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Abstract

Let G = (V, E) be a connected graph. A subset A of V is called
an asteroidal set if for any three vertices u,v,w in A, there exists a
u~v path in G that avoids the neighbourhood of w. The asteroidal
chromatic number x, of G is the minimum order of a partition of
V into asteroidal sets. In this paper we initiate a study of this pa-
rameter. We determine the value of xa. for several classes of graphs,
obtain sharp bounds and Nordhaus-Gaddum type results.
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1 Introduction

By a graph G = (V, E) we mean a finite, undirected graph without loops
or multiple edges. For graph theoretic terminology we refer to Harary [2].

An independent set of three vertices is called an asteroidal triple if
between any pair in the triple there exists a path that avoids the neighbor-
hood of the third. A graph G is asteroidal triple free (AT-free) if it contains
no asteroidal triple. AT-free graphs were introduced by Lekkerkerker and
Boland [4], who showed that a graph is an interval graph if and only if it
is chordal and AT-free. AT-free graphs offer a common generalisation of
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interval graphs, permutation graphs, trapezoid graphs and cocomparabil-
ity graphs. Corneil et al. [1] observed that the property of being AT-free
enforces linearity in these four classes of graphs.

Walter [7] introduced the concept of asteroidal sets and asteroidal num-
ber of a graph. A subset A of V is called an asteroidal set if for everya € A
there exists a connected component of G — N|a] containing all the vertices
of A — {a}. The asteroidal number an(G) of G is the maximum cardinality
of an asteroidal set in G. It follows immediately from the definition that
any asteroidal set is independent and hence an < By, where S is the inde-
pendence number of G. Further if G — N[v] is connected for every vertex
v, then every independent set is an asteroidal set and hence an(G) = .

Since any asteroidal set is independent, the concept of chromatic number
can be generalized in a natural way using asteroidal sets. In this paper we
introduce the concept of asteroidal chromatic number of a graph and initiate
a study of this new parameter.

2 Main Results

Throughout this paper G = (V, E) is a connected graph of order p and size
q.

Definition 2.1. The asteroidal chromatic number x.(G) of G is the
minimum order of a partition of V into asteroidal sets.

Example 2.2.

(i) Since paths P, with n > 3 and complete bipartite graphs K, are
both AT-free, Xa(Ps) = [2] and Xa(Kmmn) = [2] + [2], where for
any real number z, [z] is the least integer greater than or equal to .
This shows that X, can be much larger than x.

(ii) If G — N[v] is connected for every v € V, then xa = x. In particular,
for the cycle Cy, we have x,(Cpn) = x(Chr).

We observe that x,(G) = pif and only if G = K. The following theorem
gives a characterization of graphs for which x, =p—1.

Theorem 2.3. The asteroidal chromatic number of a graph G with p
vertices is p—1 if and only if G = K, — {e1,€2,...,€;} where1 < j <p-—2
and the subgraph induced by the edges ey, es,...,€; is a star.

Proof. Let V(G) = {v1,v2,...,vp} and xo(G) = p—1. Let {{v1,v2}, {vs},
...,{vp}} be an asteroidal chromatic partition of G. Then the subgraph in-
duced by {vs,vs,...,vp} is complete, v; is not adjacent to v, and all non-
adjacent pairs of vertices {u,v;} with u € {v1,v2} and v; € {v3,v4,...,vp}

40



are such that u = v, for all v; or u = v for all v;. Hence G = K, —
{e1,€2,...,e;} where 1 < j < p—2 and the subgraph induced by the edges
e1,€e2,...,¢; is a star. The converse is obvious. ]

Though the asteroidal chromatic number of a complete bipartite graph
is larger than its chromatic number, there are k-regular bipartite graphs G
with x, = x = 2, as shown in the following theorem.

Theorem 2.4.  For any positive integer k, there exists a k-regular bipar-
tite graph G with x.(G) = 2.

Proof. Ifk=1,wetake G = Ks.Ifk > 2,let X = {ug,u1,u2,...,un—1},
Y = {v,v1,v2,...,0,—1} where n is any positive integer with n > k.
Let N(u;) = {vi,it1,...,Vitk—1} Where addition in the suffices is taken
modulo n. This gives a k-regular bipartite graph G such that N(v;) =
{i,ui—1,...,ui—k41}. Further G — N[v] is connected for every vertex v
and hence x.(G) = x(G) = 2. O

We now proceed to obtain sharp bounds for x,.

Theorem 2.5. Let G be any connected graph of order p. Then xo <
p— I_%QJ . Further xo(G) = p— l%’-J if and only if G is complete or the
following hold.

(%) G is a split graph with split partition (K, S) where G|K] is complete
and S is independent.

(%) If|S| is odd, every vertez in S is adjacent to every verter in K.

(i) If|S| is even and if there exist nonadjacent vertices u,v withu € K
and v € S, then any other nonadjacent pair of vertices a,b with a €
K,be S and a # u is such that b= v.

Proof. Let S be a maximum independent set in G so that |S| = fo.
Since any two-element subset of S is an asteroidal set, S can be partitioned

into [%Q] asteroidal sets. This partition together with the collection of all
singleton subsets of V' — .§ is an asteroidal chromatic partition of G and
hence xo.(G) <p- 6o+ l-%“.l =p- I_%“J

Now, if x.(G) =p— l_%ﬂJ , then the subgraph induced by K =V - S
is complete and hence G is a split graph. If S| is odd and if there exists a

pair of nonadjacent vertices u,v with u € S and v € K, then a partition of
S — {u} into two element subsets together with {u, v} and singleton subsets

of K — {v} form an asteroidal partition of cardinality p — l%“-_l - 1, which
is a contradiction. This proves (i) and (ii) and the proof of (iii) is similar.
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Conversely, if G is a graph satisfying the conditions (i), (ii) and (iii), then
G is AT-free and hence x,(G) =p - [%?-J . O
Theorem 2.6. Let G be a connected graph of order p. Then p/fy <
plan < xa <p-—an+1.

Proof. Let xo(G) =n andlet {V4,V,...,V,} be an asteroidal chromatic
n
partition of G. Since |V;| < an and ) |[Vi| = p, we have p/an < Xa. Also

=1
if S is a maximum asteroidal set in G, then {S}U {{v}/v eV — S} isan
asteroidal chromatic partition of G and hence x, < p — an + 1. Further
an < By, and hence p/By < p/an. O

Remark 2.7. The bounds given in Theorem 2.6 are sharp. For any even
cycle Cy, we have pfan = p/Bo = Xa = 2. The class of all graphs for which
Xa =P —an+ 1 is given in the following theorem.

Theorem 2.8. Let G be a connected graph. Then xo =p—an+1 if
and only if G is complete or the following hold.

(i) G is a split graph with split partition (K, S), where G[K] is complete
and S is independent.

(ii) N(u) € N(v) for all u,v € S.

(iii) If H is the subgraph of G induced by the set of all edges of the form
uv with u € S and v € K, then there does not exist a matching in H
that saturates all the vertices of S.

Proof. If G is complete, xo = p —an + 1 = p. Suppose G satisfies the
conditions (i), (ii) and (iii). Let u,v,w € S. By (ii), there exist vertices v’
and w' such that v' € N(v)—N(u) and w’ € N(u)—N(v). Now (v,v',w', w)
is a v-w path in G — N[u] and hence S is an asteroidal set. Further SU{z},
where ¢ € K, is not an asteroidal set. Thus S is a maximum asteroidal set
and |S| = an and |K| = p — an. Now, let { be any asteroidal chromatic
partition of G. Since any element of ¢ can cover at most one element of
K, it follows that |{| > p — an. Further it follows from (iii) that ¢ contains
at least one set A such that A C S and hence |{| > p — an + 1. Thus
Xe 2> p— an + 1 and hence by Theorem 2.6, we have xo = p—an + 1.
Conversely, let G be a connected graph with x, = p—an+ 1. Suppose G is
not complete. Let S be a maximum asteroidal set in G. Then K =V - §
is a clique in G, so that G is a split graph. Since S is an asteroidal set,
N(u) € N(v) for all u,v € S. Also if there exists a matching M in H that
saturates all vertices in S, then {{u,u’} :u € S,uv’ e M}U{{v}:v € K
and v is not M-saturated } is an asteroidal chromatic partition of G so that
Xo < p — an, which is a contradiction. O
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Nordhaus and Gaddum [5] obtained bounds for the sum and product
of the chromatic number of a graph and its complement. In the following
theorem we obtain similar results for x,.

Theorem 2.9. Let x, and X, denote respectively the asteroidal chro-
matic number of G and its complement G. Then

(i) 2P<Xe+X, <p+[2] and
(i) p < XX, < (38H2)°.

Proof. Let xo = n and let {W,V%,...,V,.} be an asteroidal chromatic
partition of G. Then max [V;| = p/n and since each V; induces a complete
graph in G, we have ¥, > max |V;| > p/n = p/xa. Hence xoX, > p. Also
Xa+X, 2 2v/(XaX,) = 2,/p. We now prove the inequality xo+X, < p+[2]
by induction on p. The inequality is obvious when p = 1 or 2. Suppose the
result is true for any graph with at most p— 1 vertices. Let G be any graph
with p vertices and p > 3. Let u, v be any two adjacent vertices in G and let
H = G - {u, v}. By induction hypothesis x,(H) + xa(H) <p-2+ [%2] .
Also X4(G) < Xa(H) + 2 and Xa(G) < xa(H) + 1. Hence it follows that
Xa(6) + Xa(@) < p+ [§]. Now xaX, < (etXal < (3281)%, o

Remark 2.10. The bounds given in Theorem 2.9 are sharp. For the
cycle Cy, Xa +X, =4 =24/p and XoX, =4 =0p.

The class of all graphs for which xo + X, = p + [2] is given in the
following theorem.

Theorem 2.11. xo+X,=p+ [g] if and only if G = K, or -I-{"p.

Proof. Let G be a graph with xo +X, = p+ 2] . We prove by induction
on p that if G has no isolated vertices, then G is complete. The result is
obviously true when p = 2 or 3. We now assume that the result is true
for any graph with at most p — 1 vertices. Let G be a graph with p > 4.
Let u,v € V(G). Let wy,w; be two vertices distinct from u and v and
let H=G __{wl:w2}- Since xa(G) + Xa(G) < Xa(}l_)'*’ Xa(H) +3 and
Xa(G) +Xxa(G) = p+ [ %], it follows that Xo(H) + xa(H) = p—2+ [232].
By induction hypothesis H is complete, so that u and v are adjacent in H.
Hence u and v are adjacent in G also, so that G is complete. The converse
is obvious. O

We now prove that the problem of deciding whether x,(G) < 3 is NP-
complete even when restricted to the family of line graphs.

Theorem 2.12.  Deciding whether xo(G) < 3 is NP-complete.
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Proof. The problem of deciding whether a 3-edge connected cubic graph
G is 3-edge colourable is NP-complete [3].

Let G be a 3-edge connected cubic graph and let L(G) be its line graph.
Let z = uv € E(G). We claim that L(G) — Nz] is connected. Let e;, ez
be the other two edges incident at u and let e3, e4 be the other two edges
incident at v.

Since G is 3-edge connected, G — {z, €1, €2, €3, €4} has at most one non-
trivial component, since otherwise at most two of the edges e;, e2, €3, e4 form
an edge-cut. Hence L(G) — N{z] is connected. For any vertex v of L(G),
we have L[G] — N|[v] is connected and hence x.(L(G)) = x(L(G)) = X/'(G),
so that xo(L(G)) < 3 if and only if x'(G) < 3.

Since the problem of deciding whether x'(G) < 3 is NP-complete (6],
it follows that the problem of deciding whether x,(L(G)) < 3 is also NP-
complete. O

We conclude with the following problems for further investigation.
Problem 2.13.  Characterize the class of graphs for which X, = X
Problem 2.14.  Characterize the class of graphs for which x. = Z-.
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