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Abstract
The goal of this article is to provide an overview of all the results
currently known regarding the connectedness of path graphs. The
proofs we present are only those that illustrate the different tech-
niques employed in obtaining the results.
This is an expository paper addressed to readers with a small
degree of familiarity with the field of graph theory and its techniques.

1 Introduction

1.1 Definitions and notation

A graph is a pair G = (V, E) where V is a finite set of vertices, and E is a
subset of non-ordered pairs of vertices, called edges. If e = uv € E we say
that u and v are adjacent, and also that u and v are the endpoints of the
edge e.

For a vertex v € V, the neighborhood of v is the set N(v) of all vertices
adjacent with ». That is,

N@)={u:uveE}.

The degree of a vertex v is deg(v) = |Ng(v)|. Sometimes it is useful
to know that every vertex has a minimum number of neighbors, so the
minimum degree of the graph G, denoted as §(G), is the minimum degree
over all vertices of G. In other occasions it is useful the concept of regularity
regarding the degree. Therefore, a graph is regular if all of its vertices have
the same degree. Particularly, a graph is said to be d-regular if deg(v) = 4,
for every vertex v of G.

A path between two vertices u and v, or a uv-path, is an ordered sequence
of vertices u = g, Z1, Z2, ... Tn—1,Zn = v such that z; is adjacent with z;4,,
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foralli=0,...,n—1and z; # z; if i # j, for all i, j such that 0 < 4,j < n.
In other words, a path between u and v is a sequence of adjacent vertices
that starts with u, ends with v, and does not repeat vertices. The length
of a path is the number of edges it traverses. For example, the path u =
Zg, T1, T2, - - Tn—1, Tn, = v has length n. Often we are interested in paths of
minimal length between a given pair of vertices, so the distance between two
vertices u and v is d(u,v), defined as the length of a shortest uv-path. The
maximum distance between all pairs of vertices in V is called the diameter
of a graph G, denoted as D = D(G). That is,

D(G) = max{d(u,v) : u,v € V}.

Notice that given a uv-path in G it might happen that u = v, and in
that case we called the path v = 29,21, Z2,...Tn-1,Zn = u is a cycle of
length n. For some purposes it is useful to have a lower bound for the length
of a cycle in a given graph. Thus, the girth of a graph G is g(G), defined
as the length of a shortest cycle in G.

A graph is called connected if there is a path between every pair of its
vertices. A connected graph that does not have any cycle is a iree.

The reader is referred to [7, 12] for further terminology on graphs.

1.2 Connectedness

There are different measure of the connectedness of a graph. The edge-
connectivity of a graph G is A(G) defined as the minimum number of edges
whose removal disconnects G.

An important result for the study of the connectivity of a graph is
Menger’s Theorem [21], which states that the connectivity of a graph is
related to the number of disjoint paths between pairs of distinct vertices of
a graph. We will recall this result after giving a precise definition of disjoint
paths.

Two uv-paths are said to be edge-disjoint if they have no edges in com-
mon.

Theorem 1.1. [21] The minimum number of vertices whose removal dis-
connects a pair of vertices u,v in G, equals the mazimum number of vertez-
disjoint uv-paths. Analogously, the minimum number of edges whose re-
moval disconnects a pair of vertices u,v in G, equals the mazrimum number
of edge-disjoint uv-paths.

A main consequence of Menger’s result is that it provides a constructive
approach to measure the connectivity of a graph, which consists in finding
disjoint paths between every pair of vertices.

An edge cut in a graph G is a set of edges A such that G — A is not
connected. Therefore, it arises from the definition of edge-connectivity
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that for any graph G, A(G) is the cardinality of a minimal edge cut of G.
Since A(G) < §(G), a graph G is said to be mazimally edge-connected when
AG) = §(G).

A connected component of a non-connected graph ig a maximal con-
nected subgraph, i.e. a connected subgraph that is not a subgraph of any
other connected subgraph of G, other than itself. If a minimum edge cut
is removed from a graph G, the resulting graph necessarily has exactly two
connected components, so and edge cut A can be identified with the pair
A = (C,C) where C and C represent the two components of the graph
G- A

Let us now turn our attention to the following example.

G1 Gz

Fig. 1 Two maximally connected graphs, with A(G1) = MG2) = 2.

In Figure 1 we are show two graphs, both with the same connectivity and
both maximally connected. However, any set of two edges whose removal
disconnects G; produces a connected component in G4 formed by a single
vertex. This is not the case in G2, where deleting two well-chosen edges
might lead to two connected components, each of them consisting of an
edge. To express this concept Boesch and Tindell introduced the notion of
superconnectivity [5]. Next we present some terminology necessary for the
definition of this new idea. _

An edge cut is called trivial if C = {v} or C = {v} for some ver-
tex v with deg(v) = 6(G). A maximally edge-connected graph is called
super-) if every edge cut (C,C) of cardinality 6(G) is trivial. The super-
connectivity of a graph is denoted by A1(G) and it is defined as M (G) =
min{|(C,C)|, (C,C) is a non trivial edge cut}. Then, a graph G is super-\
if and only if A1 (G) > 6(G).

1.3 Path graphs

Given a positive integer k, the k-path graph is an operator that associates a
graph G with another graph denoted P(G). The vertices of P,(G) represent
the set of all paths of length k in G. Two vertices are adjacent in Pi(G)
whenever the intersection of the corresponding paths forms a path of length
k — 1 in G, and their union forms either a cycle or a path of length £ + 1
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in G. Intuitively, this means that two vertices of Px(G) are adjacent if and
only if they represent paths in G that can be obtained from each other by
‘shifting’. Given a path ug,u1,...,ux in G, the corresponding vertex in
Py(G) will be denoted by U = uouy . . . uk.

Py(G)

A(G) P3(G)
Fig. 2 The graph G and its corresponding 1, 2 and 3-path graphs.

Obviously, given a graph G, for any integer k such that k > D(G), the
diameter of G, the k-path graph is empty.

Path graphs were introduced by Broersma and Hoede in [6] as a natural
generalization of line graphs. Indeed, for every graph G, the graph P,(G)
coincides with the line graph of G denoted as L(G). A characterization of
P,-path graphs was also given by Broersma and Hoede in (6], and a different
characterization was later obtained by Li and Lin in [16]. Isomorphisms of
3-path graphs were studied jointly by Aldred, Ellingham, Hemminger and
Jipsen in [1] and by Li in (18, 19]. Isomorphisms of 4-path graphs were
studied by Li and Biao in [20]. Distance properties of path graphs were
studied by Bela and Jurica [4] Knor and Niepel [14] and Chung, Ferrero,
Taylor and Warshauer [8]. Crnkovi¢ presented some insightful results on
path graphs of incidence graphs [9].

Regarding the study of the connectedness of k-path graphs, it is im-
portant to distinguish the case k = 1, since 1-path graphs are line graphs
and they have been widely studied. We mention here only those articles re-
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lated to k-path graphs for the case k 2> 2. In this case, the first results were
obtained by Li [17]. Later Knor [13, 15}, Niepel [13, 15] and Mallah [15] con-
tinued the study, focusing mainly on finding conditions to guarantee that a
path graph is connected. More recently, Balbuena [2, 3], Ferrero [2, 11, 10)
and Garcia [3] had contributed to study measures of the connectivity and
superconnectivity of path graphs.

Note that the path graph can be thought of as an operator on graphs,
and therefore, we can study graphs arising from the iteration of the k-
path graph operator. Indeed, the s-iterated k-path graph of G is the graph
P¢(G) defined as P(G) if s = 1, and Px(P{~Y(@)) if s > 1. Some important
contributions in this direction were given by Prisner [22].

2 Connectedness of path graphs

2.1 Connected path graphs

In this subsection we survey conditions that guarantee that a path graph
is connected.

Obviously if a graph G is not connected, Pi(G) is not connected either,
for any positive integer k. However, the connectivity of G is not enough
to guarantee the connectivity of Pi(G) for all positive integers k. Figure 3
gives an example of a graph G such that P,(G) is connected but P2(G) is
not connected.

L 4

G A (G) P(G)

Fig. 3 The graph G and its corresponding 1 and 2-path graphs.

Therefore, before studying the connectivity of connected path graphs,
we must address the problem of finding sufficient conditions for a path
graph to be connected. Observe that as the previous example suggests,
those conditions will involve not only the graph, but aiso the value k of the
k-path graph under consideration.

The first and most general necessary and sufficient condition for a path
graph to be connected was presented by Knor and Niepel (13]. In order to
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recall this result here we need to introduce some terminology.

Following the notation in [13], for a graph G and two integers k and ¢,
k>2and0<t<k-2, byPktwedenoteanmducedtreemwathchame-
ter k+t and a diametric pa'th ((De, Tp—1y+++9T1U0y V1ye o e U=ty Y15 Y25 - -+ yt)
such that all the endvertices of Pg, are at distance no greater than ¢ from
vg Or kg, the degrees of vy,v2...Ux—¢—1 are 2 in Pkt and no vertex in
V(P — {vi,v2.. . vk—t-1} is adjacent with a vertex in V(G) — V(Pg,).
The path V1,V2...Vk—¢—1 is the base of Py, and for a path A of length k
we say that A € Pk,t if and only if the base of Py, is a subpath of A.

Theorem 2.1. [13] Let G be a connected graph with girth at least k + 1.
Then, Pi(G) is disconnected if and only if G contains a Pg,, 0 <t < k-2,
and a path A of length k, such that A ¢ P ,.

Note that it is often the case that we can simplify the study of k-path
graphs if we restrict k to small values. For example, it is sufficient - and
easy to verify - that if G is connected also P;(G) is connected. Besides,
if G is a connected graph with minimum degree § > 2, it is also possible
to prove that P»(G) must be connected. For k = 3, Knor and Niepel [13]
found a simplified version of their general result. We present their result
next, after introducing some necessary notation.

Let P denotes a subgraph of G induced by the vertices in a path
of length 3, say wp,v1,v2,vs, such that neither vy nor vz has a neighbor
in V(G) - {'v1,'l)2}. A path A is in Pg if and only if A = v, v1, s, s.
Analogously, P denotes an induced subgraph of G with a path of length
z, vp, U1, U2, ¥ in which every neighbor of vy and v, except vg,v; and v has
degree 1, or it has degree 2 and in this case it is adjacent to v;. Moreover,
no vertex of V(P{) — {v} is adjacent to a vertex of V(G) — V(P?) in G.
A path A of length 3 is in P if vy, v1,v2 is a subpath of A.

For a set of vertices S with no edges between its vertices, let K; denote
a graph obtained from K4 U S by joining all vertices of S to one special
vertex of K.

Let K> be a complete bipartite graph and let (X,Y’) be a bipartition
of K, where X = {v),v2}. Join ¢ sets of independent vertices by edges,
each to one vertex of Y'; further, glue a set of stars with at least 3 vertices
by one endvertex, each to v; or to v2; glue a set of triangles by one vertex,
each either to v; or vy; and finally, join v; to v by an edge. The resulting
graph is denoted by K3 ,.

Theorem 2.2. [13] Let G be a connected graph such that P3(G) is not
empty. Then, P3(G) is disconnected if and only if one of the following
conditions holds

1) G contains a P2, y € {3,4}, and a path A of length 3 such that A ¢ P?
2) G is isomorphic to K}

8) G is isomorphic to K3 ,, t > 1.

80



2.2 Connectivity of path graphs

Once established that a path graph is connected, we proceed to measure
its connectivity. ,

A first result valid for any value of k was given by Ferrero in [10], and it
establishes a lower bound for the connectivity of a path graph. The proof
of that result is based on the construction of edge-disjoint paths between
any two adjacent vertices, and since it illustrates some properties of path
graphs, we will present it next.

Let k be a positive integer and let G be a connected graph with minimum
degree 6 > k. Let U = upuy ... ux and V = u; ... upur4; be two adjacent
vertices in Pi(G). If § > k, there exist b; € N(ux) — {u1...uk—1,%k+1},
i=1,...,0 —k and ¢; € N(y;) — {uo,u2...ux}, j=1,...,6 — k, and
as a consequence, there exist vertices u;...uxb; and cju; ... ux in P(G).
Let v be an isomorphism in the integer set {1,...,6 — k}, then we can
assign each b; with one particular c,(;). Therefore, there is a path P; :
u, Uy . .. ukbi, Cyi)u1 . .. ug,v in Pr(G), which obviously has length 3 and
joins U and V. Indeed, those paths are proven to be disjoint, and the fol-
lowing result can be established.

Lemma 2.3. [10] Let k be a positive integer and let G be a connected
graph with minimum degree 0 > k. Then, there erist § — k edge disjoint
paths of length 3 between any two adjacent vertices in Pi(G).

UoUy .. Uk Uy ... UgpUK41

Uy ... Upb; Cy(i)U1 - - - Uk
Fig. 4 Paths given in Lemma 2.3

Although it is not mentioned in [10], it is worth noticing that from the
previous Lemma it can be derived the following result:

Theorem 2.4. Let k be a positive integer and let G be a connected graph
with minimum degree § > k. Then, A(Px(G)) 28—k —1.

However, the usefulness of this result is limited if one takes into account
that §(P.(G)) = 2(6 — 1). That is the reason why it is necessary to look
at longer paths between any pair of adjacent vertices. For that purpose in
[10] is also presented the following additional construction.
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Let & be a positive integer and let G be a connected graph with minimum
degree § > 2(k — 1). Let U = uguy...ux and V = u;...uxur41 be two
adjacent vertices in Py(G). Since d > k, foreachi=1,...,6 —(k—1) there

exists a choice of vertices aj,...,al and b},...,b},, which determine the
walks in G
P;:a},...,ak, ug,u1,b5, ..., byyy and Qi : Dyyq,- .., 03, UL, . - Ukl

Moreover, since § > 2(k — 1), for any integers 4,5, 1 <i,j < d - (k-1))
we can choose the vertices so that ai # a, and b} # b} if ¢ # j. From each
of those UV-walks in Pi(G) it is obtained a different UV -path, and those
paths are proven to be internally disjoint, so the following lemma can be
obtained.

Lemma 2.5. [10] Let k be e positive integer and let G be a connected

graph with minimum degree § > 2(k — 1). Then, there exist 6 — (k —1) edge

disjoint paths of length 3k — 1 between any two adjacent vertices in Pi(G).
ab ai uo u1 u2 Uk Uk41

b

b1
Fig. 5 Paths given in Lemma 2.5
It is shown in [10] that the paths obtained in the previous two lemmas,
all together form a disjoint set of paths between any two vertices. As a

consequence, we can now obtain a better lower bound for the connectivity
of a path graph.

Theorem 2.6. [10] Let k be a positive integer and let G be a connected
graph with minimum degree § > 2(k —1). Then, A\(Px(G)) = 2(6 — (k—1)).

Note that in general 6(Pc(G)) > 2(6 — (k — 1)), but if G is d-regular,
then 8(P,(G)) = 2(6 — (k — 1)), so the following result can be derived.

Corollary 2.7. [10] Let k be a positive integer and let G be a connected
§-regular graph with § > 2(k — 1). Then, P(G) is mazimally connected.

Notice that the proofs for Lemmas 2.3 and 2.5 also work if the bound
on the degree, § > 2(k — 1), is replaced by a more relaxed one, § > k,
together with a lower bound on the girth g, which must be g > k + 1. This

82



was suggested in [10] and proven independently by Balbuena and Garcia in

[3]-

Theorem 2.8. [3] Let k be a positive integer and let G be a connected
graph with minimum degree § > 3 and girth at least k+1. Then, A(Pi(G)) =
2(6 - 1).

Corollary 2.9. [3] Let k be a positive integer and let G be a connected d-
regular graph with § > 3 and girth at least k+1. Then, P, (G) is mazimally
connected.

As we saw in the previous section, when restricting the study of k-path
graphs to small values of ¥ we can often obtain sharper results.
For instance, if ¥ = 2 Theorem 2.6 says:

If G be a connected graph with minimum degree § > 2. Then,
A(P(G)) 2 2(6 - 1).

However, A(P2(G)) > 2(8 — 1) still holds for some graphs G with mini-
mum degree § = 2. This improvement was proved in [2] where the authors
focused on 2-path graphs and studied the connectivity using a different
technique. Instead of constructing disjoint paths, they study properties of
edge cuts.

To understand the work in [2] it is necessary to establish a distinction
between two different types of edges in 2-path graphs. Let G be a graph
and let a,b, c and u, v, w be two paths in G that induce adjacent vertices in
P5(G). Let us call the edge connecting abc and uvw in P;(G) an ab-edge or
a be-edge, depending on v = a and w = b, or u = b and v = ¢, respectively.
For any given ab € E(G), let EZ, denote the set of vertices of P2(G) of the
type zab, z € Ng(a) \ {b}. Analogously, let E®, denote the set of vertices
of P5(G) of the type aby, y € Ng(b) \ {a}. Then the following results hold.

Lemma 2.10. [2] Let G be a connected graph with §(G) > 2. Let A =
(C,C) be an edge cut of Pa(G), and let ab € E(G). If A contains ab-edges,
then it contains at least min{deg(a) — 1,deg(b) — 1} ab-edges.

Corollary 2.11. [2] Let G be a graph with 6(G) = 2 and MG) = 2. Let
A be an edge cut of Po(G). Then there exist two different edges ab and cd
in G, such that A contains both ab-edges and cd-edges.

As a direct consequence of Lemma 2.10 and Corollary 2.11 it is obtained
the following theorem.

Theorem 2.12. [2] Let G be a connected graph with 6(G) > 2.
(a) MP(G)) 2 6(G) - 1;
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(b) MP2(G)) = 26(G) —2 if N(G) 2 2.

Corollary 2.13. 2] Let G be a connected d-regular graph with 6(G) 2 2.
Then, MP2(G)) = 26(G) —2 if MG) > 2.

It is interesting to notice that the results on Theorem 2.12 are best
possible. Indeed, if we consider the graph G formed by joining two triangles
by a path of length 3. It is easy to see that §(G) = 2, AMG) = 1 and
A(P2(G)) = 1. Hence, Theorem 2.12 (a) is best possible for minimum degree
equal to two. Moreover, as 6(P2(G)) > 26(G) — 2, then Theorem 2.12 (b) is
also best possible whenever the edge-connectivity of G is exactly A(G) = 2.

The case k = 3 was also studied using particular properties of 3-path
graphs that cannot be extended to larger values of k. Noticed that for k = 3
Theorem 2.6 says:

If G be a connected graph with minimum degree 6 > 4. Then,
MP3(G)) =2 2(6 - 2).

Following a similar method to construct paths as the one that gave rise
to Theorem 2.6, but adding some technical considerations due to the fact
that k = 3, it was shown in [11] that:

Theorem 2.14. [11] Let G be a connected graph with minimum degree
& > 4, then P3(G) is mazimally connected.

Then, considering that 6(P3(G)) = 2(é — 1), the following corollary
comes immediately.

Corollary 2.15. [11] Let G be a connected graph with minimum degree
8 > 4. Then, A(P3(G)) > 2(5 - 1).

Furthermore, in the case of 3-path graphs we can relax the conditions
on the minimum degree of G in Theorem 2.14 if G is a triangle-free graphs.

Theorem 2.16. [11] Let G be a connected triangle-free graph with min-
imum degree § > 3. Then P3(G) is mazimally edge connected.

Since G has no triangles, §(P3(G)) is exactly 2(6 — 1), and this allows
us to estate the following corollary.

Corollary 2.17. [11] Let G be a connected triangle-free graph with min-
imum degree § > 3. Then, \(P3(G)) = 2(6 —1).



2.3 Superconnectivity of path graphs

Once a graph is known to be maximally connected, it is interesting to know
if the graph is or not superconnected, and if so, to study the values of its
superconnectivity. For that reason, this section is restricted to those graphs
that satisfy the conditions for maximal connectivity given in the previous
section.

For the general case in which k is any positive integer, it was proven in
[10] that if G is a connected d-regular graph with é > 2(k—1), then P (G) is
maximally connected. Furthermore, in this case the following result holds.

Theorem 2.18. [10] Let k be a positive integer and let G be a connected
0-regular graph with § > 2(k — 1). Then, Pi(G) is super-\.

Corollary 2.19. (10, 3] Let k be a positive integer and let G be a con-
nected 8-regular graph with 6 > 3 and girth at least k + 1. Then, Pi(G) is
super-A.

The previous theorem gives rise to a trivial lower bound for the super-
connectivity of path graphs, which is A (Px(G)) >2(6 —k+1) +1.

Besides, since there are more relaxed conditions to guarantee maximal
connectivity in the cases £ = 2 and k¥ = 3, we must study the supercon-
nectivity of 2 and 3-path graphs of the maximally connected graphs that
satisfy them.

Theorem 2.20. [2] Let G be a graph with minimum degree § > 3
and A(G) = 3, such that §(P2(G)) = 26 — 2. Then Po(G) is super-\ and
M(P2(G)) 2 3(6 —1).

For regular graphs the lower bound presented in the previous theorem
can be improved:

Theorem 2.21. [2] Let G be a §-regular graph with § > 4 and A(G) = 4.
Then Po(G) is super-A and M\ (P2(G)) = 46 — 6.

We can obtain analogous results for k = 3 if restricted to graphs with
0 > 4, which is enough to guarantee maximal connectivity.

Theorem 2.22. [11] Let G be a connected graph and with minimum
degree 6 > 5. Then, P3(G) is super-A.

As a consequence of Theorem 2.16, to study the superconnectivity of
3-path graphs of graphs without triangles we only need the condition § > 3.
Reasoning as in Theorem 2.22 it can be proved the following result.

Theorem 2.23. [11] Let G be a connected graph with no triangles and
with minimum degree 6 > 4. Then, P3(G) is super-\.
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3 Iterated path graphs

The conditions on a graph G to study the connectivity of Pi(G) that we
presented in the previous section can be classified into two different cate-
gories. On one side there are results that apply to graphs having a certain
minimum degree, and on the other side, there are results that relax the
lower bound on the degree and impose that the girth be large. The follow-
ing result shows that the results based on large girth cannot be extended
to iterated path graphs.

Lemma 3.1. [10] Let k be en integer and let G be a connected graph
with minimum degree § > k. Then, the girth of Px(G) is 3 ifk =1 or 2
and G has triangles, and 4 otherwise.

In other words, the girth of a k-path graphs can never be greater than
kE+1ifk>3.

However, the condition § > 2(k — 1) is preserved under the path graph
iteration [13]. Therefore, by induction on the number of iterations of the
path graph operator, the following corollary of Theorem 2.6 was given.

Corollary 3.2. [10] Let k be a positive integer and let G be a connected
graph with minimum degree § > 2(k—1). Then, for every s > 1, \(P¢(G)) =
296 —2° + 2.

Similarly, it can be proven the following corollary.

Corollary 3.3. Let k be o positive integer and let G be a connected d-
regular graph with § > 2(k — 1). Then, for every positive integer s, P{(G)
is mazimally connected.

Corollary 3.4. [10] Let k be a positive integer and let G be a connected
graph with minimum degree § > 2(k — 1). Then, for every positive integer
s, P{(G) is super-A.

Similarly, by induction on s the improvements obtained for 2 and 3-path
graphs based on a minimum degree condition, can be generalized to P§(G)
and P§(G).

Theorem 3.5. Let G be a connected é-regular graph with 6(G) > 2 and
XG) 2 2. Then, P{(G) is mazimally connected. O

Theorem 3.6. [11] Let G be a connected graph with minimum degree
0 > 4. Then P;(G) is mazimally connected. O

Corollary 3.7. [11] Let G be a connected graph with minimum degree
d > 4. Then, A(P§(G)) =2 2°6 —2° + 2.
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An exception in which the conditions on the girth g > k+1 are preserved
under path graph iterations is the case of graphs without triangles and 3-
path graphs. In that case, using induction on s, Theorem 2.16 and Coroliary
2.17 we can obtain:

Theorem 3.8. Let G be a connected graph with no triangles and with
minimum degree § > 3. Then P§(G) is mazimally edge connected.

Corollary 3.9. Let G be a connected graph with no triangles and with
minimum degree § > 3. Then, M(P§(G)) =20 —2° + 2.
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