## On the Existence of Whim Domino Squares

Hung-Lin Fu and Chin-Lin Shue

Department of Applied Mathematics National Chiao Tung University Hsin-Chu, Taiwan REPUBLIC OF CHINA

Abstract. The idea of a domino square was first introduced by J. A. Edwards et al in [1]. In the same paper, they posed some problems on this topic. One problem was to find a general construction for a whim domino square of side  $n \equiv 3 \pmod{4}$ . In this paper, we solve this problem by using a direct construction. It follows that a whim domino square exists for each odd side [1].

#### 1. Introduction.

Given an  $n \times n$  chessboard (an  $n \times n$  matrix of cells), can it be covered by a set of distinct dominoes  $(1 \times 2 \text{ or } 2 \times 1 \text{ matrices})$  on the numbers  $0, 1, \dots, n$ , so that the numbers appearing in each row and each column are all distinct? Clearly one must discard dominoes which have the same number at each end. Given a complete set of dominoes on the numbers  $0, 1, 2, \dots, n$ , there are  $\binom{n+1}{2} = \frac{1}{2}(n^2 + n)$  dominoes from which one may choose. We call an  $n \times n$  matrix covered in this way with dominoes based on the numbers  $0, 1, 2, \ldots, n$  a domino latin square of side n (or, briefly, a domino square of side n). Since each domino covers two cells, and the number of cells in a domino square of side n is  $n^2$ , it is clear that domino squares of side n can only exist if n is even. It has been shown in [1] that there exists a domino square for each even side. If n is odd we adapt the definition slightly. This time we cover all cells of  $n \times n$  matrix except for the central cell. We call such a square a domino latin square with a hole in the middle, or acronimically, a whim domino square, or a whimsy for short. In Figure 1.1, we present two known whimsy of side 3 and 5 respectively. A general construction for the whimsy of side  $n \equiv 1 \pmod{4}$  can be found in [1], but when  $n \equiv 3 \pmod{4}$ , the problem remained open. In this paper, we solve this case, and thus complete the proof of the existence of whim domino squares of odd side.

| 0 | 1 | 2 |
|---|---|---|
| 1 |   | 3 |
| 3 | 2 | 1 |

| 0              | 1 | 3 | 2 | 4             |
|----------------|---|---|---|---------------|
| 1              | 2 | 0 | 3 | $\frac{1}{5}$ |
| 4              | 5 |   | 0 | 2             |
| $\overline{2}$ | 3 | 5 | 4 | 0             |
| 3              | 4 | 2 | 5 | 1             |

Figure 1.1

### 2. The main results.

Before we construct whim domino squares, we need a lemma.

Lemma 2.1. [2] If  $m \equiv 0, 1 \pmod{4}$ , then we can arrange the numbers  $1, 2, \ldots, 2m$  into m pairs (A-system)  $(a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m)$  such that  $b_i - a_i = i$ ,  $i = 1, 2, \ldots, m$ . If  $m \equiv 2, 3 \pmod{4}$ , then the numbers  $1, 2, \ldots, 2m-1, 2m+1$  can be arranged into m pairs  $(c_1, d_1), \ldots, (c_m, d_m)$  (B-system) such that  $d_i - c_i = i$ ,  $i = 1, 2, \ldots, m$ .

Let A be the partial latin square given in Figure 2.1.

|            | 0   | 1   | 2 | •••   | n-1              |
|------------|-----|-----|---|-------|------------------|
|            | 1   | 2   | 3 | • • • | $\boldsymbol{n}$ |
|            | 2   | 3   | 4 | •••   | 0                |
| <b>A</b> : | :   | ÷   | : | ٠.    | :                |
|            | n-2 | n-1 | n |       | n-4              |
|            | n-1 | n   | 0 | •••   | n-3              |

Figure 2.1

Construction: n = 4k + 3 and k is even.

- $1^0$ . We start with the latin rectangle  $R = [r_{i,j}]$  obtained from A in Figure 2.1 by deleting the first column.
- 20. Permute the columns of R to obtain R' such that  $r_{1,1} = a_1, r_{1,2} = b_1, r_{1,3} = a_2, r_{1,4} = b_2, \ldots, r_{1,n-2} = a_{2k+1}, r_{1,n-1} = b_{2k+1}$ , where the pairs  $(a_1, b_1), (a_2, b_2), \ldots, (a_{2k+1}, b_{2k+1})$  form an A-system of the set  $\{1, 2, \ldots, 4k + 2\}$ .
- $3^{0}$ . Let C be the column containing the elements  $a_{i} 1$  and  $b_{i} 1$ , for  $1 \le i < 2k + 1$ , and 4k + 2 such that
  - (a) 2k is in the (2k+2)-th position,
  - (b) 4k+2 is in the (2k+3)-th position, and,
  - (c) for  $1 \le i \le 2k + 1$ , elements  $a_i 1$  and  $b_i 1$  are in adjacent positions.
- $4^{0}$ . Construct an  $n \times n$  array W such that the last column of W is C and (except for the last column) the *i*th row (i = 1, 2, ..., n) of W is the (j + 1)-th row of R' whenever the *i*th entry of C is j.
- $5^{\circ}$ . By pairing the entries (cells) of W, we obtain an  $n \times n$  array which is covered by dominoes as in Figure 2.2.

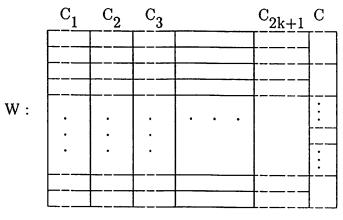


Figure 2.2

- $6^{0}$ . By permuting the columns of W, and possibly flipping all the dominoes in one column, we obtain an array W', where C is in the (2k+3)-th column and the column to the left of C, C', satisfies the following property: the (2k+3)-th cell of C' is filled with 2k.
- $7^{\circ}$ . By changing the dominoes in the middle of W' (Figure 2.3) we obtain a whim domino square of side 4k + 3 with k an even number.



Figure 2.3

**Lemma 2.2.** There exists a whim domino square of side n for each n = 4 k + 3 where k is an even number.

Proof: (To follow the proof, it is advisable to look in the appendix at the example of the construction of a whim domino square of side 11). It is clear that no symbol is repeated in any row or column. None of the differences  $b_i - a_i$  is congruent to 2k + 2 module n + 1 = 4k + 4. It follows that none of the dominoes

$$0, 2k+2$$
,  $[1, 2k+3], \dots, [2k+1, 4k+3]$ 

occurs in the squares W or W'. In W' row 2k+3 can be obtained from row 2k+2 by adding 2k+2 and reducing module 4k+4. Therefore, the two dominoes which are introduced in the last stage, 2k, 4k+2 and b, c, are both in the set of dominoes which do not occur in W or W'. It follows that we obtain finally a whim domino square of side n.

Theorem 2.3. A whim domino square of side n exists for each  $n \equiv 3 \pmod{4}$ .

Proof: Let n = 4k + 3, k is an integer. By Lemma 2.2 we have the proof for the case k is an even integer. For the case k is an odd integer, we simply replace A-system by B-system in  $2^0$ , 2k by 2k - 1 in  $3^0$ , 4k + 2 by 4k + 1 in  $3^0$ , the last column of A by  $[n, 1, 2, ..., n - 2]^T$ , and the other steps are similar; we omit the details.

### Acknowledgement.

The authors appreciate the helpful comments and modifications of Dr. A. J. W. Hilton and also the referee.

### References

- 1. J.A. Edwards, G.M. Hamilton, A.J.W. Hilton, and Bill Jackson, *Domino squares*, Annals of Discrete Mathematics 12 (1982), 95–111.
- 2. A.J.W. Hilton, On Steiner and similar triple systems, Math. Scand. 24 (1969), 208–216.

# Appendix

