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Abstract. The idea of a domino square was first introduced by J. A. Edwards et al
in [1]. In the same paper, they posed some problems on this topic. One problem was
to find a general construction for a whim domino square of side n = 3 (mod 4). In
this paper, we solve this problem by using a direct construction. It follows that a whim
domino square exists for cach odd side [1].

1. Introduction.

Given an nxnchessboard (an nx nmatrix of cells), can it be covered by a set of
distinct dominoes (1 x 2 or2 x 1 matrices) on the numbers0,1,... , n, sothatthe
numbers appearing in each row and each column are all distinct? Clearly one must
discard dominoes which have the same number at each end. Given a complete set

of dominoes on the numbers 0, 1,2, ... ,m, thereare (™' ) = L(n*+n) dominoes
from which one may choose. We call an n x n matrix covered in this way with
dominoes based on the numbers0,1,2,... ,nadomino latin square of side = (or,

briefly, a domino square of side n). Since each domino covers two cells, and the
number of cells in a domino square of side n is 72, it is clear that domino squares

of side n can only exist if n is even. It has been shown in [1] that there exists

a domino square for each even side. If n is odd we adapt the definition slightly.
This time we cover all cells of » x n matrix except for the central cell. We call

such a square a domino latin square with a hole in the middle, or acronimically, a
whim domino square, or a whimsy for short. In Figure 1.1, we present two known
whimsy of side 3 and 5 respectively. A general construction for the whimsy of
sidlen=1 (mod 4) canbe foundin {1],butwhenn=3 (mod 4), the problem

remained open. In this paper, we solve this case, and thus complete the proof of
the existence of whim domino squares of odd side.
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2. The main results.

Before we construct whim domino squares, we need a lemma.

Lemma 2.1. 2] Ifm = 0,1 (mecd 4), then we can arrange the numbers

1,2,..

. ,2m intom pairs (A-system){a1,b1),(az2,b2),... ,(Gm, bm) such that

bj—a;=1,4=1,2,...,m. Ifm=2,3 (mod 4), then the numbers1,2,...,
2m—1,2m+ 1 can be arranged intom pairs (cy,dy), ... ,(cm, dm) (B-system)
suchthatd; — ¢; =14, 1=1,2,... ,m.

Let A be the partial latin square given in Figure 2.1.
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Construction: n=4k+ 3 and & is even.
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59°.

We start with the latin rectangle R = [r;;] obtained from A in Figure 2.1
by deleting the first column.
Permute the columns of R to obtain R’ such that ry; = a3, 712 = by,
13 = 62,714 = by, ..., Tin2 = G2k+1, T1 a1 = bzgs1, Where the
pairs (a1,b1), (a2,b2),..., (@2k+1,b24+1) form an A-system of the set
{1,2,...,4k+2}.
Let C be the column containing the elements a; — 1 and b; — 1, for 1 <
1< 2k+1,and 4k + 2 such that

(a) 2k isin the (2k + 2)-th position,

(b) 4k+ 2 isinthe (2k + 3)-th position, and,

(¢) forl < i< 2k+1,clements a; — 1 and b; — 1 are in adjacent

positions.

Construct an nx narray W such that the last column of W is C and (except
for the last column) the sthrow (i = 1,2,... ,n) of Wis the (j + 1)-th
row of R’ whenever the ith entry of C is j.

By pairing the entrics (cells) of W, we obtain an n x n array which is
covered by dominoes as in Figure 2.2.
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Figure 2.2

6°. By permuting the columns of W, and possibly flipping all the dominoes in
one column, we obtain an array W', where C is in the (2 & + 3) -th column
and the column to the left of C, C', satisfies the following property: the

{2k + 3)-thcell of C' is filled

with 2 k.

7°. By changing the dominoes in the middle of W' (Figure 2.3) we obtain a
whim domino square of side 4 k + 3 with k an even number.
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Lemma 2.2. There exists a whim domino square of siden for eachn= 4k + 3

where k is an even number.

Proof: (To follow the proof, it is advisable to look in the appendix at the example
of the construction of a whim domino square of side 11). It is clear that no symbol
is repeated in any row or column. None of the differences b; — a; is congruent to
2k+ 2 module n+ 1 =4k + 4. It follows that none of the dominoes

0,2k+2], [1,2k+3],...,[2k+1, 4k+3]

occurs in the squares W or W'. In W’ row 2 k+3 can be obtained from row 2 k+2
by adding 2k + 2 and reducing module 4 k + 4. Therefore

which are introduced in the last stage,

2k, 4k+2 |and|b,c

the two dominoes
, are both in the set

of dominoes which do not occur in W or W'. It follows that we obtain finally a

whim domino square of side n.
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Theorem 2.3. A whim domino square of side n exists foreachn=13 (mod 4).

Proof: Let n = 4k + 3, k is an integer. By Lemma 2.2 we have the proof for
the case k is an even intcger. For the case k is an odd integer, we simply replace
A-system by B-system in2°,2kby2k—1in3°,4k+2 by4k+1in3%, the last
column of A by [5,1,2,...,n— 2]T, and the other steps are similar; we omit
the details.
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