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Abstract. Let f(n) denote the number of essentially different factorizations of n. In
this paper, we prove that for every odd number > 1, we have f(n) < c];;'—» , where ¢
is a positive constant.

Consider the set T(n) = {(m1,m2,...,m;) |n= myma---my, m; > 1,
1 < i< s}, wherenandm;, 1 < i < s, areall natural numbers and identify those
partitions which differ only by the order of the factors. We define f(n) = [T(n)|,
n> 1,and f(1) = 1.

In 1983, John F. Hughes and J. O. Shallit [2] have proved f(n) < 2nV2.

In 1987, Chen Xiao-Xia [1] has proved f(n) < =.

We easily prove that f(n) = 0(n*), @ < 1, does not hold. In fact, let B(n) de-
note the nth Bell-number and a, = P, P, - - - P,,, P; being the ith prime. We have
log f(as) = log B(n) ~ nlognandloga, = Y ., log P; =3 p.p log P ~
P, ~ nlogn It follows that lim,_o, L) = 1. If f(n) < An®, then

log aa
log f(n) g
B dogn S @< 1. So we get a contradiction.

In this paper, we shall prove the following:
Theorem. For every odd number > 1, we have

n
f('ll) S cigg_'n'

where c is a positive constant.

Throughout this paper, let P(n) be the largest prime factor of nand Py (n) the
smallest.
To prove Theorem, we need the following:

Lemma. Ifn> 1, then f(n) < Edlr?;r f(d).

Proof: Ifn=[]iZ] P;’-Pr, P\ < P, < -+ < Pr,consider thesets: Tjj; .., (n)
- {(le-]lp:z—h .. .Pra-:]l—h-l Pr, my,-- |'mo) | n = Plal—hpgz-n ..
PY3 Tl Py oomg,m; > 1,2 <1<} 0< i<, 1<i<r-1,
where also identify those partitions which differ by the order of the factors.
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We easily see |Tjj,.jo (W] = F(PP PP -.-PIY), T(m) = USL, U,
-~ UF ) Ty jpjes () and only when ji = i, 1 <k<r 1, Tjijzjon (M) N
T,,.2 i,_,(n) # 0. Hence we obtain

a2 Q|

F =T = 3 D Thpeger (W]

;':—0 )'z=0 Jr-1=0
- E E 2"':‘ f(PIlPJI P}r )
71=0 j2=0  j,_4=0
= > f(d. (1)

45w

fn=T[uP* PL<Py<- <P < Pup,or>2,letn = 2,
Consider a mapping from T'(n) into T'(n ):

‘qu,-.”

(ml;st"'.ms)_'(ml,"'; P ,“';ma):
T

where n= myma ---m,, m; > 1,1 < 1 < sand my = maxp,jm{m;}. We
casily sec that it is a 1-1 mapping from T'(n) onto a subset of T'(n;). So, by (1),
we get

F < fm)= ) f D= fd= f(d. 1
drs dif dirfs

Proof of Theorem: It is well-known that d(n) = o(n®) and log n = o(n®) for
every positive e, where d(n) is the number of divisors of n. Hence we have
d(n) < con? 2
logn< ¢ ni', 3
where ¢y, ¢; are constants and coc; > 1.
It is easy to prove that
n

Z“S—mn)_r @

A5ty

In fact, letn=[]i., P/, Pi < P, < --- < P,. We have

_ P -1 n _
E,d' A-1 Bm-1 (=Y
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or ,

Y a= B ] IR -1 P -1 R 1
P, -1 Pi=1 = Pi—141 Pin—1

dty P
P:" r=-1 },‘ai(-] n
. 2
porllp <mEm-T 22
i=1

Letc = 6cocy, we shall show that f(n) < cip for all odd numbers > 1 by
means of induction.

Whenn=3,wehave f(3) =1 < cb‘%.

Suppose f(d) < ci=; for all odd numbers which > 1 and < n — 2, where
n - 2 is an odd number and > 3. We shall prove that f(n) < cg;‘—n.

By Lemma, we have

LY =) f(d+ Y, f(d)=5+5 ®)
dply dipty dpfy

dgni d>ni’

By (2), (3) and f(d) < d, we get

3 E ¥ $_oQn GO o
Si<n dlﬁ:l < n¥d(n) < com 7 < c’—]-logn cocl logn’ ©)
By (4), P1(m) > 2 and the supposition of induction, we get
S S n
Sz<6Cocl E —-—<6Co 1——— d< 6oy
log = 31 P -1
gty 3logn g% o8 n Fi(m)
d>n§
< 5c001— )
S 26 llogn

By (5), (6) and (7), we get
n

n
fm < ocie logn logn'

lg + Scoc1 ——

Our theorem is now proved by induction. il

Editor’s Note.

After this volume was in print, we learned that the conjecture of Hughes and Shal-
lit, namely, that f(n) < n/(logn) for n # 144, has been proved by F.W. Dodd
and L.E. Mattics, Rocky Mountain Journal of Mathematics 17 (1987), pp.797-
813.
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