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Abstract. We determine all graphs G of orderatleast k + 1, k > 3, with the property
that for any k-subset S of V(G) there is a unique vertex z, z € V(G) — S, which has
exactly two neighbours in S. Such graphs have exactly & + 1 vertices and consist of a
family of vertex-disjoint cycles. When k = 2 it is clear that graphs with this property
are the so-called friendship graphs.

Let G be a graph with the property that for any two vertices in the graph there
is a unique vertex adjacent to both of them. The Friendship Theorem states that in
such a graph there must be a vertex which is adjacent to all other vertices. From
this it follows easily that all such graphs (the friendship graphs) consist of a set
of edge-disjoint 3-cycles which share a common vertex. This was first proved by
Erdos, Rényi and Sé6s [4], and later alternate proofs were given by Wilf [7] and
Longyear and Parsons [6].

Many variations of the Friendship theorem have been suggested. They are typ-
ically concemed with specifying either the number of paths between any two ver-
tices or the size of the neighbourhood of any k-subset of vertices. Descriptions of
these generalizations can be found in Bondy [1] and Delorme and Hahn [3].

Caccetta, Erdts and Vijayan [2] have studied graphs G with the property that
for any two subsets A and B of V(G) with |AN B| = 0 and |A U B| = k, there
exists a vertex u, u ¢ A U B, so that u is adjacent to all vertices of A and none
of B. Prior to this Exoo [5] had considered graphs in which the sizes of A and B
are fixed, and for each such A and B there are at least ¢ vertices, u;,u2, - , g,
adjacent to each of A and to none of B. If we suppose that|A| = 2,|B|=0,t =1,
and moreover that u; is unique, then the graphs with this property are precisely
the friendship graphs. (Without uniqueness we obtain all graphs with diameter at
most 2 in which each edge lies in a 3-cycle.)

Discussions with Alspach and Caccetta on graphs with such properties led to the
following problem which might be viewed as a generalization of the Friendship
Theorem: Determine all graphs G of order at least k + 1 with the property that
for any k-subset S of V(&) there is a unique vertex z, z € V(G) — S, which
has exactly two neighbours in S. The case & = 2 is, of course, the Friendship
Theorem so we will only consider k& > 3.
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Main Theorem. If G is a graph of order at least k+ 1, k > 3, with the property
that for any k-subset S of V(QG) there is a unique vertex z, x € V(G) - S,
which has exactly two neighbours in S, then G has exactly k + 1 vertices and is
regular of degree 2. (So G is a vertex-disjoint union of cycles.)

We prove the main theorem via the following series of steps. In Theorem 1 we
will show that if k£ = 3, then G must be a cycle of length four. In Theorem 2
we will show that if [V(G)| = k+ 2, k > 2, then G is regular of degree 2 and
hence is a vertex-disjoint union of cycles. Finally the proof of the main theorem
is completed in Theorem 4 when we show that there are no graphs with more than
k + 1 vertices, k > 3, which have the desired property.

For any graph G we will say that a k-subset A of V(G) is good if there exists
avertex z, z € V(G) — S, so that z has exactly two neighbours in A. If there is
no such z we say that A is not good.

Theorem 1. If G is a graph or order at least four with the property that for any
3-subset S of V(Q) there is a unique vertex =,z € V(G) — S, which has exactly
two neighbours in S, then G = C, (the cycle of length 4).

Proof: Let G be a graph as described in the theorem. We will first prove that if
G has a path of length four on the vertex-set W, then the subgraph of G induced
on W is either K5 or K5 — e (the graph K5 with the edge e deleted).

Let W = {1,2,3,4,5} and let the path of length four have edges 12, 23, 34
and 45. Since 2 and 4 cannot both be adjacent to exactly two of {1,3,5}, we
must have one of the edges 14 or 25. Without loss of generality we can assume
that we have the edge 25. Next, so that 3 and 5 do not both have exactly two
neighbours in {1,2, 4}, we must have one of the edges 13 and 15. Again without
loss of generality we add the edge 13. Currently each of 1 and 4 has exactly two
neighbours in {2,3,5}. So we must have one of the edges 15 and 24. If we have
15, then since 1 and 2 now both have two neighbours in {3,4,5} we must add
either 24 or 14. On either addition we get isomorphic graphs so we can assume
that the edge added is 14. Now consider vertices 4 and 5 and the set {1,2,3}.
Either 24 or 35 must be added and in either case we get K5 — e. So assume that
instead of adding 15 we added 24. Vertices 1 and 5 and the 3-set {2, 3,4 } require
that one of the edges 14 and 35 be added. Either choice yields an isomorphic graph
so we can suppose that we add 14. Now consider vertices 1 and 3 and the 3-set
{2,4,5}. From this we must add one of the edges 15 or 35. Both yield Ks — e
and we are done.

It now follows that if G' has a path of length four, then |[V(G)| > 5 and G is
either a complete graph or a complete graph with an edge deleted. (To see this
argue as follows. Let V(Ks) = V(Ks —e) = {1,2,3,4,5} and suppose that
e = 12. Consider the 3-subset {3,4,5}. Thereisavertex z,z ¢ {1,2,3,4,5},
with exactly two neighbours in {3,4,5}. Without loss of generality we may as-
sume 3z € E(G). But we now have a path of length four on the vertex set




{1,2,3,4, z}, and hence the subgraph induced on these vertices is either K's or
Ks — e. Now consider the set {1,2,3, 5, z} which also contains a path of length
four and hence induces either K's or K's — e. So we have K¢ or K¢ — e. Continue
in this manner.) Clearly each graph contains a 3-subset which is not good.

SoG has no path of length four. Letz € V(G) sothatdeg(z) = A(G) > 2 (as
is easily seen). Then, to avoid a path of length four, V(@) —{z}UT' (z) UT'%(z)
(where I"(z) is the set of neighbours of z, and I'2(z) the set of neighbours of
I (z) but excluding z.)

Suppose '2(z) = @. If [T ()| > 4, there is at most one edge in G[['(z)]
and hence no 3-set in I' () is good. So |[I'(z)| = 3 (as [V(G)| > 4) and the
3-setI" (z) is not good.

Therefore I'2(z) # @. Clearly G[I"2(x)] can contain no edges. If y € I' (z)
then either y is adjacent to all or none of I'2(z). If both y and z € I'(z) have
non-empty neighbourhoods in I'>(z), then |I'2(z)| = 1. But this implies that
IT(x)| < 2. Hence [T (z)| = 2 and G is Cs. Thus exactly one vertex of I"(z)
is adjacent to all vertices of I'2(z). If [T'(z)] > 3, there can be no edges in
GIT (z)] and hence no 3-set on I'(z) can be good. So IT(z)| = 2, but now
{z}UT (z) is not good. §

Theorem 2. If G is a graph with [V(G)| = k+ 1 so that for any k-subset S
of V(G) there is a unique vertex =, z € V(G) — S, which has exactly two
neighbours in S, then G is regular of degree two.

Proof: Suppose |V(G)| = k + 1. Foreachy,y € V(G), let S = V(& - {y}.
Then y has exactly two neighbours in S and hence G is regular of degree 2. |

Before proving the last theorem we need the following lemma.

Lemma 3. Let G be a graph of order at least k+ 2, k > 3, with the property
that for any k-subset S of V(G) there is a unique vertex z, z € V(@) -8, with
exactly two neighbours in S. Then G has a vertex of degree at least k.

Proof: We first prove that for any vertex y in the graph G (as described in the
Statement of the lemma), either deg(y) = 2 or deg(y) >k

Lety € V(G) and suppose that deg(y) ¥ 2 and deg(y) < k—1.LetS; be
a k-subset of V(G) sothat {y} UT (y) C S,. By assumption there is a unique
vertex y; € V(G) — S; so that |l"(y1) nsl=2. LetS, = S U{y.}—{y} and
note that yy; ¢ E(G). Then there is a unique vertex y, € V( G) — 5> so that
IT(y2) NSz = 2. Clearly y, # y. Observe that y1y, € E(G) (or we contradict
the uniqueness of y;). Now let S5 = S, U {y2} — {v1}. There is a unique vertex
y3 € V(G) — S5 sothat |T'(y3) N S3| = 2. Clearly y; is distinct from Y ¥
and y, and gy y3 € E(G). But now as both y; and y2 cannot have exactly two
neighbours in § = S U{y3} — {2}, we must have y, y3 € E(G). Butnow both
y2 and y3 have exactly two neighbours in S; . We have reached a contradiction.



We next show that all vertices in G can not have degree two and so there must be
avertex of degree at least k. If G is regular of degree two, then G has non-adjacent
vertices z and y and |[' (z) UT'(y)| < 4. There is a k-subset S in V(G) — {z,y}
sothatI"(z) UT (y) C S, anditis not good. 1§

Theorem 4. There is no graph G, |V(G)| > k+ 1 and k > 3, with the property
that for any k-subset S of V(G) there is a unique vertex z, T € V(G) - S,
which has exactly two neighbours in S.

Proof: The proof is quite straightforward but unfortunately many cases must be
considered. Let z be a vertex of G with deg(z) > k (such a vertex exists by
Lemma 3). We will write V(&) = {z} UT (z) UT?(z) UT but our argument
will use only the vertices of {z} UT (z) UT %(z).

Let A bea (k— 1)-subset of I' (z). For the set AU {z} thereis a unique vertex
y1,m € (F(z) UT%(z)) — (AU{z}),sothat IC(n) Nn(Au{zh|=2.

Case 1 y € I'(z): For the set AU {1} there is a unique vertex v, y2 €
(T (z) UT2(2)) — (AU {11 D), (y2 # 2) sothat [T (y2) N (AU {n D[ =2.

1.1 y €eT(z): Ify1y2 € E(G), then both y; and y, have exactly two neigh-
bours in AU {z}. So y1y2 ¢ E(G). Consider the k-set AU {12} Thereisa
unique vertex y3, y3 € (I'(z) UT'2(3)) — (AU {12}),and y3 ¥ x, 1, SO that
IT(ys) N(AU{g2D]=2.

1.1.1 y3 € T'(z): Clearly y2ys ¢ E(G) (orboth gy and y; have exactly two
neighbours in AU {z}), and y3y1 € E(G) (else both g, and y3 have exactly two
neighbours in AU {y1 }). But now both y; and y, have exactly two neighbours in
AU {y3}. A contradiction.

1.1.2 g3 € [%(x): Onconsidering AU{z} we see that y3y2 € E(G). Since
|A] > 3, there exists a vertex y € A 50 that both yy1 ¢ E(G) and yys ¢
E(G).Let B= AU{z}U {12} — {v}. But Bisak-subsetand |I'(y3) N B|=
[T (y1) N B| = 2 and we obtain a contradiction.

This completes the subcase 1. 1.

1.2 yp € T'?(z): Our first observation is that y1y» € E(G) (else y2 also has
exactly two neighbours in AU{z}). Since |A| > 3, we canchoosea vertex y € A
so that both yy; ¢ E(G) and yy, ¢ E(G). Let A' = A — {y}. Then there is
a vertex g3, y3 € (I'(z) UT?(z)) - (4'U {z,92}), which has exactly two
neighbours in A' U {z, 12 }. Clearly y3 # 2,91, 12. Also y3 # y (else both y and
y» have exactly two neighbours in A’ U {z,41}).

12.1 y3 €T(z)andy2ys € E(G): Notethat yys ¢ E(G) orelse both y; and
y» have exactly two neighbours in AU {z}. Lety* € A’ sothaty°y; € E(G).
But now each of y; and y; have exactly two neighbours in AU {z,92} — {v"}
and we have a contradiction,




12.2 y; €T (z) andyry3 ¢ E(G): It immediately follows that yys € E(Q)
as otherwise both y; and y3 have exactly two neighbours in A U {x}. But now
both y; and y3 have exactly two neighbours in A U {v2}. A contradiction.

123 y3 € T%(z) and y293 € E(G): Now yy; € E(G) or both y; and y3
have exactly two neighbours in A U {y2 }. But now both y1 and y3 have exactly
two neighbours in A U {z}.

124 y3 €T?(z) andy2y3 ¢ E(G): To avoid both y; and y3 having exactly
two neighbours in A’ U {z, y1 } we must have y,y3 € E(Q), and to avoid both
y1 and y3 having exactly two neighbours in A U{z} we must have yys € E(G).
We now consider the unique vertex y4, y4 € (I'(z) UT'%(2)) — (4'U{z,13}),
satisfying |I"(y4) N (A" U {z,15})] = 2. Clearly ys ¥ z,91,12,ys. Suppose
that y4 = y. Then |I"(y) N A’| = 0. Now choose y* € A’ so that y*y, ¢ E(G).
Then both y and y, have exactly two neighbours in A’ U {z, y1,93} — {v'}. A
contradiction so y4 # y.

1241 y, €T(z) andy3y4 € B(G): Lety* € A'sothaty’y, € E(G). To
avoid both y; and ys having exactly two neighbours in A U {z,y3} — {y*} we
must have yys € E(G). But now both y; and y, have exactly two neighbours in
AU {z}. A contradiction.

1242 y, € I'(z) and yays ¢ E(G): It follows immediately that yy, €
E(G), orelse both y; and y4 have exactly two neighbours in AU {z}. But now
both y; and y, have exactly two neighbours in A U {ys }.

1243 ys €T%(z)andysys € E(G): First, y1y4 € E(G) or both y and y4
have exactly two neighbours in A’ U {1, y3}, and second yy; € E(G) or both
y2 and y4 have exactly two neighbours in AU {y; }. But now both g, and y, have
exactly two neighbours in A U {z}.

1244 y, € T%(z) and y3ys ¢ E(G): As in the previous case we find that
v1va € E(G) orelse both y, and y4 have exactly two neighbours in A’ U{n,u}
Now choose y* € A’ so that both y*y; € E(G) and y*y, ¢ E(G) (since y4 has
two neighbours in A’ and y, only one this is possible). But now both y2 and y4
have exactly two neighbours in A'U{z, 1, y3 }~{y*} and we have a contradiction.

This completes subcase 1.2.4, so completing case 1.

Case2y, € I'?(z): For the set AU {y;} there exists a unique vertex y3, =
(C(z)UT%(2)) = (AU{m}), (v2 # z,31) sothat [T (y2) N(AU{gs })| = 2.
21y, € I'*(z): We observe immediately that gy, € E(G). For the set
AU {y2} there is a unique vertex y3, y3 € (I'(z) UT2(z)) — (AU {w2],
(3 # z,11) sothat [T (y3) N (AU {2 })| = 2.

2.1.1 y3 € T'?(z): We must have yoy3 € E(G) or else both y; and y3 have
exactly two neighbours in AU{z}. Now choose y* € A sothatboth y*y; € E(G)
and y*y; ¢ E(G). We now find that both y, and y3 have exactly two neighbours
in AU {z,y2} — y*. A contradiction.



2.1.2 y3 € I'(=): First, yay3 ¢ E(G) as otherwise both y; and y3 have exactly
two neighbours in A U {z}, and second 33 € E(G) or both y, and y; have
exactly two neighbours in A U {y; }. Now we know there is a unique vertex ya,
ys € (T(z) UT2(z)) — (AU{w3}),sothat [T (ys) N(AU{y3})| = 2. Clearly
va F T, 01,92, 13,

2.1.2.1 ys € I'2(z): We begin by observing that y3ys € E(G) as otherwise
both y; and y, have exactly two neighbours in A U {z}. Choose y* € A so that
both y*y; € E(G) and y*ys ¢ E(G). Then both y, and y, have exactly two
neighbours in AU {z,y3} — y*. A contradiction.

2.1.22 yqs € I'(z): First, yays ¢ E(G) or else both y; and y; have exactly
two neighbours in A U {z}. This then implies that y2ys € E(G) or both y3 and
ys4 have exactly two neighbours in A U {y2}. Next choose y* € A so that both
y*ys € E(G) and y*y, ¢ E(G). But now each of y, and y3 has exactly two
neighbours in AU {z,y4} — ¥°*. A contradiction.

This completes the proof of subcase 2.1.

2.2y, € I'(z): This is the last possibility so we can assume that for any (k —1)-
subset B C I'(z), the unique vertex with exactly two neighbours in B U {z}
lies in I"2(z). To begin observe that y, 3, ¢ E(G) as otherwise both y; and y,
have exactly two neighbours in A U {z}. Choose y € A so that yy; € E(G)
and consider the set B = AU {y2} — {y}. Now, there is a unique vertex y3,
y3s €T'2(z) - (BU {z}) sothat|T"(y3) N(BU {z})| = 2.

22.1y,43 € E(G): Now, y3y ¢ E(G) orelse both y; and y; have exactly two
neighbours in A U {z}. But this implies that both y; and y3 have exactly two
neighbours in AU {y2 }.

22.2y,y3 ¢ E(G): Thenysy € E(G) asotherwise both y; and y; have exactly
two neighbours in AU{y2 }. Alsoy1y3 € E(G) else y; and y, each have exactly
two neighbours in A U {y3}. Choose y* € A so that both y*y3 € E(G) and
y*n1 ¢ B(G). We now see that both y; and y3 have exactly two neighbours in
AU{z,y2} — {¥*}. A contradiction.

This completes the proof of case 2 and hence the proof of the theorem. §
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