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Abstract. The binding number of a graph G is defined to be
the minimum of |N(S)|/|S| taken over all nonempty S C V(G) such
that N(S) # V(G). In this paper another look is taken at the basic
properties of the binding number. Several bounds are established,
including ones linking the binding number of a tree to the “distribu-
tion” of its end-vertices. Further, it is established that under some
simple conditions, K(1,3)-free graphs have binding number equal to
(»(G) — 1)/(p(G) — 8(G)) and applications of this are considered.

1. Introduction and Background

The concept of the binding number of a graph was introduced by Woodall
[6] in 1973. It was an attempt to measure how “well-distributed” the edges
of a graph are. Thus far, the results that have been obtained can largely be
grouped into three broad families: firstly, basic or general results including
some bounds and computational short-cuts; secondly, the binding numbers
of some specific graphs or families thereof, and thirdly, conditions on the
binding number which, together with other (simple) conditions, guarantee
the presence of a required subgraph.

It is our aim to further explore the first two of these areas. Firstly, we
consider the binding numbers of trees and forests; here we show that the
binding number is directly related to how well-distributed the leaf edges
are. Secondly, we examine those graphs whose binding number is (p(G) —
1)/(p(G) — 6(G)). For K(1,3)-free graphs, we give necessary and sufficient
conditions for them to have this binding number. (A K(1,3)-free graph
is one which does not contain K(1,3) as an induced subgraph.) Thus, for
example, ad hoc results on line graphs first proved in [5] follow readily.

1The research for this paper formed part of the author’s doctoral thesis at the Uni-
versity of Natal. The assistance and friendship of his advisor Henda C. Swart are greatly
appreciated.
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In this paper we consider only finite undirected graphs without loops or
multiple edges. We shall use p(G) to denote the number of vertices or order
of a graph G, and the term cut-se? to mean any set of vertices whose removal
leaves a disconnected graph. Further, N(S) denotes the neighborhood of
a set S, while N[S] denotes its closed neighborhood (i.e. SU N(S)). For
other definitions not given here, see [2].

Define:

o For all graphs G, F(G) :={S:0#SCV(G)&N(S)#V(G) }.
> The binding number of G, denoted by bind(G), is defined by

: o INS)
bind(G) := sgn;(nc) ST

Now, a binding set of G is any set S € F(G) such that bind(G) =
|[N(S)|/IS|- Further, for all S C V(G), the ezcess of S, denoted by exc(S5),
is given by exc(S) = |N(S)| - |S|.

We list some useful results.

Proposition 1. [3]
a) If G is a spanning subgraph of H then bind(G) < bind(H).
b) bind(U!., Gi) = min{bind(G,), ...,bind(G,),1}.

Proposition 2. [6] For all graphs G, bind(G) < (p(G) - 1)/(p(G) - 6(G)).
Proposition 3. [6]

a) Forn > 3, bind(C,) =1 if n is even, and (n — 1)/(n — 2) if n is odd.
b) Forn > 1, bind(P,) =1 if n is even, and (n — 1)/(n + 1) if n is odd.

Proposition 4. If G is a complete multipartite graph of order p and inde-
pendence number 8 then bind(G) = (p - B)/B.

Proposition 5. [4] For all graphs G, if bind(G) < 1 then every binding
set of G is independent.

2. Trees and Forests

In this section, we prove some bounds on the binding number of a graph.
We consider mainly the binding number of a tree or forest and show that
this is directly related to the distribution of its end-vertices.

The first result relates binding number to the minimum and maximum

degrees.
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Theorem 1.
a) For all nonempty graphs G, bind(G) > §(G)/A(G).
b) If G has an r-factor for any r > 1 then bind(G) > 1.

Proof: a) If bind(G) > 1 then the statement is trivially true. Therefore,
we may assume that bind(G) < 1. Let S be a binding set of G; then,
by Proposition 5, S is independent. Let M = {uv € E(G) : u € S}.
Then |M| < A(G) - |N(S)| while since S is independent, |M| > §(G) - |S|.
Consequently, bind(G) = |[N(5)|/|S| > 6(G)/A(G).

b) This follows from part (a) and Proposition 1la. |

Equality is attained in the theorem for even cycles and (the relevant)
complete bipartite graphs, inter alia.

Now, we define end(G) = {v € V(G) : degv = 1}. Also, let ed(v) =
IN(v) N end(G)| and ed(G) = max{ed(v) : v € V(G)}. The following
result is obviously true if ed(G) = 0, and, if ed(G) > 1, follows from taking
S = N(v) Nend(G), where v is a vertex for which ed(v) = ed(G).

Theorem 2. For all graphs G, ed(G) - bind(G) < 1.

Theorem 1 shows that bind(T") > 1/A(T) for a tree T. The following
provides a stronger (in general) lower bound.

Theorem 3. For all non-trivial trees T, bind(T') > 1/(e + 1) where e =
ed(T).

Proof: Let S be a binding set of T and let z = |S — end(T")| and y = |SN
end(T)|. Now, if z = 0 then |[N(S)|/|S| > 1/e; hence we may assume that
z > 0so that |[N(S)| > z+1. Further, if v € N(S) then N(v)Nend(T) C S.
Let r denote the number of vertices v in N(S) such that ed(v) = e. Then
IN(S)| > r+ (y—re)/(e = 1) and re < y. Denoting

max{z + 1, r+ (y —re)/(e —- 1)}’

fy(z) := z+y

we have that |[N(S)|/|S] is at least as large as the minimum of f,(z) taken
over y and z. Now, f,(z) is minimised at x + 1= r+ (y — re)/(e — 1) and
hence

IN(S)| r+(y—re)/(e—1)
ISI = r+(y—re)/(e-1)—-1+y
- - y-r
T ey—r—e+1 1
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T o (e+ly-—e
1
> e+1
and the result is proved. |

Now, a caterpillar is a tree T such that T — end(T) is a path (called
the spine). To see that the above theorem is sharp, let T be a caterpillar
with 2a — 1 vertices on its spine consecutively adjacent to e,0,¢,0,...,e
end-vertices (a,e > 1). Then T has binding number a/(ae + a — 1) which
tends to 1/(e + 1) as a — oo. The above proof also yields as a corollary:

Theorem 4. Let T be a non-irivial tree with a unique vertex v such that
ed(v) = e = ed(T). Then bind(T) = 1/e.

Proof: That 1/e is an upper bound on the binding number follows from
Theorem 2. That 1/e is a lower bound follows from (1) above, since r < 1
and so [N(S)I/|S| 2 (y—1)/(ey —e). n

Examples of such trees are the comets first considered in [1]. Now, as a
consequence of Theorems 2 and 3 and the fact that for a forest F, ed(F) is
the maximum value of ed over the components and bind(F) is the minimum
of the binding numbers of the components (by Proposition 1b), we have the
following:

Theorem 5. For all nonempty foresis F, 1/(e+1) < bind(F) < 1/e where
e =ed(F).

3. Graphs with bind(G) = (p(G) — 1)/(p(G) — 6(G))

Here we consider those graphs G which have binding number equal to
bind(G) = (p(G) — 1)/(p(G) — 6(G)). (Recall that this value is an upper
bound for the binding number by Proposition 2.) Many graphs, especially
most of the specific product graphs that have been considered, have been
shown to be in this class.

Indeed, we consider graphs with §(G) > 1 and define a hierarchy of
properties:

E1: bind(G) = (»(G) — 1)/(p(G) - 6(G))-
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E2: For all § € F(G) it holds that exc(S) > §(G) — 1.

E3: Property E2 holds, with equality iff $ = {v} or S = V(G) - N(v)
where v is a vertex of degree §(G).

The property E2 was first considered by Saito and Tian [5]. Then the
hierarchy is given by the following result.

Theorem 6.
a) If §(G) > 1 then E3 = E2 and E2 = E1.
b) None of the converse implications holds.

Part (a) is obvious. Further, the noncomplete odd cycles satisfy E2 but not
E3. Saito and Tian [5] gave graphs which showed that E1 does not imply
E2. Another family of examples is given by Kja_s, + 2K, for b > 3 (where
“4+” denotes the join).

The complete graphs satisfy all the properties while noncomplete paths
of even order and noncomplete cycles of odd order satisfy E2 and E1 only.
However, those paths of odd order, complete multipartite graphs and even
cycles which are not complete graphs satisfy none of these properties.

One may also consider the property:

F: Every binding set of G is of the form V(G)— N (v) for some v € V(G).

Now, it is easily seen that E2 implies F provided §(G) > 2. However, those
complete multipartite graphs which are not complete graphs satisfy F but
not E1. Further the graphs Kja_q; + 2K, for b > 2 satisfy E1 but not F.

The next result gives some necessary conditions, in terms of the minimum
degree and connectivity, for the above properties to hold.

Theorem 7.

a) [5] If G satisfies E1 and §(G) > 2, then (G) > 6(G)/2.

b) If G satisfies E2 then £(G) > §(G) — 1 and p(G) # 6(G) + 2.

¢) If G satisfies E3 then x(G) = §(G) and p(G) # §(G) + 2,5(G) + 3.

Proof: We prove only parts (b) and (c). The result is obvious for complete
graphs, so assume that G is not complete. In each case, the connectivity
condition is necessary. To see this, take X to be a cut-set of G, and let
S = V(H) where H is a component of G— X; thus exc(S) < (| X|+|5])-|S].
Hence in (b), |X| > 6(G) - 1. Further in (c), if |S| = 1 then |X| > §(G),
while if |S| > 2 then S is not of the form V(G) — N(v) where v is a vertex
of minimum degree, so that again |X| > 6(G).
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To prove the remainder, let T consist of two independent vertices. Then
exc(T) < (p(G) — 2) — 2. This yields the remaining necessary conditions in
(b) and (c) noting that if exc(T') does equal §(G) — 1, then T cannot be of
the form V(G) — N(v) for a vertex v of degree §(G). ||

The next theorem gives simple sufficient conditions for a K(1,3)-free
graph to satisfy E2 or E3.

Theorem 8. Let G be a K(1,3)-free graph of order p and minimum degree
§>3.

a) If k(G) > 6—1 and p # 6 +2 then G salisfies E2.

b)) If(G) =6 andp#6+2,p# 6+3, and (6,p) ¢ {(3,8); (3,10); (4,9)},
then G salisfies E3.

Proof: We shall prove both cases simultaneously. Let S € F(G). We wish
to show that if the conditions of (a) hold then exc(S) > 6 — 1, and that if
the conditions of (b) hold then exc(S) > § unless S is of the form {v} or of
the form V(G) — N(v) for some v € V(G) of degree 6.

Let S’ be the set of isolated vertices of the induced graph (S). If S’ =0
(so that S C N(S)), then it follows from S € F(G) that N(S) - S isa
cut-set of G, and thus exc(S) = |N(S) — S| > «(G). Therefore, we may
assume that S’ # 0. Note that exc(S) > exc(S’).

Now, let N* = {v € N(S'): |[N(v)NS'| =1}. Since G is K(1,3)-free, it
holds for all v € N(S') that |[N(v)NS’| <2 and for all v € N(S')— N* that
N(v) C N[S']. Hence, either N* is a cut-set of G or N[S'] is the whole of
V(G).

Now, the number m of edges of G joining S’ to N(S') satisfies

8"l £ m=|N"|+2[N(S") - N7
2exc(S') + 2|S’| - |N*7|. (2)

Hence if exc(S") < & — 2 then |S'} < 2, and, in fact, [§'| =2, N* = 0
and |N(S')| = 6. Since G is connected, N* is not a cut-set of G, and so
N[S'] = V(G) and p = 6 + 2. This completes the proof of part (a).

So let us assume from now on that exc(S’) = exc(S) = § — 1 and that
k(G) = 6 > 3. If |S’| > 2, then (2) gives |[N*| < 2, so that N* is not a cut-set
of G. Therefore, N[S'] is the whole of V(G) and p = 2|5’|+exc(5’) > §+3.
Moreover, (2) gives

|5 <2(6 - 1)/(8 - 2),

so that |S’| = 2 and p = 6 + 3, unless (5,p) € {(3,8);(3,10);(4,9)}
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It remains to consider the case when |S'| = 1, say S’ = {v}, where
degv = 6 (since exc(S’') =6 —1). If S’ = S then S = {v} which is allowed,
so suppose S’ # S. Then N(S — §') — S C N(S’) (since we are assuming
that exc(S) = exc(S’)), and indeed, as N(S — S’) — S is a cut-set of G, it
holds that |N (S — S’) — S| > § and therefore N(S — 8') — S = N(S'). Now
suppose that N[S] # V(G). Then, as G is connected, there exists an z €
V(G)—N[S] adjacent to some y € N(S’). But then y has three independent
neighbours (v, z and one in S — S’) contradicting the requirement that G
be K(1,3)-free. Hence N[S] = V(G) and thus S = V(G) — N(v), where v
is a vertex of minimum degree. This concludes the proof of the theorem. i

We note that the last condition of (b) is not necessary; consider for
example the graphs K5 + (J; U K,_s_1). However, there do exist K(1,3)-
free graphs G of the requisite order which do not satisfy E3. For § = 3 and
p = 8, take G = (K3 x K3) — v (where “x” denotes the cartesian product);
for 6 =4 and p =9, take G = K3 x K3; and for § = 3 and p = 10, take
G = L(Ks) — E(H) where H is a subgraph of L(Kj) isomorphic to Kj.
Nevertheless, from the above two theorems one may obtain the following
result.

Theorem 9. Let G be a K(1,3)-free graph of order p and minimum degree
6§>3.

a) G satisfies E2 iff s(G) > 6 -1 andp# 6+ 2.

b) If (6,p) ¢ {(3,8);(3,10);(4,9)}, then G satisfies E3 iff &(G) = é§ and

As a direct application of the theorem follow some nice results. For
example, the ad hoc results on specific line graphs and some of the results
on total graphs in [5] are direct consequences of this theorem. While total
graphs are not in general K(1,3)-free, we may add the following:

Theorem 10. The total graphs T(C,) for n > 4 and T(P,) forn > 1
salisfy E2.

Proof: The result for cycles follows immediately from the above theorem.
Further, it holds that T(P,) = PZ,_,. If n > 1 then this graph is hamil-
tonian and therefore a supergraph of Can—1. As §(T(P,)) = 6(Can-1) and
Coan_y satisfies E2, the result follows. [ |

Further, powers of cycles are K (1, 3)-free. While the values of the binding
numbers for such graphs were determined in [1], we may state the follow-

ing result which follows directly from Theorem 9 and the observation that
£(CP) = 2a (provided 2a < p).
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Theorem 11.
a) If2<a < (p—4)/2 then C}] satisfies E3 unlessa=2 and p=9.
b)If2<a<(p-3)/2 orifa=1 and p is odd then C; satisfies E2.

This is itself useful; for example, the Harary graphs Hp, » for odd m are
formed from C{™~1/2 by the addition of edges. The following lemma shows
that such graphs satisfy E2.

Lemma 12. Let G be a graph which satisfies E3. If G' is a supergraph of
G with V(G'") = V(G) and §(G') = §(G) + 1 then G’ satisfies E2.

Proof: The only candidates for sets S which have excess in G’ less then
8(G') — 1 and which lie in F(G’), are of the form {v} or V(G) — Ng(v)
where v is a vertex of G with degg v = §(G). However, the excess in G’ of
a singleton is always at least §(G’) — 1, while the sets S of the latter case
have v € Ng:(S) and thus Ng:(S) = V(G'). |

We were unable to determine the exact analogue of Theorem 9 for the
property E1. By Theorem 7a, a necessary condition is that x(G) > 6(G)/2.
However, the graphs Kya_s;_1 + 2K, show that there is no constant ¢ < 1
such that x > ¢ - § is sufficient.

References

(1) C.A. Barefoot, R. Entringer and H.C. Swart, Vulnerability in graphs—
A comparative survey, J. Combin. Math. Combin. Comput. 1 (1987),
13-22.

[2) G. Chartrand and L. Lesniak, “Graphs and Digraphs” (2nd Edition),
Wadsworth, Monterey, 1986.

[3] V.G. Kane, S.P. Mohanty and R.S. Hales, Product graphs and binding
number, Ars Combin. 11 (1981), 201-224.

[4] V.G. Kane, S.P. Mohanty & E.G. Strauss, Which rational numbers are
binding numbers? J. Graph Theory 5 (1981), 379-384.

[5) A.Saito & S. Tian, The binding number of line graphs and total graphs,
Graphs Combin. 1 (1985), 351-356.

[6] D.R. Woodall, The binding number of a graph and its Anderson number,
J. Combin. Theory Ser. B 15 (1973), 225-255.

200



