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Abstract

This paper presents some new results on permissible degree sets in
polygon visibility graphs (PVGs). If the PVG has n vertices, we say
it is an n-PVG. We also show some canonical construction techniques
for PVGs with given degree sets.
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1 Introduction

A visibility graph is a triple G = (V,0, E), where V is a set of vertices
in the plane, O is a set of obstacles, and E is the set of all straight line
edges connecting vertices in V but not intersecting any of the obstacles in
O. In general, the obstacles in O can be any geometrical shapes, and the
vertices in V can be any distinguished set of vertices on or off the obstacles.
We will, however, restrict our discussion here to a special class of visibility
graphs, whose vertices are the vertices of a simple polygon, P, and whose
obstacles are the sides of P. We also restrict the set E to consist only of
those edges that are interior to P or are sides of P. Such a graph is called
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a polygon visibility graph (PVG). If the polygon has n vertices, we call the
corresponding polygon visibility graph an n-PVG.

Polygon visibility graphs have been studied for several decades now,
and a good survey of the early results can be found in [7]. Please see (2, 3]
for some recent results on visibility graphs. In this paper we obtain some
results on the permissible degree sequences and degree sets for PVGs.

2 Degree Sequences and Degree Sets

We denote the degree sequence of a graph G as < d7*,d3?,...,dp >, where
the exponents indicate multiplicities, so that there are n; vertices of degree
d;. The degrees are listed in ascending order. The degree set of G is then
the set {d,ds, ...,dn} of distinct degrees of G. For example, the PVGs in
Figure 1 have degree sequences < 22,32 > and < 3* >, respectively, while
the PVG in Figure 2 has degree sequence < 2,3, 43,5,6 > and degree set
{2,3,4,5,6}
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Figure 1

Hakimi [4] gave conditions for a sequence of integers to be the degree
sequence of a graph. Kapoor et al [5] proved that every set of integers
is realizable as the degree set of a graph, and also proved necessary and
sufficient conditions for a given set S to be the degree set of a tree, a planar
graph and an outerplanar graph. Ahuja and Tripathi [1] give some recent
results on the possible size of a general graph that realizes a given degree
set.

The question naturally arises: “Which degree sets are realizable as
PVGs?”

The following two theorems give us a partial answer to this question
and build some essential groundwork for a complete answer.



Figure 2

Theorem 2.1. Every possible singleton degree set is realizable.

Proof. We observe that if P is a convex polygon with n > 3 vertices,
then the corresponding PVG is complete and has degree set {n —1}. 0O

A few more definitions are in order. A visibility cligue is a subset of the
vertices of a PVG, which, together with the polygon edges and visibility
edges connecting them, form a clique (maximal complete subgraph). In
our constructions we often will use the notion of a spike. An m-spike is a
set of m vertices which is inserted (glued) between two otherwise adjacent
vertices of a polygon in such a way that the new vertices are not visible to
any of the other vertices of that polygon. An m-spur is a set of m vertices
inserted between two otherwise adjacent polygon vertices in such a way
that at least some of the m vertices are visible to vertices of the original
polygon other than the two between which they are inserted. In case the
original polygon has only 2 vertices (is degenerate), any spike could also be
considered a spur.

Theorem 2.2. Given any set S = {i,j}, where 2 < i < j, there is a PVG
which has S as its degree set.

Proof. 'We prove the theorem in two cases.

Case 1. j < 2i. Let ny = j —i and ny = 2i — j. We construct a polygon
as shown by the configuration in Figure 3.

65



RN
@ @ V Structure

Figure 3

Here all of the vertices of the polygon except vp are divided into three
convex chains Vj, V5, and V3, with ny, ng, and n; vertices, respectively.
Notice that V; and V3 are spurs of the configuration. Then each vertex in
V1 U V3 has degree i, each vertex in V5 has degree j, and vertex vg also has
degree j.

Case 2. j > 2i. The degree set {i,;} is realized by the configuration
shown in Figure 4.
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Figure 4

Here vg, - - - v; form a convex polygon with s = j—2i+2 and for each pair
of vertices, {vy, vr41}, we add an (i — 1)-spike W,.. Thus, each vertex of W,
is of degree i, and each v, is of degree 2(i—~1)+s=2i—2+j-2i+2=4 0O

Notice that with a configuration similar to that of Configuration 1 shown
in Figure 3 above, we can achieve degree sets {3, j, k} , with i = ny +ng,j =
ng + ng, and k = ny + ny + n3. The only constraints on the values of i, 7,
and karethati > 1,i<j<k, and,sinceng >0,k <i+3J.

The fundamental technique used in the constructions above is to begin
with a convex set of vertices and add m-spikes between adjacent pairs of
the original vertices. PVGs with degree sets of size greater than 2 can be
constructed in many different ways, but in what follows we will develop
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a simple canonical way of constructing realizations of degree sets using as
its basic building blocks the structures for degree sets of size 1 and 2 that
we have already described and applying some simple bridging techniques.
There are two types of bridges used in these constructions: the 1-2 bridge,
which is formed from a simple 2-3 fan, and the convex k;-k; bridge, with
k1 and k; each > 2, both of which are illustrated in Figure 5.

S *— e .-
k> vertices ky vertices
Figure 5

Lemma 2.1. Any set S = {iy,42,...,ix}, with 1 <4; and i, =i, +7r—1,
r=2,...,k, can be realized as the degree set of a PVG.

Proof. Case (i; =2). When k = 3, we have the realization in Figure 6.
2 2

4 3
Figure 6

We can extend this easily to the case k = 4, by inserting a 3-3 bridge
between one end of the 1-2 bridge and the adjacent end spike, as in Figure 7.

Figure 7

Notice that in this realization, there are four parts, the beginning and
ending spike, both of degree 2, a middle spike of degree 3, and a transitional
structure, or bridge, between them, in this case, what we will refer to as a
1-2-bridge since it adds 1 or 2 to the degrees of the vertices in the spikes
on either end of the bridge.
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Assume that for some k > 4, S is always realizable as above. We can
extend this to k+ 1 by first constructing the realization of S’ = {2,...,k},
then inserting a k — 1-spike as above between the k — 2-spike and the 2
spike at the right end of the structure, joining it with 1-2-bridges on each
side. The vertices of the k — 2-spike will all have degrees k — 2,k — 1 and
k, and the vertices of the adjacent spikes will remain as they were, and we
have extended this to a realization of S.

Case (i; > 2). This follows immediately from the previous case. Given
an arbitrary set of integers § = {1, ...,%k}, first extend it to a set S’ such
that §' = {2,...,41 — 1,41,...,%k}. Now construct the realization of S’ and
trim off the part up to the #;-spike plus the ending 2 spike and place an i;
spike at the right end. Since k is at least 3, this can always be done. O

Lemma 2.2. Any set § = {i1,i2,...,%x}, with 4 <iy,i2 — 4 > 1 and
ir =i+ | %] +1,7r=2,...,k, can be realized as the degree set of a PVG.

Proof. The general schema for £ > 3 is illustrated in Figure 8, where
is = i1 + k1, and i3 = i) + k2.

Figure 8

Note that, in this setting, since k > 2, i1 must be greater than or equal to
4. For example, {4,6,7} can be realized as in Figure 9.

Figure 9

In general, we can chain copies of i; spikes with k, — k41 bridges
connecting them, where k, and k.4, are each equal to |4 + 1, and i, =
i1 + kr—; for all 7 > 1. Because of the requirement on the values of k., k. +
kr41 < i,+1, and this guarantees that the chain can be extended arbitrarily
as illustrated in Figure 10. 0
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Figure 10

In the bridges used in the previous two lemmas, the vertices at the ends
of the bridge overlap with some of the vertices of a spike. The proofs of
the following two lemmas employ overlap along an entire spike of either a
V structure or a wheel structure.

Lemma 2.3. Any set S = {41,2,...,%k}, with iy + [-'-21_| +1 < i, < 24y,
forr=2,...,k, can be realized as the degree set of a PVG.

Proof. The cases where i) = 2, 3, or 4 degenerate to singleton sets, which
are handled by Theorem 2.1. When i; = 5, or 6, we get only the 2 element
sets {5,9} and {6, 11}, both of which are handled by Theorem 2.2. WLOG,
then, we will assume 7; > 6, and k > 2.

For iy =7 and k = 3,S = {7,12,13} and is realized as in Figure 11.

7

12
Figure 11

Before proceeding with an inductive argument, we observe that in any
V structure realizing the set S = {i1,4,} and satisfying the conditions of
the lemma, the number of vertices at the end of each spike is at least half
of i;, and, consequently, the number of vertices in the shared portion of
the V must be less than half of i;, but greater than 1. Thus, any such V
structure can be glued onto a smaller chain of V structures by overlapping
one of its spikes with the right-most spike of the smaller chain.

Now, assume S = {i1,12,...,%x} satisfies the conditions of the lemma
and that for all j < k, we know how to realize $’ = {i1,...,%;} as a chain
of V structures with an i; spike at both ends. Construct a V structure
realizing S” = {1, 4 }. Now glue S” to the right end of S’, overlapping the
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end spikes. This gives us a realization of S with an ; spike at both ends as

in Figure 12, and, by induction on k, we are done. (]
i
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Figure 12

Lemma 2.4. Any set S = {i1,42,...,ix}, with 3 <4y, and i, > 2i;,
forr=2,...,k, can be realized as the degree set of a PVG.

Proof. By Theorem 2.2, we can construct a {i1,ir} wheel for each r =
2,...,k. Each of these wheels has at least 3 spokes (i;-spikes), so, when
i1 > 2, we can glue them together in a chain by overlapping an %;-spike of
each {iy,i,} wheel with an i, spike of the preceding {i1,i,—1} wheel as in

Figure 13. a
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Figure 13

Given any set of integers § = {41, 12,...,%&}, with i; = 2, we can clearly
partition S into the disjoint subsets:

1. Sy = {is|ir = i1 +r—1,r =1,...,8s, where s is maximal in S}; we
will refer to this as the beginning sequence of the elements of S;

2. Sp- = {is|r > s, and i, =iy + | %] + 1}, the lower middle sequence
of elements of S; if |Sy| = 2, we replace 7; with ig;

3. Shy = {irlr > s, and i1 + [%] + 1 < iy < 201}, the upper middle
sequence of elements of S; if |Sy| = 2, we replace ¢; with i2; and

4. Se,= {ir|r > s, and i, = 2i1}, the ending sequence of elements of S;
if |Sy| = 2, we replace ¢, with é3.
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Any of these subsets may be empty, except Sp, which always contains
at least 7.

Lemmas 2.1 through 2.4 give us a canonical realization of each of the
sets Sp, Sh—, Sh+, and S, respectively. For the set S., we required #; > 2.
We observe that, for i; > 2, the realizations of all the possible combinations
of these sets can be joined to form a larger PVG realizing the union of the
sets in those combinations by simply gluing them together by overlapping
the ¢, spikes (2 spikes, if |Sy| = 2) at the ends of each of the realizations.

Theorem 2.3.  Any set of integers S = {iy,1a,...,ix} with i, > 1, and
i1 < 1ip < -+- < iy can be realized as the degree set of a PVG which is the
join of the realizations of the sets Sp, Sh—, Sh4., and Se.

Proof. The observation made in the previous paragraph takes care of the
case when 7; = 3.

Case i; = 2: If i; = 3, we can realize S = {2,3,43,...,4x} as shown in
Figure 14.

Figure 14

Some of the foot-like spikes in Figure 14 can be repeated as needed to bring
the number of vertices in the core up to the required number to reach a
vertex degree of i, that is, i — 2 vertices.

If i > 3, we have proved the base cases of ¥ = 1 and k¥ = 2 in
Theorems 2.1 and 2.2. Therefore assume as an induction hypothesis that
S = {2,42,...,1;} is realizable for all j < k, for some & > 2. To complete
the proof, we need only extend this induction hypothesis.

Given any S = {2,i2,13,...,ik}, consider §' = {ip—2,i3—2,...,ix—2},
since iz > 3, we can realize S’ by the induction hypothesis and the previous
cases of the proof. Now, into this realization, insert a 2 spike in place of
each polygon edge. This gives us the required realization of S. O
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3 Degree Sets of Orthogonal Polygons

In this section we consider a special subclass of polygons. A polygon is
orthogonal if its edges are alternatively horizontal and vertical. We first
state some elementary properties of orthogonal PVGs.

Proposition 3.1. If G is an orthogonal n-PVG, then
1. § > 3, and this bound is sharp.
2. There are an even number of even vertices.
8. If r is the number of reflex vertices, then n = 2r + 4.
4. Ewery reflex vertex has degree at least 5.

Proof.  The first is easily seen. For the second, note that an orthogonal
polygon must have an even order. The proof of the third can be found in
[7]. We include it here for the sake of completeness. The interior angle of a
convex vertex is 5 while that of a reflex vertex is 37" Since the sum of all
interior angles is (n — 2)m, we get (n —7)3 + 3 = (n — 2)7 and the result
follows.

For the fourth, do a radial line sweep at the reflex vertex, starting along
one of the two adjacent edges. As the line sweeps the first 90 degrees, it
must encounter at least two vertices. As it sweeps the next 90 degrees, it
must encounter at least one additional vertex, and as it sweeps the final 90
degrees, it will encounter at least two additional vertices. (]

Proposition 3.2.  For an orthogonal PVG of order n,
1. Ifn = 4, the degree sequence is < 3* >

2. If n > 4, the degree sequence must have at least [22] vertices of
degree at least 5.

Proof. Follows from above. a

We saw in Theorem 2.1 that convex polygons give us complete PVGs for
each n > 3. Our next result shows that the CVGs of orthogonal polygons
are never complete unless n = 4.

Proposition 3.3. If P is an orthogonal polygon of order n, then the
PVG of P has at most (3) — 3r edges, where r is the number of reflex
vertices of P. In particular, the only complete orthogonal PVG is K,.

Proof. Assume n > 6. Suppose the vertices of P (in counterclockwise or-
der) are vy, vg, . . . , Un. If v; is a reflex vertex then the line segments v;_1v; 41,
Vi-1vi42 and v;_2v;i41 cannot be edges in the PVG (with the indices being
considered mod n). |
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4 Regularity

A regular graph of degree r has degree set {r}. For PVGs we have the
following conjecture:

Conjecture 4.1. A PVG is regular if and only if it is complete.

We prove that this is true for small order (n < 6) PVGs. Note that the
conjecture is trivially true for n = 3. We will need the following definition.
An ear of a polygon P is a vertex v such that the line segment joining the
two neighbors of v lies in the interior of P. In other words, the two neighbors
of v on P are adjacent in the PVG of P. A theorem by Meisters [6] states
that every polygon has at least two ears v and w such that vw is not a side
of the polygon. Observe that if v is an ear on P of n > 4 vertices, and
u and w are neighbors of v on P, then we get a new polygon P, of n — 1
vertices by removing the vertex v and adding side uw. Also the PVG of P,
is then an induced subgraph of the PVG of P.

Lemma 4.1.  For an n-PVG, G, with n > 3, if two vertices are adjacent
in G, then at least one them has degree greater than 2.

Proof. Let v; and v, be two adjacent vertices in G. If v; and v, are not
neighbors on P, then each has degree at least 3. If v; and v, are adjacent
on P, let v3 be the other vertex adjacent on P to vs. If v, can see v3, then
deg(v,) > 2. If v; cannot see vg, the triangle v;vov3 must contain another
vertex v;, of G (an endpoint of a polygon edge that blocks the edge v v3).
Thus, there is a finite chain of nested triangles vav;, v3. va can see the vertex
v;, of the innermost triangle of the chain, and thus deg(v;) > 3. m]

Lemma 4.1 leads to a special case of Conjecture 4.1
Lemma 4.2. If an n-PVG is 3-regular, then n = 4 and the PVG is K.

Proof. Clearly, n > 4. Let v be an ear of the polygon. Removal of v
gives an induced (n — 1)-PVG with two adjacent vertices of degree 2. By
Lemma 4.1 it follows that n — 1 = 3. O

Theorem 4.1. For n <86, if a PVG is regular, then it is complete.

Proof.  As noted earlier, the case n = 3 is trivial. Assume n > 4. Suppose
that G is r-regular. By Lemma 4.1, 7 > 3. If n = 4 or if » = 3, we are done
by Lemma 4.2. Assumen >5andr > 4.If n=5andr =4, orifn = 6 and
r = 5, the PVG is complete. Finally suppose that n = 6 and r = 4. Removal
of an ear gives a 5-PVG G with degree sequence < 34,4 > . Suppose the
vertices of the 5-polygon (say P)) are v, va,v3, v4,vs (in order). Without
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loss of generality, suppose v; has degree 4. Clearly, in G, the removal of v;
leaves a 4-cycle. Since vqus, vsvs and v4us are sides of Py, it follows that
vov5 is in G. Hence v; must be an ear of P;, and its removal must lead to
a 4-PVG which cannot be a 4-cycle, a contradiction. O
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