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Abstract. A partition of the edge set of a hypergraph H into subsets inducing hyper-
graphs H,..., H, is said to be a decomposition of H into Hy,...,H,. A uniform
hypergraph F = (U.F,J-') is a A -system if there is a set K C V(F), called the ker-
nel of F,suchthat AN B = K forevery A, B € F, A # B. A disjoint union of
A -systems whose kemels have the same cardinality is said to be a constellation. In the
paper, we find sufficient conditions for existence of a decomposition of a hypergraph
H into:

a) A -systems having almost equal sizes and kemnels of the same cardinality,
b) isomorphic copies of constellations such that the sizes of their components
are relatively prime.

In both cases, the sufficient conditions are satisfied by a wide class of hypergraphs H.

1. Introduction

In general, we follow the terminology of [3]. For a hypergraph H we denote by
V(H), E(H) and e( H) the set of vertices, the set of edges and the size of H,
respectively. By the degree deg j; z of a vertex x € V( H) we mean the number of
edges that contain z. Let A( H) and §( H) stand for the maximum degree and the
minimum degree of vertices in H, respectively. By G U H we mean the disjoint
union of hypergraphs G and H and by nH the disjoint union of ncopies of H. For
every integer k > 2, a hypergraph with k-element edges only is called k-uniform.
Finally, K¥ and K, , denote a complete k-uniform hypergraph of order n and a
star of size m, respectively.

A decomposition of a hypergraph H into hypergraphs H,,..., H, is a par-
tition of the set E( H) into nonempty subsets E, ..., E, such that (| J E;, E;) =
H;,fori=1,...,r. Let H beafamily of hypergraphs. A decomposition of H into
H,,..., H, issaid to be an H-decomposition if every hypergraph H;,i=1,...,r,
is isomorphic to a hypergraph in H. If X = { F'} we write ‘ F-decomposition’ in-
stead of ‘{ F'}-decomposition’.

The decompositions of hypergraphs were mostly considered in the case of
graphs (see Bermond and Sotteau [5] or Chung and Graham [11] for an exhaustive
list of references). Several results are available for hypergraphs.

It seems that a special role in hypergraph decompositions is played by the so
called A -systems.

A uniform hypergraph F = (|J F, F) is called a A-system if there exists a
set K C V(F),called the kernel of F,suchthat ANB = K, foreveryA,B € F
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and A # B. Notice that for a A -system of size greater than 1, the kernel is unique.
If the kernel is the empty set then the A -system is called a matching. In the case
of graphs the only A -systems are matchings and stars.

A constelation is a somewhat more sophisticated variation of a A -system.
Suppose that k and [ are integers such that0 < [ < k. Let F,..., F; be dis-
joint k-uniform A -systems with l-element kernels and sizes py,...,p:, respec-
tively. A constellation A(k,l,p), where p = (p1,...,pt) is a hypergraph F' =
Py U-.. UF;. The hypergraphs F;, fori = 1,...,t, are called components of the
constellation F. Clearly, every A -system is a constellation. Three examples of
constellations are shown in Figure 1.

There is a number of papers conceming the decomposition of the complete
k-uniform hypergraph K ,’f into A -systems (see [2], (4], [15], [17], [18], [201-{23]).
Lonc [15] proved that for a given A -system D and n sufficiently large, there is a
D-decomposition of K if and only if the obvious divisibility condition (}) = 0
{mod e( D)) is satisfied.

Ll $

A2,1,(3,2,2,1))

A(4,1,(4))

Figure 1.

The direction of research of this paper is a bit different. We try to find pos-
sibly general conditions under which a hypergraph can be decomposed into some
‘A -system type’ hypergraphs. We follow the direction of Lonc and Truszczyriski
[19] who found a minimal family F¢ », of k-uniform, m-edge hypergraphs having
the following property: all, except for finitely many k-uniform hypergraphs H
satisfying the obvious divisibility condition e(H) =0 (mod m) have an Fi .-
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decomposition. The family F; ,, turned out to be surprisingly small. It consists of
A -systems and some hypergraphs of structure very close to them. For example,
for k = 2, that is in the case of graphs, F, , consists of three graphs only, each
being a constellation, namely: the star K ,,, the matching m K, and the constel-
lationA(2,1,(m —1,1)) = Kj m—1 UK. This result suggests that A -systems
and related hypergraphs play the role of ‘bricks’ in hypergraph decompositions.
Therefore, it seems to be of interest to examine decompositions of hypergraphs
into A -systems and constellations.

The first of our main results is the following one. For any pair of A -systems
A; and A; with kernels of the same cardinality and sizes p and p+ 1, respectively,
we find a sufficient condition for a hypergraph to be {A; , A; }-decomposable. This
sufficient condition is satisfied by a very large family of hypergraphs. In the case
of graphs this family consists of all graphs G such that §(G) is greater than a
certain number that does not depend on the graph G. It has to be noted that this
result has already been proved by Lonc [16] if A, and A, are stars. Our first resuit
is related to results of Favaron er al. [13] and Favaron [12] who characterized
the family of { K; 2, K 3 }-decomposable graphs and the family of {2 K>,3 K3 }-
decomposable graphs, respectively.

The second of our results concerns C-decompositions of a hypergraph, where
C is a constellation. It seems to be hopeless to determine the family of all C-
decomposable hypergraphs for an arbitrary constellation C. It has been done for
very special constellations like 2 K3, K12, 3K; and K3 UK, by Caro [9],
Caro and Schénheim [10), Bialostocki and Roditty [6] and Favaron et al. [13],
respectively. Alon [1] has proved that there is a constant ¢ = c¢(m) such that if
e(G) > cthen mK,-decomposition of a graph G exists if and only if A(G) <
e(G)/m.

In this paper we show that if C = A(k,[,p) is a constellation, where p =
(p1,...,pt), such that the greatest common divisor of the numbers py,...,p; is
equal to 1 then a certain large class of hypergraphs (to be specified later) consists
of C-decomposable hypergraphs. In the case of graphs this class is the set of all
graphs G satisfying the obvious divisibility condition e(@) = 0 (mod e(C))
and such that 6(G) is greater than a certain number that does not depend on the
graph G.

2. Main Results, Examples and Problems

Let A be a subset of an edge in a k-uniform hypergraph H = (V,&). By a
strong degree of A in H (denoted by dy(A)) we mean the size of a maximum-
sized A -system with kernel A. This definition is an extension of a definition of
the degree of a vertex introduced by Berge [3, p.429]. Note that, for a graph G
without isolated vertices, the notions of degree of a vertex and strong degree of a
1-element set coincide, i.e. dg(z) = degg z, forevery z € V(G).
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Let P;(V) stand for the set of all i-clement subsets of the set V. Define

&(H) = Aé"v‘..'(‘e)d”(“l)'
fori=0,1,...,k—1,where Vi(&) = {ACP(V):(3E€ E)AC E}.
Throughout this section we assume that [ and k are integers such that ! < k.
The following two theorems are the main results of this paper.

Theorem 1. There is an integer R = R(k,l,p) such that if a k-uniform hyper-
graph H satisfies the condition

& 1(H) > R (1

then H can be decomposed into A -systems with l-element kernels and each of
thesizeporp+ 1.

Theorem 2. Let p = (m,...,p:) be a sequence of positive, relatively prime
integers and C = A(k,l,p). There is an integer P = P(k,l,p) such that every
k-uniform hypergraph H satisfying the conditions

e(H) =0 (mod e(C)) and (2)

61 (H) 2 P (3

has a C-decomposition.

It is not difficult to check that each of the conditions (1) and (3) is satisfied
by almost all k-uniform hypergraphs, i.e. the ratio of the number of k-uniform
hypergraphs on = vertices satisfying (1) (respectively (3)) and the number of all
k-uniform hypergraphs on = vertices goes to 1 as » goes {0 infinity.

The assumptions of Theorem 2 cannot, in general, be replaced by some weaker
ones.

The first example shows that the assumption that the integers py, ..., p; are

relatively prime cannot be eliminated.
Example 1: Let m, k, I, py, ..., p; be positive integers, p = (p1,...,P), ¢ =
Y 4.1 pj and n = kgm. Assume thatO < ! < k and that the greatest common
divisor of py, ..., p: isequal tod > 1. Denote by G, a hypergraph obtained from
the complete k-uniform hypergraph on n vertices K¥, by deleting an edge. Let Fr,
be a hypergraph obtained from K ¥ by deleting a matching of size ¢ — 1. Finally,
let Hy = G U Fyp.

It is routine to check that e( Hy,) = 0 (mod ¢) and 8,1 (Hy) > (gm —

1) k. Thus, for every P = P(k,l,p) we can choose m such that§;_1(Hm) > P.
On the other hand, the hypergraph H,, does not have a A (&, [, p) -decomposition
for any m. Indeed, if it had such a decomposition then a decomposition of Hy,
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into A -systems of size d would exist. But this is not possible, since it is easy to
show that e(G,,) = —1 (mod d). Consequently, H,, cannot be decomposed
into A -systems of size d.

The next example shows that the condition (3) in Theorem 2 cannot be re-

placed by a condition of type §,(H) > P' = P'(m,k,l,p), forany m =
0,1,...,k-2,
Example 2: Let k and P’ be positive integers, V a set of cardinality n+ 1 >
5kP' + 1, z a fixed element in V and m an integer such that0 < m < k — 1.
Let X = V — {z}. It follows from the inequality n > m + (k — m) P' that for
every M € Pn(X), there is a family £y C P(X) such that [€y| = P’ and the
hypergraph (| €, €u) is a A-system with kemel M. Let & = (Jyep_(xy Ep
and F = {E € Px(V): z € E}. Itis not hard to check that |Px(X) — &'| > 5.
Let|E'UF| = r (mod 5),0 < r < 5. Choose arbitrarily 5 — r distinct elements
of Pr(X) — &, adjoin them to &' and denote the resulting family by &. Finally,
define H = (V,EUF).

First, we show that §,,( H) > P'. To this end, consider A € Pn(V). If
z € Athendy(A) = |(n— m+ 1)/(k —m)]. Otherwise, dy(A) > [€4] = P'.
In both cases, dg(A) > P',s08n(H) > P'.

Clearly,e(H) =0 (mod 5).

We shall prove that H does not have a A(k, [, (3,2))-decomposition, for
0 < I < k. Suppose that such decomposition exists. At most 3 edges of
each of the constellations forming this decomposition belong to F. Since |F| =
(,2,), there are at least +(,",) constellations A (k,1,(3,2)) in the decomposi-
tion. Therefore, there are at least 3 (,”,) edges in H. On the other hand, there
areatmost (,*,) + (%) P’ + 5 edges in H. Thus, (,*,) + (*)P'+ 5 > 3(,*))-
This is a contradiction because the inequality does not hold under the assumptions
n> 5kP' and 0 < m < k — 1. Therefore, H does not have a A (k,1,(3,2))-
decomposition.

We are not able to find an example showing that the condition (1) in Theo-
rem 1 cannot be replaced by a condition

ém(H) > R' = R'(m, k,1,p),

forsome 0 <l < m < k — 1. We suspect that it can.
Problem 1: For which integers land m,0 < I < m < k — 1, is the following
statement true:
There is an integer R' = R'(m, k,!l,p) such that if a k-uniform hypergraph H
satisfies the condition 6,,( H) > R’ then H can be decomposed into A -systems
with l-element kernels and each of sizeporp+ 1 ?

Theorem 2 suggests another question. For which hypergraphs C (besides
constellations) does Theorem 2 hold? This question is especially interesting in
the case of graphs. Our Problem 2 suggests a possible answer.

205



Problem 2: LetG be a family of forests with components of relatively prime sizes.
Prove or disprove:
For every G € G, there is an integer P = P(G) (which does not depend on H)
such that if e(H) = 0 (mod e(QR)) and §(H) > P then the graph H has a
G -decomposition.

3. Proof of Theorem 1

We shall need three lemmas. The first of them is a well-known theorem of Hajnal
and Szemerédi [14].

Lemma 3 (Hajnal, Szemerédi). Let G be agraph. If m > A(G) + 1 then there
is a partition of the vertex set of G into m independent subsets of almost equal
cardinalities. |

(The sets X3, ..., X, are said to be of almost equal cardinalities if || X;| —
|X;ll < 1,fors,j=1,...,n)

Lemma 4. For every k-uniform hypergraph H and for every integer m 2>
k&8( H), there is a decomposition of H into m matchings of almost equal sizes.

Proof: Let G be the intersection graph for H, i.e. the graph whose vertices are
the edges in H and two vertices are joined by an edge in it if the corresponding
edges in H intersect. Clearly, A(G) < (A(H) — 1) k. Thus, by the assumptions,
m > kA(H) > A(G) + 1. By Lemma 3, there is a partition of V(G) into m
independent sets of almost equal cardinalities. Since every partition of the vertex
set of G into independent sets corresponds to decomposition of H into matchings,
there is a decomposition of H into m matchings of almost equal sizes. [ |

Lemma 5. If H is a k-uniform hypergraph then e( H) > A(H)&_1(H) k.

Proof: Let z be vertex in H such that deg; z = A(H). For every edge E con-
taining z, the set E — {z} is the center of a A -system of size at least &;_,(H).
Thus, the number of edges intersecting at least one of the edges containing z is at
least 61 (H)A(H) /k. Consequently, e( H) > A(H)&1(H)/k. |

Proof of Theorem 1: Let R = k(k — )2 (*7")p. We shall apply the Integer Ford-
Fulkerson Theorem (cf. [8, p.51]):
Let F = (X, C) be a digraph and let f: C — R be a flow. There exists a flow
g:C — Z suchthat g(c) = | f(c)] org(c) = [f(c)] forevery arcc € C. (The
symbols |z| and [z] stand for the integer part of x and the least integer not less
than z, respectively.)

Let H = (V, &) and define adigraph " = (Y, A4). LetY = EUV,1 () U
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{S,T}. Denote

Ai1={(E,B):E€é&, BeVii(&), BCE)},
Ay = {(S,E): E € &},

A3 ={(B,T):B€Vi1(E)} and
As={(T,9)}.

Let A= A; UAz UA;3 U A, and finally, for ¢ € A, define

i fora € 4,
1 fora € A;
B fore=(B,T) € A3
|€] fora € As.

f(a) =

It is easy to verify that f is a flow. By the Integer Ford-Fulkerson Theorem, there
isaflow g inT" such that g(a) = | f(a)] or g(a) = [f(a)],fora € A.

The flow g corresponds to a decomposition of H into A -systems with (k—1)-
element kernels. In fact, assign to every set B € V;_; (&) the set of edges g =
{E € &:B C E and g((E, B)) = 1}. The set &g generates a A-system Hg
of size at least |dx(B)/k] with B as its kemel. Moreover, every edge E € &
belongs to exactly one set £g. Consequently, the hypergraphs Hg, where B €
Vi-1(€), form a decomposition of H into A-systems of sizes greater than or
equal to | 8,1 (H) /k] > [R/k| = (k- D2 (*]")p.

Decompose every A-system Hp into (*7') A-systems H2, D € Pi(B),
of almost equal sizes. Clearly, e(HZ) > (k — l)2p. Now, for every D €
Vi(€), denote by H? the hypergraph generated by the set of edges E(HP) =
Us-p ECHE). Obviously, the hypergraphs H2, D € V(€&), form a decompo-
sition of H. To prove the theorem, it suffices to show that H2 can be decom-
posed into A -systems with [-clement kernels and each of size p or p+ 1, for every
D € Vi(€).

Remove the set D from every edge of HZ and denote by GP the resulting
(k— 1) -uniform hypergraph. According to the construction of H?, every (k— 1)-
element subset of an edge in H 2 containing D is the kemel of a A -system of size
at least (k — 1)2p. Thus, every ( k — I — 1) -element subset of an edge in G2 is the
kernel of a A -system of size at least (k — )2 p. Hence, §;_;_1 (G?) > (k—1)?p.
By Lemma 5,

e(GP) > A(GP)8k-11(GP) [(k = D) > (k- DpA(GP).

Letm = |e(GP) /p). Since m > (k — 1) A(GP), it follows from Lemma 4 that
G? can be decomposed into m matchings of almost equal sizes.
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Lete(GP) = bp+ r, where 0 < 7 < p. Since e(GP) > (k- DpA(GP) >
(k = D)pSe_1_1(GP) > (k—1)3p* > p?, wegeth > pand r/b < 1. Therefore,
the size of the smallest matching in the decomposition of G? into m matchings is
equal to [e(GP)/m] = [(bp+ 1)/ (bp+ ) /p]] = |(bp+7)/b] = pand the size
of the largest one is equal to [e(GP) /m] < p+ 1. The decomposition of GP into
matchings of sizes p or p + 1 corresponds to a decomposition of the hypergraph
HP into A -systems of sizes p or p+ 1 and with l-element kemels. This completes
the proof. 1

4, Proof of Theorem 2

To prove Theorem 2 we need several technical and rather complicated lemmas.
Therefore, it seems useful to outline the steps of the proof first.

The crucial points of the reasoning are Theorem 1 and Lemmas 6, 7 and 10.
The Lemmas 3, 4, 5, 8 and 9 play an auxiliary role. The hypergraph which is to
be decomposed is usually denoted by H. In Theorem 1 and Lemmas 6, 7 and
10 we assume that the strong degree 6, ( H) is greater than a certain number
independent of H. The number depends only on the parameters of the hypergraphs
into which H is to be decomposed.

We use Theorem 1 to decompose H into A -systems, each of large (to be
specified later) size p or p+ 1, with l-element kernels. Then (Lemma 6), we group
the A-systems into constellations such that the number of the A -systems being
components is suitably large in every constellation, and such that the sizes of the
A -systems are still equal to p or p+ 1. We modify this decomposition (Lemma 7) to
obtain a decomposition of H into constellations Cy, .. ., C, of sizes being a multi-
plicity of the size of C = A (k, !, p) and such that both the number of components
in every C; and the sizes of the components are appropriately large. Finally, we
apply Lemma 10 to decompose every constellation C; into constellations isomor-
phic to C.

Lemma 6. Let | > 0. There is an integer T = T'(k,l,p,q) such that every
k-uniform hypergraph H satisfying the condition 6;_,(H) > T can be decom-
posed into constellations D , . .., D, having, fori = 1,...,s, the following prop-
erties:

(6a) every component of D; has an l-clement kernel,
(6b) 2q > ¢; > g, where g; is the number of components in D; and
(6¢) the size of each of the components of D;isp orp+ 1.

Proof: Let T = T(k,l,p,q) = max{R(k,!,p),k*(p+ 1)2g} (see Theorem 1
for the definition of R(%, {,p)). It follows from Theorem 1 that there is a decom-
position © of H into delta-systems with I-element kernels and each of siz¢ p or
p+ 1.
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Let G be the graph whose vertices are the A -systems that form the decom-
position ®. Two vertices in G are joined by an edge if the vertex sets of the
corresponding A -systems intersect.

Notice that

e(H) L |V(Q)|(p+ 1) (4
because © is a decomposition of H into |V (G) | A -systems of sizes at mostp+ 1.
Let D be a fixed A -system from the decomposition 6.

The number of edges in H that intersect the set of vertices of D is not greater

than
[V(D)A(H) < (I+(p+ D(k—D)A(H).

On the other hand, the number is not less than the number of A -systems of ©
whose vertex sets intersect V( D), i.e. it is not less than deg, D. The above two
observations imply the inequality

dege D < (L+ (p+ (k- D)A(H)
for every A -system D from the decomposition ©. Thus,
A(G) L (L+ (p+ D(E-D)A(H). ()

Applying, in turn, (4), (5), the assumption [ > 0, Lemma 5 and the definition
of T we get

V(&I e(H)/(p+1)
AG)+1 = (I+(p+ D(k-D)A(H) +1
S e(H) S Se-1(H) > 4.

= (p+ 1)2kA(H) = (p+ 1)2k% =

By virtue of Lemma 3, the vertex set of G can be partitioned into ||V(G)|/q]
independent sets of almost equal cardinalities. Since ¢ < [I"I'Z(%;HH < 2¢,thecar-
dinalities of the independent sets belong to the interval [g, 2q). Clearly, this par-
tition of V' (G) corresponds to a decomposition of H into constellations satisfying
the conditions (6a), (6b) and (6¢). 1

Lemma?7. Letn,p and L bepositive integers suchthat n < }pand | > 0. There
isaninteger Q = Q(k, !, p, q) such thatevery k-uniform hypergraph H satisfying
the conditions &,y (H) > Q and e(H) =0 (mod n) can be decomposed into
constellations C,...,C, having, for i = 1,..., s, the following properties:

(7a) every component of C; has an l-element kernel,

(7b) ¢ < qi < 2q, where g; is the number of components in C;,

(7c)  the sizes of the components of C; belong to the interval (+p —

n,p+ 1],
(7d): e(C;) =0 (mod n).
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Proof: Let Q(k,l,p,q) = max{T(k,l,p,q),8¢>(p+ 1)*k?} (see Lemma 6 for
the definition of T'(k, !, p, ¢) ). According to Lemma 6, there is a decomposition ¢
of H into constellations Dy, ..., D, satisfying the conditions (6a), (6b) and (6c).
Let,fori=1,...,s, D},..., D} be the components of D;. By (6b),q < r; < 2¢
andby (6c),p< (D)) <p+ 1,forj=1,...,7.

Let F be a graph with vertices D, , ..., D,. Two vertices D; and D; form an
edgein Fif V(D;) NV(D;) = 0.

We prove that §( F) > +|V(F)|. To this end, notice that, fori = 1,...,s,

V(D)< 2q(l+ (k= D(p+ 1)). (6)
Moreover, it is easily seen that
e(H) <2q(p+ D|V(F)|. )
Applying, in turn, (6), Lemma 5, the definition of Q and (7), we get

8(F) 2 [V(F)|—2q(l+ (k= D(p+ 1))A(H)

ke(H)
> |V(F)|—2gk(p+ 1)__8,‘_1(1{)
quz(p-f- 1)
> |V(F)I—WC(H)
> 3 V(B

By the well-known Dirac Theorem (see Bollob4s {7, p.132]), there exists a
Hamiltonian path in F'. Without loss of generality, we can assume that D, , ..., D,
are the consecutive vertices of the path. Note that D; U D;,, is a constellation,
fori=1,...,s—1.

Now, we construct recursively the constellations C;, .. ., C, that form a de-
composition of H and satisfy the conditions (7a)-(7d).

Let Ly = D;. Suppose that we have already defined Lo, Ly, ..., Li_1,
Ci, ..., Ci—1. We define L; and C; for 0 < 1 < s. Notice that there is an
integer m € (Fe(D);) — n, Je(D},)] suchthate(L;_;)+m =0 (mod ).
Decompose D}, into two A -systems D}, and DY, , of sizes m and e( D}, ,) —m,
respectively. Let C; = L;_y UDj,, and L; = D,, UD%,, U... UDY,. Finally,
let C, = L,_1. The hypergraphs Ci, ..., C, are constellations because D; U D;,;
is a constellation, fori = 1,...,s — 1. Moreover, according to the construction
and the assumption e(H) = 0 (mod m), the hypergraphs C,,...,C, form a
decomposition of H satisfying the conditions (7a)—~(7d). 1

To prove the important Lemma 10, we need two auxiliary Lemmas 8 and 9.
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Lemma 8. Let py,...,pt and ay,...,a, be sequences of integers and let py >
e2pe>0.IF

t
a;Zpltquj fori=1,...,q ®
J=1
a; =0 (mod D) fori=1,...,q ¢)]
(where D stands for the greatest common divisor of py,...,p:) and
q t
Y a;=0 (mod > e (10)
i=1 j=l

then there are integers o, > 0,7 =1,...,t,i=1,...,q such that

Proof: We prove the lemma by induction ont. Itholds fort = 1 because it suffices
toputa) = &, fori=1,...,q. Suppose that¢ > 2 and that the lemma is true for
t — 1. Denote by D; the greatest common divisor of py,...,p;,forj = 1,...,¢.
Fori=1,...,q — 1, there exists an integer

t t
z; € (ai/zpj — D41/ Dy, ai/zpj =1 (11)

j=1 j=1

such that
a,'/Dg - -'BiPt/Dt =0 (mod Dg_]/Dg). (12)

To see this, consider the remainders of the division of a;/ Dy — zpt/ D by D;—1 / Dy
for every z € I. The remainders can not be equal for any z', =" € I, ' # z".
Otherwise (a;/D; — z'pt/Dy) — (6i/ Dt — 2"pt/Dy) = (2" — z')pe/Dy = 0
(mod D;_1/Dy). Since |z’ — 2"| < D¢—1/D; and pt/ Dy and D, / D, are rela-
tively prime, z’ = z", a contradiction. Thus, foreveryr=0,1,..., Ds1/D—1,
there exists z € I such thata;/ D¢ — zpt/ D¢ = r (mod Dy /Dy). In particular,
there exists z; satisfying (11) and (12).
Letaf = z;, fori=1,...,g— 1 and let

t q-1

a:= Zag/zp; —Zaf-.

q
i=1 j=1 i=l
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Notice that by (11) and (8)

q
o > ai/EPj"Dt—l/Dt 2ntg—p 20, fori=1,...

j=1

and, by (11),

q t q-1 t
of > Eai/zpj - Ea./zp,
i=1 j=1 i=1 =1
t
= °q/EPi >0

Apply the induction hypothesis for the sequences p; ..., pr_; and aj,...,ap,
where a} = a; — ofpy, fori = 1,...,q. It is therefore necessary to check that the

assumptions (8), (9) and (10) are satisfied by these sequences.

1. Assumption (8).
Fori=1,...,q-1,

t
a; >0 — Ptai/EPj
j=1
t—-1 t
= aizpj/ EP;‘
j=l j=1
t-1
2 pitg Epj
J=1
t—1
2n(t- quzpj-

j=1
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Moreover,

a, = ag— (ia,/zp, qia)

=1 J=1 i=1
g-1

—pi Ea./zp; +pt Ea./Zp; pi(g — 1) Ds_1/D;

i=1 i=1 J=l

= aquj/zpj —p(qg— 1) Dy /D,
=1 e
t-1
>pite Y pi—apt
jo1
t-1
>pi(t-1g) p

j=1

2. Assumption (9).

According to the definition of of, a} = a; — praf = 0 (mod D,_,), for i =
1,...,q— 1. Moreover,

(3]
e~
]

a, — pga’
q-1

IS S mZﬂa/Emea

1=1 i=1 1=1

) (2“) (E”’) / EPJ (a1 i

i=]

=0 (mod D, ;)

because

t—1

> pi=0 (mod D).
j=1
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3. Assumption (10).

(2 (£)1%

t-1
=0 (mod Y py).
j=1

By the induction hypothesis, there exist integers o:{ >0,1=1,...,9,] =
1,...,t — 1 such that

Sar=3e/ = e/ r

i=l i=1 j=l i=1 j=1
fors=1,...,t - 1. Clearly,

9 q t
Doei=d/ ) P
i=l =l j=1
Moreover,
-1
> dlpj =
j=1
SO
t ry
Y olpi=a; fori=1,...q.
j=
This completes the proof of the lemma. |
Lemma9. Let B be a set of cardinality mt. Assume that the elements of B are
colored with t colors cy, ..., c; such that exactly m elements receive color c;, for
i=1,...,t. Moreover, let sets B, ,.. ., By form a partition of B. If
|Bij<m, fori=1,...,q, (13)

then there is a partition of B into m t-element subsets F\,...,Fy, such that
elements of Fj, j = 1,...,m, have distinct colors and |F;NBi| £ 1, for
j=1,....mandi=1,...,q.

Proof: LetG = (X,Y; E) beabipartite multigraph such that X = {B,..., B,}
andY = {c,,...,c:} and multiplicity of an edge B;c; is equal to the number of ele-
ments of B; that are colored with ¢;. Clearly, there is a one-to-one correspondence
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between the elements of B and the edges in G. According to (13), A(G) = m
Since the chromatic index of a bipartite multigraph is equal to its maximum de-
gree, G can be decomposed into m matchings of sizes s; > --- > sp. Obvi-
ously, s; < [V]| = t. Thus, mt = e(G) = 81+ -+ + 35 < m3; < mt, 50
=38 = ... = sy. The decomposition of G into m matchings of size ¢ corre-
sponds to the required partition of B into the subsets Fi, ..., Fy,. [ |

The next lemma is a corollary to Lemmas 8 and 9.

Lemma 10. Assume that py,...,p and a,,...,a, are sequences of positive
integers,p1 > --- >p > 0andl > 0. Let C = A(k,l,(p1,...,pt)) and
K = A(k,l,(a1,...,0,)). If the conditions (8), (9) and (10) are satisfied and

q t
6 <Py 6./ p, fori=1,..,q, (14)
8=1 =1

then there is a C-decomposition of K.

Proof: Denote by A,,..., A, the components of the constellation X. We can
assume, without loss of generality, that the size of A; isequaltoa;,fori = 1,...,q.
By Lemma 8, there is a decomposition ® of K into A -systems such that every
A -system A; is decomposed in © into o? A -systems of size pj, forj = 1,.
Moreover, the number of A -systems of size p; in © is equal to

Let B; be the set of A -systems that form the decomposition of A; in © and
let B = (., Bi. Clearly, |B| = mt. Color every A-system of size p; belonging
to B with ¢;, for j = 1,...,t. Applying, in tumn, the definition of o/, Lemma 8,
(14) and the definition of m we get

t t
R 1 . .
1Bil=Y ol < = dlpj=ai/p<m, fori=1,...,q.
jl:l P J=1
By Lemma 9, the existence of a C-decomposition of K follows. [ |
Theorem 2 is now an easy consequence of Lemmas 7 and 10.
Proof of Theorem 2: Let P(k,l,p) = Q(k,l,p,q), where ¢ = [7 2,31 pi/pt]
andp= 6ptq z:)_, p; (see Lemma 7 for the definition of Q(k l, P,9)). Accord-
ing to Lemma 7, H can be decomposed into constellations Cy, ..., C, satisfying
the conditions (7a)—(7d) with n = E 1 Pj = e( C). Let K be one of these con-
stellations and suppose that K = A (lc l,(a1,...,a¢)). To prove the theorem, it
suffices to show that K is C-decomposable
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Applying, in tum, (7c), the definition of p, and (7b) we obtain
l
25P- Ep; >2qmt2p, > pitg Ep;. (15)
Jj=1 J=1
fori=1,...,q". It follows by (7d) that

7 t

Ea.- =e(K) =0 | mod Ep; .

i=1 =1

Finally, by (7¢), the definition of p, (15), (7b) and the definition of g we get

e g 7 &
a.<P+1<7P1t¢JZP 5D <Y o
jal ¢ o 7%
q t
<my e/ p, fori=1,..¢

i=1 =1

Since the integers py , . . ., p; are relatively prime, all assumptions of Lemma 10
are satisfied. Consequently, K is C-decomposable. [ |
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