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Abstract

In this paper, we study the domination number, the global dom-
ination number, the cographic domination number, the global co-
graphic domination number and the independent domination number
of all the graph products which are non-complete extended p-sums
(NEPS) of two graphs.
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1 Introduction

We consider only finite, simple graphs G = (V,E) with |[V| = n and
|E| = m.

A set S C V of vertices in a graph G is called a dominating set if every
vertex v € V is either an element of S or is adjacent to an element of S. A
dominating set S is a minimal dominating set if no proper subset of S is a
dominating set. The domination number y(G) of a graph G is the minimum
cardinality of a dominating set in G [4]. A dominating set S is global
dominating if S dominates both G and G°. The global domination number
7¢(G) of a graph G is the minimum cardinality of a global dominating set
in G [10].

A graph which does not have P, - the path on four vertices, as an induced
subgraph is called a cograph. A set S C V is called a cographic dominating
set if S dominates G and the subgraph induced by S is a cograph [9]. The
minimum cardinality of a cographic dominating set is called the cographic
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domination number, v.4(G). A set S C V is called a global cographic
dominating set if it dominates both G and G° and the subgraph induced by
S is a cograph. The minimum cardinality of a global cographic dominating
set is called the global cographic domination number, v4ca(G) (9). A set
§ C V is independent if no two vertices of S are adjacentin G. Aset SCV
is called an independent dominating set if S is an independent set which
dominates G. The minimum cardinality of an independent dominating set
is called the independent domination number, v;(G) [4].

A graphical invariant ¢ is supermultiplicative with respect to a graph
product X, if given any two graphs G and H o(G x H) > o(G)o(H) and
submultiplicative if o(G x H) < 6(G)o(H). A class C is called a universal
multiplicative class for o on x if for every graph H, ¢(G x H) = (G)a(H)
whenever G € C [8].

Let B be a non-empty subset of the collection of all binary n-tuples which
does not include (0,0, ..., 0). The non-complete extended p-sum (NEPS) of
graphs Gy, Gz, ..., Gp with basis B denoted by NEPS(G1, Gz, ..., Gp; B), is
the graph with vertex set V(G1) x V(G2) X ... x V(Gyp), in which two
vertices (1, u2, ..., p) and (v1,vs,...,vp) are adjacent if and only if there
exists (B1,B2,..»Bp) € B such that u; is adjacent to v; in G; whenever
Bi = 1 and u; = v; whenever §; = 0. The graphs G, Gy, ...,Gp are called
the factors of NEPS [2]. Thus, the NEPS of graphs generalizes the various
types of graph products, as discussed in detail in the next section.

In this paper, we study the domination number, the global domina-
tion number, the cographic domination number, the global cographic dom-
ination number and the independent domination number of NEPS of two
graphs.

All graph theoretic terminology and notations not mentioned here are
from [1].

2 NEPS of two graphs

There are seven possible ways of choosing the basis B when p = 2.

B, = {(0» 1)}
By = {(]wo)}
33 = {(1’ 1)}

By ={(0,1),(1,0)}

Bs = {(0,1),(1,1)}

Bs = {(1,0),(1,1)}

B = {(Oa 1), (1,0), (1’ 1)}
Let G1 = (W, E1) and G2 = (V3, E3) be two graphs with |V;| = n; and
IE;l =m; fori= 1,2.
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The NEPS(G,, G2; By) is n; copies of G, and the NEPS(G,, Ga; B2) =
NEPS(G2, G1; Bl).

In the NEPS(G1, G2; B;j) two vertices (uy,v,) and (ug,v2) are adjacent
if and only if,

e j =3: u; is adjacent to uy in G and v, is adjacent to vz in Ga. This
is same as the tensor product [1] of G, and Go.

e j=4: u; = up and v, is adjacent to v2 in G2 or u, is adjacent to
ug in G1 and v; = vp. This is same as the cartesian product [1] of G
and Gz.

¢ j=5: Either u; = u; or u; is adjacent to us in G; and v; is adjacent
to vo in Gs.

e j =6: This is same as NEPS(Ga, Gy; Bs).

e j =T7: Either u; = uz and v; is adjacent to v2 in G5 or u; is adjacent
toug in G and v, = v, or u; is adjacent to uz in G, and v, is adjacent
to vz in G,. This is same as the strong product [1] of G; and G,.

3 Domination in NEPS of two graphs

3.1 NEPS with basis B; and B,

The value of v(NEPS(G1, G2; B1)), 7¢(NEPS(G1, G2; B1)), Y4(NEPS(G,,
G2;B1)), 79ea(NEPS(Gh,G2;B1)), %(NEPS(Gy1,G2;B1)) are n,.v(Ga),
11.79(G2), 11.7Yed(G2), n1.79ca(G2) and ny.%;(G2) respectively and the case
of NEPS(G1, Gs; B2) follows similarly.

3.2 NEPS with basis B;

In [3] it was conjectured that v(G x H) > v(G)y(H), where x denotes the
tensor product of two graphs. But, the conjecture was disproved in [6] by
giving a realization of a graph G such that y(G x G) < v(G)? — k for any
non-negative integer k.

Theorem 1.  There exist graphs G1 and G2 such that o( NEPS(G,, G2;
B3)) — 0(G1)0(G2) = k for any positive integer k, where o denotes any of
the domination parameters <y, Yea 0T %Yi.

Proof. Let Gy be the graph defined as follows. Let u1u10u13, t2120uo3,
.y Uk1Uk2uk3 be k distinct P; s and let uj; be adjacent to uj4y, for
J = 1,2,..,k — 1. Then o(Gy) = k. Let G2 be K,. Then, o(G2) =
1. Also, o(NEPS(G,,G2; B3)) = 2k. Therefore, o(NEPS(G1,G2;Bs)) —
0(G1)o(G2) = k. 0
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Theorem 2. The vy and Ygca are neither submultiplicative nor super-
multiplicative with respect to the NEPS with basis Bs. Moreover, given any
integer k there exist graphs G, and G2 such that a(NEPS(Gl,Gz,B3)) -
0(G1)o(G2) = k, where o denotes ¥4 0T Yged-

Proof. Case 1. k <0 is even.

Let G1 = K, and G2 = K. Then, ¢(G;) = n and o(G2) = 2. But,
o(NEPS(G1, Gg; B3)) = 2. Therefore, the required difference is 2—2n which
can be zero or any negative even integer.

Case 2. k<0isoddork=1.

Let G3 = P3 and G; be asin Case 1. Then 0(G3) = 2. Also, o(NEPS(G,,
G3; B3)) = 3. Therefore, the required difference is 3 — 2n which can be one
or any negative odd integer.

Case 3. k> 1.

Let Gz be as in Case 2. Let G4 be the graph defined as follows. Let
U1 U213, U2 U22U23, ..., Ukl UkoUks De k distinct P3 s and let u;1 be adja-
cent to uj41,1 for j = 1,2,...,k—1. Then 0(G4) = k. Also, o(NEPS(G4, G3;
Bj3)) = 3k. Therefore, the required difference is k. a

3.3 NEPS with basis By

Vizing’s conjecture [11]. The domination number is supermultiplicative
with respect to the cartesian product i.e; v(GOH) > v(G)y(H).

Remark 3. There are infinitely many pairs of graphs for which equality
holds in the Vizing’s conjecture [7].

Remark 4. Vizing’s type inequality does not hold for cographic, global
cographic and independent domination numbers. For exzample, let G be the

graph obtained by attaching k pendant vertices to each vertex of a path
on four vertices. Then, Yea(G) = 74ca(G) = k + 3 and 74(GOG) =
Yged(GOG) = 16k + 8. For k > 10, 7.4(GOG) < 7.a(G)?.

Theorem 5. There exist graphs Gy and G2 such that o( NEPS(G,,Gz;
B,)) — 0(G1)o(G2) = k for any positive integer k, where o denotes any of
the domination parameters 7Y, Yed OT Y-

Proof. LetGi = P, and G2 = K. Then, 0(G1) = | %2 ] [4] and 0(Gz) =
1. Also, o(NEPS(G,,G2;Bs)) = |2+2] [5]. Therefore, for any positive
integer k, if we choose nn = 6k — 2 the claim follows. O

Theorem 6. The vy and Ygca are neither submultiplicative nor super-
maultiplicative with respect to the NEPS with basis B4. Moreover, given any
integer k there exist graphs G1 and G such that o(NEPS(G1,Ga2; Ba)) —
0(G1)o(G2) = k, where o denotes vg 0T Yged-
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Proof. Case 1. k <0 is even.

Let Gy = K, and G2 = Kj. Then, ¢(G,) = n and o(G2) = 2. But,
o(NEPS(G1, G2; Bg)) = 2. Therefore, the required difference is 2—2n which
can be any positive even integer.

Case 2. k <0 is odd.

Let G3 = P3 and G, be asin Case 1. Then 0(Gj3) = 2. Also, 6(NEPS(G1,
G3;B4)) = 3. Therefore, the required difference is 3 — 2n which can be any
negative odd integer.

Case 3. k£ >1.

Let G4 = P, and G5 = P,. Then, 0(G4) = |2}2] and 0(Gs) = 2. For
any positive integer k, if we choose n = 3k+4, then o(NEPS(G4, Gs; Bs)) =
n. (Note that the value is n + 1 only when n = 1,2,3,5,6,9 [5]). Therefore
the required difference is k. a

3.4 NEPS with basis B; and Bg

Theorem 7.  There exist graphs G1 and G2 such that c(NEPS(G,, Go;
Bs)) — 0(G1)o(G2) = k for any positive integer k, where o denotes any of
the domination parameters v, Yed OT Y-

Proof. Let Gy = P, and G = K>. Then 0(G1) = [2#2] and ¢(G;) = 1.
Also, o(NEPS(G1, G2; Bs)) = [—"‘—J For a positive integer k, if we choose
n = 6k — 2 then the difference is k. Hence, the theorem. O

Theorem 8.  There exist graphs G1 and Gy such that o( NEPS(G1, Go;
Bs)) — 0(G1)a(G2) = k for any negative integer k, where o denotes v, or
Yged-

Proof. Let G, = P, and G = K3. Then 0(G,) = | 22| and 0(G;) =
Also, o(NEPS(G1, Ga; Bs)) = | %42]. Therefore, if we choose n = 6k — 2
the required difference is —k. O

3.5 NEPS with basis By

Theorem 9.  The v,v; and vy, are submultiplicative with respect to the
NEPS with basis By.

Proof. Let D; = {uy,uy,...,us} be a dominating set of G; and Dy =
{v1,v2,...,v¢} be a dominating set of G,. Consider the set D = {(uy,v1),
(%1,v2); ooy (U1, V)5 ovy (Usy 1), (Usy V2), -vy (Us, v2) }- Let (u,v) be any vertex
in NEPS(G1, G2; By). Since D is a y-set in G4, there exists at least one u; €
D, such that © = u; or u is adjacent to u;. Similarly, there exists at least one
v; € Dj such that v = v; or v is adjacent to v;. Therefore, (u;,v;) dominates
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(u, ’U) in NEPS(Gl,Gz;B7). Hence, ’Y(NEPS(Gl,Gz;B7)) < 'Y(G]_)’Y(Gz).
O

Similar arguments hold for the independent domination and global dom-
ination numbers also.
Note. The difference between v(G1)v(G2) and ¥(NEPS(G1,Go; B7)) can
be arbitrarily large. Similar is the case for v; and v,. For, let Gy be the
graph, n copies of Cy s with exactly one common vertex. Then, 7(G1) =
"yi(G'1) =n+1. Also, ’)‘(NEPS(Gl, Gy1;B7)) £ n? 4+ 3 and ’Ys‘(NEPS(Gh Gy;
By)) < n? +5. Also, 74(Kna) =71, 15(Ps) = 2 and ¢(NEPS(Ga, Gs; Br)) =
n+2,ifn>1.

Theorem 10.  The Ycq and Ygcd are neither submultiplicative nor super-
multiplicative with respect to the NEPS with basis B;. Moreover, for any
integer k there exist graphs G, and G2 such that o(NEPS(G1,G2; Br)) —
0(G1)o(G2) = k, where o denotes Ve 0T Vged-

Proof. Casel. k<0.

Let G1 be the graph P; with k pendant vertices each attached to all the
three vertices of the Ps. Let G2 be the graph P, with k pendant vertices each
attached to all the four vertices of the Py. So, o(G1) = 3 and 0(G2) = k+3.
Also, cNEPS(G1, G3; Br)) = 2k + 10. Therefore, the required difference is
1-k.

Case 2. £ 20.

Let G; be as in Case 1 and G3 be the graph Ps with k pendant vertices
each attached to all the six vertices of the Ps. So, 6(G3) = k + 5. Also,
oNEPS(G1, G3; By)) = 4k + 14. Therefore, the required difference is k — 1.

a
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