Parameter Sets for a Class of Strongly Regular Graphs

Bert L. Hartnell
St. Mary’s University
Halifax, Canada,

Neville Jeans and William Kocay
University of Manitoba
Winnipeg, Canada

Abstract. Strongly regular graphs are graphs in which every adjacent pair of vertices
share A common neighbours and every non-adjacent pair share y common neighbours.
We are interested in strongly regular graphs with \ = g = & such that every such set of
k vertices common to any pair always induces a subgraph with a constant number z of
edges. The Friendship Theorem proves that there are no such graphs when A =y = 1.
We derive constraints which such graphs must satisfy in general, when A = 4 > 1, and
z > 0, and we find the sct of all parameters satisfying the constraints. The result is an
infinite, but sparse, collection of parameter sets. The smallest parameter set for which
a graph may exist has 4896 vertices, with k = 1870.

1. Introduction.

We shall use the graph-theoretic notation of Bondy and Murty [1], so that a graph
X has vertex set V(X), edge set B(X), and &(X) edges. If V! C V(X), then
X [V'] denotes the subgraph of X induced by V'.

The following problem arose in connection with neighbourhood-connected
graphs. If u € V(X), then N(u) denotes the neighbourhood of u, that is,
N(u) = {v| uv € E(X)},and N*(u) denotes closed neighbourhood, N*(u) =
N(u) U{u}. A graph X is neighbourhood-connected (NC) if:

(1) X isconnected; and
(2) X — N*(u) is connected and not complete, for all u € V(X).

Neighbourhood-connected graphs have been studied in [S] and [6]. A graph X
is 2-neighbourhood-connected (2-NC) if it is NC and X — N*(u) — N*(v) is
connected but not complete, for all u,v € V(X). An interesting special case
occurs when X is a regular graph and all X — N*(u) — N*(v) ¥ Y, for a fixed
graph Y. Let X be such a 2-NC graph.

It is usually more convenient to work with the complement of X, so let
[ := X. ThenT'[Nr(u) N Nr(v)] ¥ Y, forall u,v € V(T'), where Nr(u)
now denotes the neighbourhood in I". We relax this condition somewhat, and only
require that the subgraphs I' [ Nr (u) N Nr(v)] all have the same number of ver-
tices and edges, for all pairs u,v € V(I"). Therefore we take I' to be an r-regular
graph on n vertices such that " [ Nr (u¢) N Nr(v)] always contains & vertices and
x edges.

A strongly regular graph (see [2], [3), (4], [7], [8]) is a regular graph in
which every pair of adjacent vertices share A common neighbours and every pair
of non-adjacent vertices share u common neighbours.
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Lemma 1.1. T is a strongly regular graph with \ = p = k.

SoT" must satisfy the integrality conditions that strongly regular graphs do.
In particular, the Friendship Theorem (see [3], [4]) states that no such I" exists
with k = 1. Since k = 1 implies that the common subgraph must always have a
constant number z = 0 of edges, the results presented here can be considered a
generalization of the Friendship Theorem. We prove that there are no such graphs
with k¥ < 1870, we determine constraints that the parameters must satisfy, and
we find all parameter sets satisfying these constraints. The result is an infinite, but
very sparse, set of parameters.

(Notice that the complete graph K,, always satisfies these conditions, with r =
n—1and k = n—2. Since this can be considered a trivial solution to the problem,
we restrict our consideration to solutions with n# r + 1.)

Lemma 1.2. Let T, k, and n be as above. Then r — k = s*, where s | k and
s>2,andn=1+r(r-1)/k.

Proof: Since every pair of vertices share k common neighbours, there are k paths
of length 2 connecting any two vertices of I'. Let A be the adjacency matrix of
I". Then A? has off-diagonal elements all equal to k. Computing the cigenvalues
and their multiplicities gives the stated conditions. If s = 1, thenr = k + 1 and
n= k+2,sothatT" is acomplete graph, which we have excluded, leaving s > 2.

LetV = V(I'),pickv € V and let G = T'[ Nr(v)], the graph induced by
the neighbourhood of v. Set Q@ = I'[V — N*(v)]. This is illustrated in Fig. 1.
Clearly, G is a k-regular graph and Q is an s?-regular graph. [G, Q] stands for
the edges of I with one end in G and one in Q.

G, rvertices Q, n-r-1 vertices

m
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)

Fig. 1
If g and G are graphs, we write n(g, G) for the number of induced subgraphs
of G which are isomorphic to g. In particular, if K; denotes a complete graph on
1 vertices, then n( K2, G) and »( K3,G) denote the number of edges and trian-
gles of G, respectively. If the graph G is understood, we will sometimes shorten
(g,G) ton(g).

178



Lemma 1.3. &(G) = rk/2 and o( K3,G) = rz/3.

Proof: In@, the neighbourhood of every vertex contains k vertices and z edges, so
that every point of G is on z triangles. Since G has r vertices, n( K3,G) = rz/3.

Lemma 1.4. Every edge of T is contained in exactly k triangles.

Proof: Any pair of vertices of I” share £ common neighbours, so every edge is on
k triangles.

_ Bk=1)
Lemmalss. z= %(r_—,)

Proof: We count the triangles of I which contain one or more edges of G. G
has kr/2 edges, each of which is on k triangles, so k?r/2 counts the edges of
G according to the triangles containing them. Each of the zr/3 triangles of G
are counted 3 times in this sum. Each edge of G is counted once for the triangle
it forms with v, and each vertex of Q contributes z to the sum, since it shares k
common neighbours with v. So 1‘;—' =zr+ 52: + z(n— r — 1), Solving this for
x gives the result, using Lemma 1.2.

In Section 3, we find all possible parameter sets s, k, z, , n satisfying this for-
mula.

Now let X3 denote the empty graph on 3 vertices (i.e., no edges), and K the
empty graph on 2 vertices (a non-edge).

Lemma 1.6. Every K, of T is contained in exactly (n—2r+ k—2) K3 ’s.

Proof: There are (n— 27 + k — 2) K3’s containing any non-edge, as illustrated
in Fig. 2.

Fig. 2
We now count the number of K3 ’s of I" containing one or more K ’s of either
G or [G, Q]. There are several different kinds of such K3. This is illustrated in
Fig. 3 where a name is given to the number of each type of K falling between G
and Q. The K3 ’s are indicated by dashed lines. Then »( W) denotes the number
of K3 s of type W, etc.
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Lemma 1.7. (n— 27+ k- 2)n(K2,G) = 3n(K3,G) + (W).

Proof: There are 2 kinds of K3 which use non-edges of G, as illustrated in Fig. 3.
The number of K3’s totally contained in G is n(K3,G) and there are W)
others. By Lemma 1.6 the above identity holds.

Lemma 1.8.

and
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K6 = (;) -5 =120,
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Proof: Pick any vertex w in G (see Fig. 1). The k vertices adjacent to w induce
a graph with z edges. Let the remaining s> — 1 vertices of G induce a subgraph
with u edges. Then since G is k-regular, k(k— 1) — 2z = k(s — 1) —2u. Solve
this for u to getu = HL=D _ (K}, 4

Soevery w in G is contained in (*;') — u Ka’s. Since G has r vertices, this
gives the formula for n( K3, G).

Lemma 1.9. n(W) ={(‘2)—5‘i+ ﬁ—:z:}-("—"l

Proof: Each vertex w in Q is adjacem lo k vertices of G which induce z edges,
and non-adjacent to r — k = s? vertices of G which induce z edges (see Fig. 4).
Since G is k-regular, k* — 2z = ks? — 22,50 that z = (ks® — k%) /2 + z. So

each vertex of Q is contained in (2) — z K3’s contributing to n(W). Since Q
has n— r — 1= r(s? — 1) /k vertices, this gives the above formula.

Remark: Lemmas 1.7 and 1.9 give 2 ways of calculating n{ W) . Equating the two
formulas gives an equation which is always satisfied identically by the parameters.
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Lemma 1.10. 2n(U) + 2(W) = (n— 27+ k — 2).rs?(s® — 1) /k.

Proof: Counting the K3 s wich use non-edges of [ G, Q] according to the number
of non-edges of [G, Q] they contain gives 2#(U) + 2n(W). Since the number
of non-edges of [G, Q] is (r — k)(n— r — 1), we get the formula by applying
Lemma 1.6.

Combining Lemmas 1.9 and 1.10 now gives a formula for »(U). We state this
as a theorem.

Theorem 1.11.

_ s2(s?2-1) rs?(s? - 1)
"(U)‘{ k _2} 2k

52 ﬁ*‘kz r(s®-1)
_{(2)_ 2 ?"z}T‘

2. An Inequality, and Counting Subgraphs.

Lemma 2.1. 25*(s? — 1)2 + ks?(s? = 1)2 > 2ks?(s2 — 1) + 4k%s? + k3.

Proof: Since n(U) counts K3’s in I", the formula of Theorem 1.11 becomes the
inequality »(U) > 0, which can then be reduced to the above expression (after
some work).

We shall see later that s> < k. The substitution T = s? /k is useful; for then
0 < 7 < 1 and we get a dimensionless formula. The inequality of Lemma 2.1
becomes

(D=2 + (kK —4k) — 7P (4k-2) —7(4k-3) — k> 0.
Lemma2.2. Let k> 5. If r < k='/3, then f(7) < 0.

Proof: We first find the points of inflection of f(7), by setting /(1) = 24 k272 +
67(k?* —4k) —4(2k—1) = 0. Theroots are ¢ — 4 1+/1+ 36 _ 18 1fhe
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minus sign is chosen, the inflection point is clearly less than 0. Since 1+ 576 - }‘6 <
(1 + %)2 , the positive inflection point is < 4 /k. In terms of s, this is s? < 4.
It is easy to check that £(4 /k) = 2 + 12 — 16 — k, which is less than 0 when
k > 5. So f(r) only begins to turn up after 7 = 4 /k, so that there is only one
real root, as depicted in Fig. 5.

We now evaluate f(k~1/3) = —2k2/3 —4k'/3 44 3k + 2k-2/3, Since
this is less than 0 for all k > 1, we have f(7) < 0 forall 7 < k~!/3 as required.

f(t)

a k"

Fig. 5

So the only positive root of f(7) is > k~/3, In terms of s, this is s > k2/3.
(When £ is large, the root is very near k~!/3.) This will be useful in order to
eliminate some of the possible sets of parameters for the graph I'. It arose from
counting K3 subgraphs, as depicted in Fig. 3. There are many other kinds of 3-
point subgraph, according to both their position within G, and whether they have
0, 1, 2, or 3 edges. They can all be counted similarly to the methods used to find
n(U) and n(W) in Section 1, but the inequalities arising from them are not of any
help. However the following result is of some interest. Let B denote the 3-vertex
induced subgraphs of Q containing exactly one edge (refer to Fig. 6).
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Lemma 2.3. n(B) = n(U).

Proof: By Fig. 2, every edge of " is on exactly n — 2r + k B-type 3-vertex
subgraphs. Since Q has s?>(n — r — 1) /2 edges, counting such subgraphs of I'
according to the number of edges of @ they contain gives a sum equal to 2 (n—-
r — 1)(n— 27 + k) /2. This must equal »(B) + n(C) + &(Q), where n(C)
counts the subgraphs illustrated in Fig. 6, since the point v is contained in £(Q)
such subgraphs involving Q. Clearly n(U) + o(C) = r(™%'*¥). This now gives
n(B) — W(U) = Lot (n_ 27+ k — 1) — (*%*k), which reduces to
n(B) = n(U).

There are a number of other 3-vertex subgraph counts in I” which turn out to be
identical. They can all be proved similarly. It would be interesting to find a direct
correspondence in the graph showing that the numbers must be equal.

By Lemma 1.2, we can write A2 = kJ+s? I, where I is the identity matrix and J
is the matrix of all 1’s. Multiplying by A gives A> = rkJ + 52 A. Entry [A3),y is
the number of walks of length 3 connecting v to w. Since Nt (v) NN (w) induces
T edges, these z edges will contribute 2z to [A3%),.. Since the number of walks
is determined by rkJ + s® A, one would expect this to give further information
about the graph. There are evidently 2 cases. If v and w are adjacent, there are
rk + s walks; otherwise there are rk.

Let v and w be a given pair of adjacent vertices. Let X, X5, X3,and X4 denote
the 4 types of induced subgraph illustrated in Fig. 7, containing v and w as shown.

Lemma24. [A3)y = (27—=1) +n(X1) +n(X2) + m( X3) + n( X4) = rk+ 52,
if v and w are adjacent.

Proof: T is r-regular, so there will be 2r — 1 degenerate 3-walks connecting v
to w, i.e., those in which an edge is retraced. All other walks will use 3 distinct
edges, so that one of X, X3, X3, or X4 must be induced.

3

w w
w w
Xz "o@n Xq "o<:>o u
Fig. 7
We can now obtain X; and X, by counting. As noted above, n(Xi) = 2z.
Comparing Figs. 1 and 7 shows that vertex « must be in the subgraph G, non-
adjacent to w. Since Nr(v) N Nr(w) C G, and these k vertices induce z edges,
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thereare k( k—1) —2 x edges in G between the vertices adjacent and non-adjacent
to w. This gives n(X5) = k(k—-1) — 2.
Corollary 2.5. n(X3) + n(X4) = (k — 1)(s% = 1).
Proof: This can be obtained by substituting the values for n(X;) and n( X,) into
Lemma 2.4. However, the importance of this result is that it can also be obtained
by direct counting. Referring to Fig. 7, we see that the vertex u must be in the
subgraph Q of Fig. 1. Now Nr(v) N Nr(w) C G has k — 1 vertices other
than w, either adjacent or non-adjacent 10 w. n{ X3) + n(X4) counts both these
possibilities. Since w is joined to s> — 1 such vertices u, we have n(X3) +
n(X4) = (k—1)(s* - 1).

w

v v
Yy O—‘C< Y3 v
0]

w

Y, V Y, w

Fig. 8

If v and w are non-adjacent, then [ A*1,,, = rk. As in Lemma 2.4, we can write
(A%l = n(Y1) + n(Y2) + n(V3) + n(Y2), where Y1,Y3,Y3, and ¥, are the
types of subgraph shown in Fig. 8. A calculation similar to the above shows that
Y1) = 2z,7(Y2) = k* — 2z, and that n(Y3) + n(Y3) = ks?, which can be
obtained either from [ A%1,,, or directly, by counting.

So the use of A* = rkJ + s* A from the adjacency matrix algebra would not
seem (0 give any new constraints on the parameters.

3. The Parameter Sets.
From Lemma 1.5 we have

2x(s® + st — 1) = s>¢?(st — 1), where k = st, s> 2, and z is an integer.

Lemma 3.1. t?> = m(s® + st — 1), where m = 2z /s%(st — 1) is an integer.

Proof: We have s? | 2z(s? + st — 1). Since gcd (s2,s% + st — 1) = 1, we have
s* | 2z. Similarly, ged (st — 1,5® + st — 1) = 1 so that (st — 1) | (2z/s?) and
the result follows.

Lemma 3.1 shows that s and ¢ must be a solution of the diophantine equation
t* = m(s? + st — 1). In the following, we derive all solutions to this equation.
We assume throughout that we are working only with integers (with a few evident
exceptions).
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Lemma 3.2. s and t are a solution to the diophantine equation
12 = m(s® +st— 1}, s>2,
if and only if
t=(ms+a)/2, wherea® — s’d= —4m, d=m? +4m, ands > 2.
Proof: The equation t2 = m(s? + st — 1) can be rewritten as

? —tms—m(s* —1) =0,

which is equivalent to t = (ms +v/m?s? + 4m(s? — l)) , by the quadratic
formula. (The minus sign of the quadratic formula can be ignored since we require
t > 0.) Now since ¢ is an integer, m2s> + 4m(s® — 1) = o2, wherea is a
positive integer. Note that whenever the square root is integral we have ¢ = ms
(mod 2), so that if e is integral, so is t. The above equality can be rewritten as
a? — s2d = —4m, where d = (m? + 4m), and the result now follows.

The equation a?> — sd = —4 m is a Pellian equation which we will solve using
elementary theory related to real quadratic fields. In the following paragraph we
present a brief review of the relevant ideas. Readers interested in further back-
ground material should consult any standard algebraic number theory text.

Let § = \/d where d > 0 is not a perfect square, and denote the rationals by Q.
Then

Q) ={z+yb|z,yeQ}

is a real quadratic number field. For each a = z + y§ € Q(8) the norm of « is
N(a) = z? — y2d. 1t is easy to verify that N(af) = N(a)N(f). Let Z C Q
denote the set of integers. The Z-module

Z[1,81={z+yd|z,y € Z} C Q(J)

is an integral domain which is called an order of the field Q(8). (Note that this
order is not maximal for d = m? + 4 m.) The elements of this order are referred to
as real quadratic integers. Note that for each « € Z[1, 6], N(a) € Z. Finally,
a unit of an order O is an invertible element of O; that is « € O is a unit of O
if and only if 1/a € O. It also follows that & € O is a unit of O if and only
if N(a) = %1. Real quadratic orders have infinitely many units which can be
generated as powers of a so-called fundamental unit.

Solving our Pellian equation is therefore equivalent to finding all « = a + 3§ €
Z[1,8] such that N(a) = —4m. We will refer to such an « as a solution of
the equation. Note that if « is a solution of the equation then so is na where 5
is any unit of an order of Q(8) such that na € Z[1,8] and N(n) = 1, since
N(na) = N(m)N(a) = —4m.
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Theorem 3.3. N(a + s8) = —4m if and only if
a+sd=xn'(m+8), wheren=((m+2)+8)/2 andi € Z.
Proof: If a + s is any solution of the equation a2 — s>d = —4 m then
a=(a+s8)n=([e(m+2)+sd]+[a+s(m+2)]6)/2.

Now d = m? + 4m and since a? — s*d = —4m we have a = s (mod 2) if d is
odd, and a = 0 (mod 2) if d is even. These results give

a(m+2)+sd=0 (mod 2), anda+s(m+2) =0 (mod 2)

and so o € Z[1,68]. Itis easy to see that N(n) = 1,s0that N(a) = N(a +
s6) N(n) = —4m, and so « is also a solution of the Pellian equation. A similar
argument with ! = ((m+ 2) — 8)/2 shows that (a+ s8)n~"! is also a solution.
It therefore follows that +7°(m + 8) is a solution for all i € Z, since m + § is
obviously a solution.

It remains to show that every solution of the Pellian equation must be of this
form. Let a + s& be any solution of the equation with |s| > 2 (a and s may be
negative). Notice that the 4 units (£+(m + 2) & §) /2 are just +n%'. Suppose first
that a and s are positive. Let gy = (—(m + 2) + d) /2 and let

a1+ 318 =pm(a+ s8) =([—a(m+2)+sd] +[a—s(m+2)])8)/2.

Then

Is1] = [[a — s(m + 2)1/2| = |[a — 56 + 38 — s(m + 2)]/2|
= [(—4m/[a + 8] — s[(m + 2) — 8)) /2], since a® — s’d = —4m.

Now &> = m? + 4m,som+ 1 < § < m + 2. Therefore s[(m + 2) —
81/2 < s/2. Also, since s > 2, we have 4m/[a + s8] < 4m/26 < 2. So
|s1] < 1+ 8/2 < s. If, on the other hand, e or s (or both) had been negative, then
choosing another of 72! as py; 1o get ay + 816 = p1(a + s§) makes |s1] < |s],
since we can always choose u; to make s; = [|a| —|s|(m+2)]1/2, as above. We
can now choose p2 so that az + s28 = p2(a1 + 518) has |s2| < |s1}, etc.

Itfollows that we can find s = g 3 ... u; = £7/, such thata;+ 5,6 = p(a+sé)
is a solution of the Pellian equation with |s;] < 1. Hence a;+ s;6 is one of +m+3.
Since (m+ 8)n~! = —m+ §, multiplying by one of £1or £n~! will bring a; + 3,5
into the form m+ 8. So every solution of the Pellian equation can be obtained from
the solution m + § by multiplying by some power of n, and +1.

Remark: Notethatn = ((m+2)+8) /2 isaunitof theorder Z[1,(m+ §) /2]
butnolon[l,&];howeve:l"n2 € Z[1,68] if miseven,and® € Z[1,8] if m is
odd.
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Corollary 3.4. The positive solutions of the diophantine equation t* = m( s+
st —1),s > 2 are given by

t=(ms+a)/2, wherea+ 36 = n'(m+ d),n=[(m+2) + 81/2, andi > 0.

Proof: We must select from the result in Theorem 3.3 the positive solutions with
s > 2. Note that this requires thata + s6 > 28 > m+ 8. Since p = [(m + 2) +
81/2 > 1, itis easy to see that we must choose the plus sign in £n'(m + §) and
take i > 0.

We can now write down all the parameters s, t, k, z, etc. of the strongly regular
graphs I' in terms of m, §, and n. Let m > 1 be arbitrary but fixed.

Theorem 3.5. Let m > 1,82 = m? + 4m, and n = [(m + 2) + §1/2. Define
a;+s6=n'(m+d), and t;=(ms;+a;)/2, fori>O0.
Then a; = m(n+ D(n' — 17" /8,8 = (n— D)(n' + n7") /8, and t; =

m( ni+l _ n-i—l)/s'
Proof: This is most easily proved with generating functions. Introduce an inde-
terminate z, and sum the above formula for a; + s;8 to get

(m+ 68)

S (ai+ 5i8)2 = (m+ )Y (na) = -~

20 >0
Now re-arrange the right hand side to separate the terms involving §.

(m+8) (m+8)(1 )
1—9z  (1-52)(1-7""2)

Comparing this with the above summation shows that

Ea;z"— m(1l+ 2) and 28i2‘= (1-2)

= — - — >
50 l-(m+2)z+2 e~ 1-(m+2z+2

To extract the terms a; and s; use partial fractions :

1 1 1 1
1—(m+2)z+22 (1=—n2)(1—n"'2z) by '(1—nz) bn(l—n'z)

The coefficient of 2 in this power series is evidently [n**! — 5~*~1]/8. We can
now use the summations for a; and s; to write down

a; =m(n+ D(n' - n"'")/8 and s; = (n— l)(n‘+ n‘i")/8.
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The formula for ¢; then gives
ti=m(n™! —n71)/8.

Notice that § is very nearly m+ 2;infact (m+2) =2 /(m+2) < § < m+2,
sothatn = [(m+2) + §]/2 satisfies (m+2) —1/(m+2) << m+ 2. Since
m > 1, we can ignore the terms 5~* when { is large to give asymptotic values for
a;, 8;,t; and k; = s;t;:

a; s m(n+ 1)n'/8 & m(m+ 3)(m+2)",
sin(n—-Dnfsx (m+ 1)(m+ 2",
i mnt /S m(m+ 2)F,
ki & m(m+ 1)(m + 2) 21,
We now consider for which of these solutions a strongly regular graph I' may
exist. The parameters r,n, and z of I" can now be calculated. By Lemma 3.1,

z = ms?(st — 1) /2. That this must be an integer is not necessarily guaranteed
by the solution in terms of m. Lemma 3.6 determines when this is so.

Lemma3.6. If misoddand i =2 (mod 3) then z = ms?(s;t; — 1)/2 is not
an integer; in all other cases x is an integer.
Proof: Since ms? (s;t; — 1) is odd if and only if m and s; are odd, and ¢; is even,
we se¢ that z will be an integer if and only if we do not have m and s; odd or ¢;
even. We therefore must show that this is equivalentto s = 2 (mod 3).

Assume that m is odd. It is easy to check that * = (m> + 6m2 + 9m +
2)/2+ (m? + 4m+ 3)§/2, both terms of which are integers when m is odd. So
n** = b+ cb where b and c are integers. Furthermore since b — cd = 1 and
d=m?+4m=5 (mod 8),weseethatb=1 (mod 2) andc=0 (mod 4).
Now

a3;+ 83;0 = (m+ 6)(b+ c8) = (mb+ cd) + (mc+ b)é.

Thus ta; = (ms3; + a3;) /2 = mb + c(m? + 2m) is odd since m and b are odd,
and c is even. We also have

a3ie1 + 835418 = (a3 + $3;8)n = [(mb+ cd) + (mc+ D)1 [(m + 2) + 61/2

which gives s3;,1 = (m + 1)b + c(m? + 3m) which is clearly even, so z will be
an integer. Finally

a3i-1 + 83516 = (a3; + 83,‘5)7;_] = [(mb+cd) + (mc+ b)61[(m+2) -81/2
from which we get

a3i-1 = —bm+cd, s3;_) = b—cm, t3;_) = (ms3i-1 + @3;.1) /2= 2cm.
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This makes m and s odd, but ¢ even, so that z is not an integer when i = 2
(mod 3), but is integral in all other cases.
We now have 3 constraints on the parameters :
(1) they form a solution to the Pellian equation;
(2) z=ms?(st — 1)/2 must be an integer, i.c.,i % 2 (mod 3) when m is
odd;
(3) the inequality of Lemma 2.1, f(7) > 0, must be satisfied.

Since 7 = % /k = s/t, write ; = s;/t;. The first solution (for any given m)
isar+ 5186 =n(m+8) = (m?>+3m)+ (m+ 1)6 Thent; = m? + 2m,
ki=m(m+1)(m+2)andn =(m+ 1)/m(m+ 2).

Strongly regular graphs must also satisfy the Krein conditions (see [3]). In
terms of the present notation these are the following 2 inequalities, since I' has
eigenvalues +s :

L (s+1)(k+s5—8%) <(®2+k+3)(s—1)2
IL (s=1)(s?+5—k) <(®+k—23s)(s+1)2
Lemma 3.7. The Krein conditions are always satisfied by the solutions to the
Pellian equation.

Proof: Substituting k = st into I and multiplying it out reduces it to 3t < &% +
st — 1. By Lemma 3.2, this gives 3m < t. Sincet; = m? + 2mandm > 1, we
see that I is always satisfied, since t; increases with 1. Substituting k& = st into II
reduces it to s? + st + 3t > 1. Since s > 2 this is also always satisfied.

If we now substitute the values of k; and ¢; into the inequality f(7) > 0 we
have :

Lemma3.8. f(n) = =2(m+ 1)(m +2) = =2k, /m.
Proof: The calculation is tedious but straightforward.

So s1, t1, ki1 is never an acceptable set of parameters. When m is odd, neither
is s2,t2, k2, by Lemma 3.6. Because of the exponential form of the solution, this
means that the acceptable solutions will be “large”.

Lemma 3.9. Let m > 1 begiven,andlet i > 1. Then -5 < 7 < m—l;_—, and
the asymptotic value of 7 (i — oo) is (n — 1) /mn.
Proof: By Theorem 3.5,

= (= 11+ n72-"]
LI my[l — n-Zi—Z]
which gives the asymptotic value, since > 1.

By Lemma 3.2, a? = m?s? + 4m(s} — 1) = s2(m® + 4m — 4m/s?).
Since s; > 2 and m > 1, this gives s?(m + 1) < o? < s?(m + 2)2. From
t; = (ms; + a;) /2, we then get (m + 1/2) s; < t; < (m + 1)s;; in other words,

L .
m+l <% S m-o.!-l :
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Corollary 3.10. f(%) >0 forall i >2 andall m > 1,
Proof: Discarding the terms 272 + 3¢ from f(7) (see Lemma 2.1) leaves

f(D/k>2kr* + P(k—4) —47 — 47— 1.

By Corollary 34,5, = m? + 3m+ 1,t3 = m(m + 1)(m + 3), and k; = s5%5.
Since k; > kz, for ¢ > 2, then using the bounds of Lemma 3.8 for 7; gives

2m(m+3)(m2+3m+1) m(m+3D(m?+3m+1)
(m+1)3 (m+1)2

f(r) [ ki >

4 1 + 1 + 1 1
(m+1)? (m+3)2 (m+3)
>2m+(m2+3m+1)—4{1/8+4/9+2/3}-1>0,
sincem > 1.

Hence, all solutions s;, ¢; of the Pellian equation also satisfy the inequality when
1 > 2. As we shall see, these tend to be large solutions.

The following table shows, in order of increasing k, the first 5 acceptable solu-
tions; that is, those not eliminated by the inequality f(7) > 0, or by the divisibil-
ity condition 2 |ms? (st — 1).

m s t k r X n remark
1 13 21 273 442 22984 715 not possible
2 1 30 330 451 39809 616 not possible
1 34 55 1870 3026 1080282 4896 ?
4 29 140 4060 4901 6827238 5916 ?
2 41 112 4592 6273 big 8569 not possible

This comprises all solutions with £ < 20000 not eliminated by these two con-
ditions. The first 2 parameter sets, k = 273 and k = 330, give a non-integral value
for n( K3,G) from Lemma 1.9, so that they are not possible. The solution with
k = 4592 requires that the subgraph Q of I' be 613-regular, with 2295 vertices,
which rules it out. The two parameter sets marked by “?” are still unsettled. So
if there are any strongly regular graphs I" satisfying these properties, they must
be large. The smallest might have 4896 vertices with k = 1870, or 5916 vertices
with k = 4060. After this we need k& > 20000. There are an infinite number
of parameter sets arising as solutions of the Pellian equation, which satisfy the
inequality f(7) > 0, but they tend to become sparser and sparser as k increases.
We would like to prove that, like the friendship theorem, there are no graphs at all

190



which satisfy these properties. This would seem to require the discovery of a new
constraint other than the counting and algebraic constraints that we have used.
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