Software Systems for Research in Graph Theory

JAY BAGGA AND ADRIAN HEINZ
Department of Computer Science
Ball State University
Muncie, Indiana 47306, USA
e-mail: jbagga@bsu.edu, aheinz@bsu.edu

Abstract

In this paper, we present several graph theory related software
systems that we have developed. These systems have been used in
learning and research. The systems feature drawing and manipula-
tion of graphs as well as execution of graph algorithms. The systems
are JGraph, a Java-based system for creating graphs and running
graph algorithms; Colossus, a visibility graph system; Manohar, a
system for computing graceful labelings of graphs (with special em-
phasis on trees) and Graph Algorithm Constructor, which allows the
creation of graph algorithms by drawing flow diagrams instead of
writing source code. We also describe some examples in which the
empirical data generated from these systems have allowed us to dis-
cover fundamental properties of graphs.

Keywords. Graph algorithms software
2000 Mathematics Subject Classification: 05C

1 Introduction

The large number of applications of graph theory and graph algorithms to
a wide range of areas such as computer science, mathematics, engineering,
business, geographic information systems, bioinformatics and several others
have motivated a rapid growth in the fields of graph theory and graph
algorithms during the last four decades. A large number of resources in
graph theory such as books, research journals, web sites and other online
resources are now available. Graduate and undergraduate programs in
computer science, engineering, mathematics and several others regularly
include courses on graph theory, graph algorithms and their applications.
Students in these courses, researchers in pure and applied graph theory,
and professionals who need to experiment with graph algorithms often have

JCMCC 69 (2009), pp. 53-62

varying backgrounds. In particular, students and researchers need to work
with graphs and implement graph algorithms but they may not have the
necessary programming skills to do so.

The goal of our project is to create software systems for easy manipula-
tion and experimentation with graphs and graph algorithms. Such software
systems can be used for learning and teaching, for implementing graph al-
gorithms, for applications, and for conducting research where experimenta-
tion with graphs and empirical evidence are needed. These systems should
allow students and practitioners to experiment with graphs and construct
and implement graph algorithms without programming.

In this paper we describe our recent work and progress of our project.
Section 2 gives details of several systems that we have developed and used
in our teaching and research activities. In Section 3 we present some appli-
cations to illustrate how we have used the systems in our research. We also
give a summary of the current status of our project and list future goals
and enhancements to the systems.

2 Software Systems

In this section we describe our software systems in detail. While we have
found these systems highly useful in our research and teaching, it must
be mentioned that the systems are themselves research projects in varying
stages of development.

2.1 JGraph

JGraph is a system for creating graphs and running graph algorithms. It
has been primarily used for teaching and research in graph theory. The
system provides a graphical user interface in which the user can create
graphs, modify their structure and execute graph algorithms. Several algo-
rithms have been implemented including planarity testing, planarity draw-
ing, Priifer encoding, Dijkstra’s shortest path, DFS and BFS, and finding
blocks of a graph.

The current version (5.0) of the system provides the ability to use
GraphML to read and write graphs. GraphML is a comprehensive and
easy-to-use file format for graphs. It consists of a language core to describe
the structural properties of a graph and a flexible extension mechanism to
add application-specific data. See http://graphml.graphdrawing.org/ for
more details. The advantage of using GraphML lies in the fact that this
format is a standard and therefore many other graph applications use it.
This allows JGraph to read files containing graphs created in another graph
application which uses GraphML. JGraph has been developed entirely un-

54

der Java and therefore it can be run on any platform. A screenshot of
JGraph is shown in Figure 1.
We refer the reader to [7, 10] for more detailed descriptions of JGraph.

apti gph

Jdit 5.0 nawp
(B2 Lo pusert [ormat Operotions Algorzhms Viondow |Help

aNoen T2r:H wa00@ NENY oeal ar am
it . 3

Figure 1: Screenshot of JGraph v5.0.

2.2 Manohar

Manohar is a system for computing graceful labelings of graphs. For the
sake of completeness we include the definition of a graceful labeling. For a
connected graph G with m edges, we consider a vertex labeling f : V(G) —
{0,1,2,...,m} to be an injective map. This induces an edge-labeling of G
where an edge zy is given the label | f(z) — f(y)|. We say that f is a graceful
labeling if the induced edge labels are distinct, so that the edges are labeled
1,2,...,m in some order. A graph G is graceful if it has a graceful labeling.
The field of graceful labelings is a very active area of research. Please see
(14] for an excellent survey. The well-known Ringel-Kotzig conjecture [14]
states that all trees are graceful.

The graphical user interface of Manohar allows the user to easily draw a
graph and move vertices and edges around. When the user finishes drawing
the graph, it is possible to compute its graceful labeling by clicking on a
button. If the graph is graceful, Manohar displays a graceful labeling on
the screen. In its current version, Manohar can compute graceful labelings
of trees, cycles, and certain other graphs. A sample screenshot of the

55

computation of graceful labeling for a tree of 14 vertices is illustrated in
Figure 2.

VL)L V{ZJ14; T} V8=7; VISIe11; V{6ed; VI7m13; V9, VSm12; V{10t V{11 }m; V12J; VIS0 V24]o;

Figure 2: Screenshot of Manohar

Even though Manohar is able to find graceful labelings of trees and
certain graphs, it can only find a limited number of them. Nevertheless,
recent improvements to Manohar include the implementation of original
algorithms that find all graceful labelings of cycles as well as paths. It is
well-known that paths P, are graceful. Rosa [18] proved that a cycle C,,
is graceful if and only if n = 0 mod 4 or n = 3 mod 4. To illustrate how
Manohar has helped in our research in graceful labelings, we include below
a description of our algorithms and some data generated by those.
Overview of the Algorithm for cycles.

For a cycle C,, (with n = 0 mod 4 or n = 3 mod 4) our algorithm
generates edge labels starting at edge label n and proceeding to generate
edges labels n — 1,n — 2,... and so on down to edge label 1. This is done
by assigning appropriate vertex labels. Since the only way to generate edge
label n is by labeling two adjacent vertices as 0 and n, our algorithm starts
here. The next step is to generate edge label n — 1. As there are two ways
to obtain a positive difference equal to n — 1, namely < n — 1,0 > and
< n,1 >, the algorithm splits the computation into two branches, one with
the sub-labeling < n — 1,0,n > and the other one with < 0,n,1 > . The
algorithm continues computing edge labels n — 2,n — 3, ... by splitting into

56

branches until it either finds a graceful labeling for the branch or it reaches
a sublabeling for which no graceful labeling is possible. In this last case,
the algorithm disregards the computation for that branch and continues
computing other branches.

1jonu

1010011

91110011

819110011

7129110011
6829110011
53829110011
4]73829110011
3/473829110011
216473829110011
4]38291100117
3/638291100117
2|14638291100117
*x2(6382911001175[1] >4
31382911001174
x2|5382911001174([2 > 6
213829110011746
5/8291100116
448291100116
3/748291100116
*2|5748291100116(3) >3
2|53-2748291100116
2|35-2748291100116
3/482911001163
2|/75-2482911001163
2|57-2482911001163
*2|4829110011635(4) >7
4)73-28291100116
31473-28291100116
2)8291100116473
2|4735-28291100116
3/73-258291100116
2|73-2582911001164
x2|7358291100116(5 >4
4137-28291100116
3/829110011637
2|18291100116375

Figure 3: Partial output generated by Manohar for a cycle with 11 vertices.

57

This process finds all graceful labelings of a cycle [12]. Figure 3 displays
a sample of the output data obtained by Manohar for Cy;. The last edge
label computed is displayed on the left and the sub-labelings and graceful
labelings to the right of | symbol. The graceful labelings are marked with .

We observe that in a graceful labeling of Cy,, the vertex labels are n dis-
tinct elements of the set {0,1,2, ...,n} so that exactly one of these numbers
is missing from the set of vertex labels. In the output data in Figure 3, this
missing number appears to the right of the > symbol.

Table 1 summarizes the number of graceful labelings found for cycles
with up to 20 vertices. Each column represents the number » of vertices of
the cycle and each row represents the value m of the missing label. This
data has been essential in our research to study the structure of graceful
labelings. Notice the symmetry in each column. This is due to the fact
that the graceful labelings for m < % are the complements of the graceful
labelings for m > %. It has also been proved [11] that the missing label m
lies between [] a.nd 1321

-
-
-
L
|
o™
)
)
|
L]

20

8
Total & 2 | 12 | 34 | 208 | 492 7,764 | 20,464 | 424,764 | 1,204,540
0 0 0 G 0
T 0 0
2 0
3 20 28 (4]
3 42| B0 | 200 200 [1]
) 36| 80| 780 476 5,032 032
] 38| 120 | 1,30 s 22210 | 30,002 |
3)] 758 62,808 |
B T X T, T
m] 0_ 56— 1301 494 78 [191,738]
10 [1]) 780 100 8 196,228
(1] 0 250 476 1 101,238 |
0 35,714 162,808 |
210 104,688 |
932 39,602
032

Table 1: Number of graceful labeling of cycles for n < 20

Overview of the Algorithm for Paths. The algorithm for the computa-
tion of graceful labelings of a path is similar to that used for cycles. The
sublabelings are generated as before but these are linear rather than cir-
cular. Also, since there are n vertex labels 0,1,....n — 1 and n — 1 edge
labels 1,2,...,n — 1, no vertex label is missing. It was shown in (1] that, for
sufficiently large n, a lower bound for the number of graceful labelings of a
path is (3)". We tested our algorithm for values of n up to 20 and found
that the number of graceful labelings for paths is much larger than (3)",
which suggests that this bound may be improved perhaps by some multlple

58

of n.

We have tested the performance of Manohar using a Dell 4600 computer
with 1GB of RAM. Table 2 shows a comparison of our results for cycles
with those of Eshghi & Azimi [13]. They used a Pentium IV machine with
RAM (256 MB). The performance column displays the time that the ap-

plication took to find one graceful labeling.

n

Performance (s)

8
15
20
55
72
112

Eshghi & Azimi | Our algorithm
< 0.01 < 0.01
< .65 < 0.01
< 105.32 < 0.01
N/A < 0.03
N/A < 0.04
N/A < 0.15

Table 2: Performance of our algorithm compared to that of Eshghi and

Azimi

The data generated by our algorithms for paths and cycles have led
to the discovery of important properties about the structure of graceful
labelings [11]. Our next goal is to generalize our graceful labeling algorithm
to caterpillars and lobsters and to implement those in Manohar.

18 et SR Gees D

g Elg__a; ssonia Ne a

Figure 4: Screenshot of a visibility graph generated by Colossus. Ears and
mouths correspond to vertices 2,5,7,8,11,15,18 and 3,4,6,9,12,13,16,17

respectively

59

2.3 Colossus

Colossus is a system for determining visibility graphs of polygons or line
segments. The study of visibility graphs is an important area of application
in computational geometry. We refer the reader to [16, 17] for terminology
and basic results. We have done extensive research in this area [2, 3, 4,
5, 6, 8, 9]. Collossus has been quite helpful in our research. A screenshot
of Colossus is displayed in Figure 4. The system displays a graphical user
interface in which the user can draw a simple polygon. Colossus displays
its visibility graph coloring the ears and mouths. See [15] for definitions.
The system performs the computation in real-time so that changes to the
configuration of the original graph are immediately reflected in its visibility
graph.

bk

rech fotte e B

2o ses BwssHy x® w

Cur 17
Hodbw 13 Vibdty Edgre W7

Figure 5: Visibility graph of an orthogonal polygon.

Another feature of Colossus is its ability to generate visibility graphs of
orthogonal polygons. Here, the edges of the polygon are alternatively hor-
izontal and vertical. Orthogonal polygons form an important subclass of
general simple closed polygons and are well studied [16]. A sample screen-
shot is shown in Figure 5. A detailed description of Colossus appears in
(10].

3 Summary and Future Work

In this paper we have described several software systems that we have de-
veloped for use in research and teaching of graph theory, graph algorithms,

60

and their applications. We described some areas of our research where our
systems have been particularly helpful. Students in our graph algorithms
classes have used these systems to experiment with graphs and execute
graph algorithms. Moreover, these software systems have been essential in
our research allowing us to analyze large amount of data to discover im-
portant properties of graphs, especially those related to graceful labelings
of paths and cycles.

JGraph has been used to teach graph algorithms for more than a decade.
The system has been extended over the years by students of several depart-
ments including Computer Science, Mathematics and Physics. The reader
is invited to visit www.cs.bsu.edu/homepages/gnet for a demonstration ver-
sion (JEdit 4.2) of this system. See [7] for a detailed discussion of an earlier
version of JGraph.

Manohar has been used primarily for research purposes. The system has
provided invaluable information in the discovery of important properties of
graceful labelings of cycles and paths. Observation of the data has led to
the conception of several conjectures and proofs [11].

Collossus has been used for research in visibility graphs. See [2, 3, 4, 5,
6, 8, 9] for details.

Our next goal is to continue enhancing these software systems, with
special emphasis on Manohar. The system currently finds all graceful la-
belings of paths and cycles and we are working on a new version to find all
graceful labelings of caterpillars and lobsters.

References

[1] R. E. Aldred, J. Siran and M. Siran, A note on the graceful labelings
of path, Discrete Math., 261 (2003), 27-30.

[2] J. Bagga, J. Emert, M. McGrew, and W. Toll, On the Sizes of Some
Visibility Graphs, Congressus Numerantium, 104 (1994), 25-32.

[3] J. Bagga, L.Gewali, and S. Ntafos, Visibility Edges, Mixed Edges,
and Unique Triangulation, Proceedings of the 13th European Conf. on
Comput. Geom.,(1997), 11.

[4] J. Bagga, S. Dey, L. Gewali, J. Emert, and M. McGrew, Contracted
Visibility Graphs of Line Segments, Proc. 9th Canadian Conf. Comput.
Geom.,1997, 76-81.

(5] J. Bagga, J. Emert, and M. McGrew, Directed Polygon Visibility
Graphs, Congressus Numerantium, 132 (1998), 61-67.

61

[6) J.Bagga, J.Emert, and M.McGrew, Directed Polygons as Boundaries
of Visibility Graphs, Congressus Numerantium, 142 (2000), 57-63.

[7) J. Bagga and A. Heinz, JGraph - A Java based system for drawing
graphs and running graph algorithms, Lecture Notes in Computer Sci-
ence, 2265 (2002), Springer Verlag.

[8] J. Bagga, J. Emert, and M. McGrew, Directed Polygons as Boundaries
of Visibility Graphs, Congressus Numerantium, 142 (2000), 57-63.

[9] J. Bagga, J. Emert, and M. McGrew, Connectivity Properties of Visi-
bility Graphs, Congressus Numerantium, 165 (2003), 189-194.

(10} J. Bagga and A. Heinz, Software Systems for Implementing Graph
Algorithms for Learning and Research, ICTACS 2006, Proceedings of
the First International Conference on Theories and Applications of
Computer Science (2006), World Scientific Publishers.

[11) J. Bagga, A. Heinz and M. Majumder, Properties of Graceful Labelings
of Cycles, Congressus Numerantium, 188(2007), 109-115.

[12] J. Bagga, A. Heinz and M. Majumder, An Algorithm for Graceful
Labelings of Cycles, Congressus Numerantium, 186(2007), 57-63.

[13] K. Eshghi and P. Azimi, Applications of mathematical programming
in graceful labeling of graphs, J. Applied Math., 1 (2004), 1-8.

(14] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The
Electronic Journal of Combinatorics 15 (2008), #DS6.

[15] G.H. Meisters, Polygons have ears, Amer. Math. Monthly, 82 (1975),
648-651.

(16] O'Rourke, Art Gallery Theorems and Algorithms, Oxford University
Press (1987).

[17] J. O’Rourke, Visibility, Handbook of Discrete and Computational
Geometry, CRC Press (1997).

(18) A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of
Graphs (Proc. Internat. Symposium, Rome 1966, Gordon and Breach,
N. Y. and Dunod Paris, (1967), 349-355.

62

