P
is the property of being the graph connected, eulerian, hamiltonian
or planar. We also discuss the NP-completeness of the problem of
determining the chromatic number and the clique number of sum
composite graphs.

Keywords. Sum composite graph, planar graph,
hamiltonian graph and eulerian graph.
2000 Mathematics Subject Classification: 05C

1 Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither
multiple edges nor loops. The order and size of G are denoted by p and
g respectively. Terms that are not defined here are used in the sense of
Harary [1).

Graph labelings where the elements (i.e. vertices and/or edges) of a
graph are assigned real values subject to certain conditions, have been
motivated by practical problems. There is an enormous amount of literature
built up on several kinds of labelings of graphs over the past three decades
or so, and for a survey of results on graph labeling problems we refer to
Gallian [2].

In this paper we introduce the concept of sum composite labelings of a
graph and present several results on graphs which admit such a labeling.

We need the following theorem.

Theorem 1.1. [3] Given any integer k > 3, the problem of deciding
whether the chromatic number or clique number of a graph are greater than
or equal to k is NP complete.

2 Main Results

Definition 2.1. A sum composite labeling of a (p, ¢) graph G = (V, E)
is an injective function f : V(G) — {1,2,...,2p} such that the function
f* : E(G) — C is also injective, where C denotes the set of all composite
numbers and f1 is defined by f*(uwv) = f(u) + f(v) for all uv € E(G). A
graph G is sum composite if there exists a sum composite labeling for G.

Following are some immediate observations.



Observation 2.2. If f is a sum composite labeling of G, then 4 <
fH(uv) <4p—1 for all ww € E(G).

Observation 2.3. A graph G has a sum composite labeling with all its
vertex values odd if and only if G has a sum composite labeling with all its
vertex values even.

Observation 2.4. If G has a sum composite labeling with all its vertex
labels odd (even), then ¢ < 2p - 3.

Observation 2.5. The complete graph K, has a sum composite labeling
with all the vertex labels odd (even) if and only if n < 3.

Theorem 2.8. Cycles are sum composite.

Proof. Let C,, = (v1v2,...,v501).
Case i. nis odd.

Define f : V(Cp) — {1,2,...,2n} by f(;) = 2 -1, i = 1,2,...,n.
Then f*(vviy1) =44, i=1,2....,n—1 and f+(v,v1) = 2n and hence f
is a sum composite labeling of C,,.

Case ii. n is even.

Then f: V(Cpn) — {1,2,...,2n} defined by f(v;)=2i—-1,i=1,2,...,
n—2, f(vn-1) =2n—1 and f(v,) = 2n — 3 is a sum composite labeling of
Cn. O

Theorem 2.7. Any tree T is sum composite.

Proof. We root the tree T at an arbitrary vertex v; and let vg,vs, ..., v,
be the vertices of T in the order in which they are visited using the BFS
algorithm. Then f:V — {1,2,...,2n} defined by f(v;) =2i —1is a sum
composite labeling of 7' O

Theorem 2.8. The quadrilateral Snake S4, obtained from the path
P = (ug, u1,u2, ..., un) by replacing the edge u;u;y, by the cycle (uiuip1vi
wit1ui), 0 <4 < n—1, is a sum composite graph.

Proof. Define f : V(S4,) — {1,2,...,6n+ 2}, by

fluwo) =1,

f(v;) =1+ 6i and

flw)=6i-3, i=1,2,...,n.
Clearly f is injective, f(v) is odd for all vertices v, and f is injective, so
that f is a sum composite labeling of G.

Theorem 2.9.  The Grid Ly, = Py X P, is sum composite.
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Proof. Let V(L) = {uij/1 < i < m,1 < j < n}. We relabel the
vertices as follows. uy; = v, uz,1 = v2, U12 = U3, U3,1 = Vg, U2 =
vs, U1,3 = Vg, U4,1 = U7, and so on. Now if vv;, vy € E(Lm,n), then
i+j#r+s. Hence f: V —{1,2,...,2mn} defined by f(v;) =2i-1,1<
i < mn, is a sum composite labeling for Ly, . O

Theorem 2.10. K>, is sum composite for all n.

Proof. Let Vi = {u1,uz}, Vo = {w1,ws,..., ws} be abipartition of K3 .
Define f: V(Kan) — {1,2,...,2n 4+ 4} by f(w1) =2, f(u2) =2n+4 and
flw;) =2i+2, i =1,2,...,n. Clearly, f(v) is even for all v and f* is
injective, so that f is a sum composite labeling of K» n. O

The crown C, © K3, is the graph obtained from the cycle C,, by at-
taching a pendant edge at each vertex of the cycle.

Theorem 2.11.  The croun C, O K\ is sum composite.

Proof. Let C, = (v1v2...vnv1) and let u; be the pendant vertex adjacent
to v;.
Case i. nis odd.

Let n = 2m + 1. Define f : V(Com+1 O K1) — {1,2,...,4m + 2} by

Flos) = i if ¢ is odd
YT 2m+1+4 if ¢ is even
and
bm+4+1i ifiisoddand1<i<2m -1
flu))=<¢ 4m+3 fi=2m+1
dm+3+1 if 7 is even.

It can be easily verified that f is a sum composite labeling of C, (O K.

Case ii. 7 is even.
Let n =2m . Define f: V(Com ©Q K1) — {1,2,...,4m} by

2i -1 ifl<i<2m-—-2
floi)=¢ 4m-—1 fi=2m-1

4m -3 ifi=2m

and
dm+2i-1 ifl<i<2m-—-2andi#m-1
Flws) = 8m —2 fi=m-1
Y=Y 8m-1 ifi=2m—1
8m -3 if i =2m.
Then f is a sum composite labeling of Cr, © K. O
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3 Some graphs which are not sum composite

Theorem 3.1. K33 is not sum composite.

Proof. Let Vi = {u1,up,us},Va = {wi,ws, w3} be the bipartition of
K3 3. If possible, suppose that f: V(K33) — {1,2,...,12} is a sum com-
posite labeling of K3 3. Then 4 < f*(uv) < 23. The set of all compos-
ite numbers in this collection is {4,6,8,9,10,12, 14, 15, 16, 18, 20, 21,22},
which contains exactly three odd numbers. Hence the number of edges
with f+(uv) odd is either zero or three. Hence we have the following three
possibilities.

i. Exactly one vertex value is odd.
ii. Exactly one vertex value is even.

iii. All the vertex values are of the same parity.

In the first two cases, all the three odd composites should occur as edge
values. To get 21, as an edge label, we may assume that f(u;) = 9 and
f(wy) = 12. But then we cannot get 9 as an edge value, which is a contra-
diction.

In the third case all the edge values are even. Suppose 4 € f+(E(K33)).
Then 1,3 € f(V(Ks,3)). So all the vertex values are odd and hence 22 ¢
fT(E(Ks3,3)). Therefore f*(E(Ks,3)) = {4,6,8,10,12, 14, 16, 18, 20}. With-
out loss of generality let f(u;) =1 and f(w,) = 3. To get 6 and 8 as edge
values, wp and w3 should be given the values 5 and 7 respectively. But we
cannot label 42 or uz so as to get 10 as an edge value, which is a contra-
diction.

Now, suppose 4 ¢ ft(E(Kss3)). Then f*(E(K33)) = {6,8,10,12, 14,
16, 18,20, 22}. Since 22 € f+(E(K3,3)), 10 and 12 are vertex values and
so all the vertex values are even. Without loss of generality assume that
f(u1) =2 and f(w;) = 4. To get 8 and 10 as edge values, w, and ws should
be given the values 6 and 8 respectively. But then we cannot label u; or
u3 so as to get 12 as an edge value, which is a contradiction. O

Remark 3.2. By a similar argument, it can be proved that K, g is not
sum composite.

Theorem 3.3. The complete graph K, is not sum composite.

Proof. Let V(K4) = {v1,v2,v3,v4}. Suppose f is a sum composite label-
ing for K4. Then f : V(G) — {1,2,...,8} is injective and 4 < f*(uv) < 15.
Hence f+(E(K,)) C {4,6,8,9,10,12,14, 15}, so that f+(v;v;) is odd for at
most two edges. Clearly f(v;) cannot be odd for all %, since in this case
we get two edges with label 8. Similarly f(v;) cannot be even for all . If
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f(v;) is odd for exactly one ¢ or for exactly two values of i, or three val-
ues of ¢, then the number of edges with odd label is at least 3, which is a
contradiction. Hence K is not a sum composite graph. O

4 Embedding

Since there are graphs which are not sum composite, the following questions
naturally arise.

i. Is it possible to embed every graph in a sum composite graph?

ii. Is it possible to embed a graph with a property P in a sum composite
graph with property P?

The following theorem gives an affirmative answer to the first question.

Theorem 4.1. Ewvery (p,q) graph can be embedded as an induced sub-
graph of a sum composite graph with 5P vertices and q edges.

Proof. Let G be a (p,q) graph and let V(G) = {v1,v2,...,vp}. Let G’ be
the graph obtained from G by adding 5° — p isolated vertices. Let f be the
function which assigns the value 5¢ to v; and the values 1,2,3,4,6,...52 —
1,52 +1,...,55-1,53+1,...,5* = 1,59 + 1,...,5” — 1 to the isolated
vertices. Clearly f is injective. Now, suppose f¥(viv;) = f+(vikwi), for
distinct edges v;v;, vxv;. Then we get the equation

5 + 5 = 5% 45 (1)

If i = k, then dividing the equation (1) by 5%, we get 1 + 5% = 1+ 5!¢,
and hence j = [, which is a contradiction, since the edges v;u; and vxv; are
distinct.

If i < k, then dividing the equation (1) by 5¢, we get 1+ 5/~ = 5%~ 4
5!=i_ which is a contradiction, since 5 divides the number on the right side
but 5 does not divide the number on the left side.

We get a similar contradiction if z > k. Thus f+ : E(G) — C is injective
and pence f is a sum composite labeling of G’ and G is an induced subgraph
of G. O

The graph G " constructed in Theorem 4.1 is disconnected. The following
theorem shows that a connected graph can be embedded as an induced
subgraph of a connected sum composite graph.

Theorem 4.2. Any connected (p,q) graph G can be embedded as an
induced subgraph of a connected sum composite graph with 5P —p?—4 vertices
and 5° — p? — p+ q — 3 edges.
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Proof. Let G be a connected (p, g) graph with V(G) = {v;,vs,...,vp} such
that v; and vy are adjacent vertices. Let S be the set obtained from the
set X = {1 2,3,...,5} by removing the set of numbers {5°,5' +2/1 <i <
p—1}U{3 (5’+51)+1, 3(58°+57) +3/1<i<j<ptU{4, 6, 57, 57 —
2, 5?-3 5 ~ 5}. Clearly |S| = 57 — p* —p— 4.

Let G’ be the graph with V(G') = VIG)US, <V(G) >=G, <S>is
the path P with origin 1, terminus 2 and with internal vertices consisting
of all the odd numbers in S in the increasing order followed by all the even
numbers in § in the decreasing order, along with the edges {1,v:} and
{2,v2}. Clearly G is an induced subgraph of G'. Now f defined on V(G)
by f(»:) =5, 1<% < pand f(a) = afor all a € S is a sum composite
labeling for the connected graph G . O

The construction is illustrated in the following figure.

Embedding of a graph in a sum composite graph

Corollary 4.3.  Every disconnected graph H can be embedded as an in-
duced subgraph of a connected sum composite graph.
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Proof. The result follows by applying Theorem 4.2 to the connected
graph G = H + . O

Corollary 4.4. Every hamiltonian graph G can be embedded as an
induced subgraph of a hamiltonian sum composite graph.

Proof. If G is hamiltonian and v,v; is an edge of a hamiltonian cycle,
then the graph G’ obtained in Theorem 4.2 is also hamiltonian. O

Corollary 4.5. Every planar graph G can be embedded as an induced
subgraph of a planar sum composite graph.

Corollary 4.6.  Given any integer k > 3, the problem of deciding whether
the chromatic number or clique number of a graph is greater than or equal
to k is NP-complete even when restricted to sum composite graphs.

Proof Since x(G') = x(G) and w(G') = w(G), the result follows
Theorem 1.1. a

Corollary 4.7.  Every eulerian graph G can be embedded as an induced
subgraph of an eulerian sum composite graph.

Proof.  Inthe proof of Theorem 4.2, replace S by 5 = (S-{1,2,8}) U{4}.

Let G’ be the graph with V(G') = V(G) U S1,< V(G) >=G,< S1 U{w1} >
is the cycle with origin and terminates 3, consisting of all the odd integers
of S, in the increasing order, followed by all the even integers of S in the
decreasmg order and the vertex vj. Clearly G is an induced subgraph of
G’ . Now f defined on V(G') by f(u:) =5, 1 <i<pand f(a) = a for all
a € § is a sum composite labeling for the graph G'. Since G is eulerian, G’

also is eulerian. O
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