A Lanczos Algorithm in a Finite Field and its
Application*

M. Serra T. Slater

Dept. of Comp. Science, Univ. of Victoria
Victoria, B.C., Canada

Abstract

Given a matrix in companion form over GF(2), whose
characteristic polynomial is irreducible, a tridiagonal matrix,
similar to the original one, is found, by constructing the sim-
ilarity transformation. The theoretical basis is founded on
the Lanczos tridiagonalization method, valid in the Complex
domain. A variant of the Lanczos method, based on LU de-
composition requirements, is modified to apply in the finite
field GF(2). The work is derived from an application in VLSI
design, where the matrices in companion form and in tridiag-
onal form represent two similar linear finite state machines,
used for pseudo-random pattern generation and digital cir-
cuit testing. The construction of the similarity transforma-
tion between the matrices makes it possible to obtain directly
the separate implementation of the two corresponding ma-
chines.

1 Introduction

In applications for digital circuit testing and VLSI design, some
simple linear finite state machines, called LFSRs for linear feedback
shift registers, are commonly used either as pseudo-random pattern
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generators or signature analyzers [1]. Normally their behaviour
is well known and the algebraic theory behind is not considered
explicitly. Recently some interest has surfaced towards a different
type of linear finite state machine, called Cellular Automata (CA)
[4, 10). The study of these machines proceeded at first through
simulation, and only recently some research has shown that their
behaviour can be extrapolated directly from the analysis of the
corresponding matrix representing their transition functions {11].

The LFSRs can be implemented directly by mapping the nonzero
coefficients of the characteristic polynomial of their transition ma-
trix to simple feedback paths of wires. The important detail, usu-
ally, is to select an appropriate primitive polynomial, such that the
machine, when operating, would cycle through a maximal number
of distinct states. The same property was sought for the CA1, but
the maximal length behaviour was analyzed only by simulation. In
[11] it was shown that there exists a similarity relation between
an LFSR and a linear cellular automata, if they correspond to the
same irreducible (primitive) characteristic polynomial.

There still remained the problem of finding the tridiagonal ma-
trix representing a cellular automaton, similar to a specified LFSR,
whose behaviour was known. The standard tridiagonalization algo-
rithms, however, depend heavily on properties of the real or com-
plex field, not necessarily shared by finite fields. In this paper, we
present a version of the Lanczos tridiagonalization method, with a
variant based on LU decomposition requirements, modified to apply
to GF(2). This contribution bridges a gap often found between the
extensive research available in algebraic methods and the one for
finite fields [7], where algorithms described in the former area are
useful in the latter, but may not necessarily be transferred directly.

In section 2, some background terminology and useful theorems
are stated. In section 3, a very short description of the application
is given. Since the original problem is beyond the scope of this
paper, a more detailed summary of the application is presented
only in the Appendix, in order to place the modified algorithm in
more precise context. In section 4, the derivation of the modified

1CA is used as an abbreviation for both Cellular Automaton and Cellular
Automata, depending on the context.
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Lanczos tridiagonalization method is shown, together with the final
algorithm and a complete example. In section 5, implementation
results are presented.

2 Background

The application for tridiagonal matrices comes from their represen-
tation of certain linear finite state machines. The algebraic ma-
nipulation of the matrices makes possible a better study of the be-
haviour of the machines themselves. Some definitions and theorems
are necessary for the exposition below.

Definition 1 [14] A machine M is a Linear Finite State Machine
if (1) the state space Spr of M, the input space Ipg, and the output
space Ypr are each vector spaces over the appropriate finite field
(here GF(2)); (2) let the vector s; denote the state of the machine,
the vector u; denote the inputs to the machine, and the vector Y
denote the outputs of the machine. The next state st of M is defined
by st = Rs;+ Pu; and the output is defined by y; = T's; + Qu; where
R, P, T, and Q are transformation matrices of the appropriate size
over the finite field. In the case of an autonomous machine (with no
external input u;), the second term is omitted from each equation.

Definition 2 The characteristic polynomial of a square matriz A
is defined as A 4(X) = det(A] - A).

Definition 3 [9, p.148] A polynomial p(X) of degree n which is
not divisible by any polynomial of degree k, where 0 < k < n, is
called irreducible.

Theorem 1 [13, p.269] Similar matrices have the same character-
istic polynomial.

Theorem 2 If two matrices A and B have the same characteris-

tic polynomial A(X) which is irreducible (or primitive), then A is
similar to B.
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Definition 4 [9, p.158,161] An element o of a finite field is called
a primitive element if it generates the multiplicative group of the
field. The minimum polynomial of a primitive element is called
a primitive polynomial, and all its roots are primitive elements,
where minimum refers to the monic polynomial of smallest degree
such that m(a) = 0.

An irreducible polynomial of degree n can be tested to be primitive
if and only if it divides X™ — 1 for no m less than g™ — 1, where ¢
is the characteristic of the field [9, p.161].

Definition 5 A companion matriz is defined to be of the form:

0 1 0 0 0 0

0 0 1 ) 0 0

0 0 0 0 1 0

0 0 0 0 0 1
—Qp —a; —a3 --° —0k_.3 —Gk-2 —0k-1

where the a; are the coefficients of the monic characteristic poly-
nomial. Since the underlying field is GF(2), where addition and
subtraction are equivalent, we can omit the negative signs. Some
authors also may define a companion matrix to be the transpose of
the one shown above.

Definition 6 A tridiagonal 90/150 matrix has the following struc-
ture:

[an 1 0 0 0 0 0
1 as2 1 0 0 0 0
0 1 ass 1 0 0 0
0 0 0 0 An—_2,n-2 1 0
0 0 0 0 1 Ap—-1,n-1 1
\ 0 0 0 o0 0 1 Gnp
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All elements of the subdiagonal and the super diagonal are 1, while
the elements of the diagonal can be 1 or 0, depending on the rule
of the linear finite state machine that they are representing [11]. It
can be shown that, in fact, the only acceptable structure for the re-
quired CA is such a tridiagonal matrix. The name comes from the
names, 90 and 150, of the computation rules of the corresponding
machine [15]. Moreover, such a matrix is always non-derogatory 2
and the structure is necessary (but not sufficient) for the charac-
teristic polynomial to be irreducible [11].

3 The Application and the Problem

This research started from a direct application of tridiagonal matri-
ces over GF(2). The complete presentation can be found in [11], but
a summary is included in the Appendix. In the application, a tridi-
agonal matrix represents the linear transition function from current
state to next state of a particular finite state machine called a cel-
lular automata. However, it is desirable for the tridiagonal matrix
to have a primitive characteristic polynomial, as in that case the
corresponding CA has a maximal length cycle structure and thus
produces a maximal length sequence of patterns [11]. Primitive
polynomials have been tabulated and they can be mapped directly
into the implementation of another linear finite state machine, the
LFSR.

In fact the transition matrix for an LFSR is a matrix in com-
panion form, where the coefficients of the characteristic polynomial
occupy the last row. The requirement from the previous research
was to have a choice of implementations between a CA and an
LFSR, since the CA presents better randomness in the sequence
of patterns generated. While the LFSR matrix was known imme-
diately, the corresponding CA tridiagonal matrix had to be found
algorithmically.

The general underlying algebraic problem is to compute a tridi-
agonal matrix similar to a companion matrix, whose characteristic

2 A matrix is non-derogatory if its minimum polynomial is equal to its char-
acteristic polynomial, where the minimum polynomial is the monic polynomial
of lowest degree which annihilates the matrix.
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polynomial is irreducible or primitive. In this paper a constructive
approach is taken, involving a pruned search. The basic Lanczos
algorithm has been changed and adapted to work in the finite field
GF(2).

4 The Revised Lanczos Methods

There exists an algorithm used for tridiagonalizing complex ma-
trices known as the Lanczos tridiagonalization algorithm [13]. Al-
though this algorithm, as it is usually stated, cannot be used in
finite fields, the theory behind it is useful. From it we can aim to
build a constructive algorithm for GF(2). The following discussion
is based on [13, p.338-339).

Definition 7 [3] For a given (2n — 1)-vector [y1,¥2,"**;Y2n-2,
Yon—1), @ Hankel matriz has the form

N Y Y3 o Un

Y2 Y3 Y4 - Yn41
Ys Y4 Ys ' Yn42
Yn Yn+l Unt2 " Yon-1

In particular, the matriz is symmetric and is uniquely specified by
y, which we call the defining vector.

Definition 8 For a given n-vector z and n X n matriz M, de-
fine the Krylov matriz K(M,z) with respect to M and z to be
K(M,z) = [zyMz; M?z;...; M*~1z] in column vector notation.

If X = K(M,z) is nonsingular, then X ! M X is the transpose
of the companion matrix for the characteristic polynomial of M.

Definition 9 A factorization of a square matriz A into the product
LU of a lower and and upper triangular matriz is called an LU
decomposition of the matriz A. [13, p.131]

16




Definition 10 [13, p.23] A square matriz A is Upper Hessenberg
if for all i > j+ 1, the elements a;; = 0; it is Lower Hessenberg if
for all i < j + 1, the elements a;; = 0. A is said to be tridiagonal
if it is both upper and lower Hessenberg.

More directly, an Upper Hessenberg matrix has all entries below
the subdiagonal equal to zero, and conversely for a Lower Hessen-
berg matrix. Furthermore, if R is any nonsingular upper triangular
matrix and § = X R, where X is a Krylov matrix as above, then
S—1MS is Upper Hessenberg.

Assume that for some n—vector y, the matrix Y = K(M?,y) =
[y; Mty; (M*)2y;. ..;(M?t)"~1y] is nonsingular and Y*X = LU where
L is lower triangular and U is upper triangular. Denote R = U —1
and T = (L*)~1. Then R and T are nonsingular upper triangu-
lar matrices and TtY*? = [(L})~" ) LUX!' = UX"1 = R-1X! =
(XR)~1. As noted above, (XR)"!M(XR) = T'Y'MXR is upper
Hessenberg and its transpose R*X'M'YT is therefore lower Hes-
senberg.

If the above computations are repeated with M replaced by
M?, then Y and X switch roles, as do R and T, with the result
that REX!M'YT is upper Hessenberg. Since a matrix which is
simultaneously lower and upper Hessenberg is tridiagonal, we have
found a similarity transformation to tridiagonal form.

Suppose the initial matrix M, from above, is already the trans-
pose of a companion matrix, called C¢, with an irreducible char-
acteristic polynomial. Then, if we let z = [1,0,...,0]%, it is easy
to show that X = K(Ct,z) is the identity matrix, and that ¥ =
K(C,y) is a Hankel matrix for any nonzero vector y, as defined
above. Then, with R*X!CY T being tridiagonal, substituting ap-
propriately for X = I, Yt = LU, T = (L!)~! and R = U1, we
have that UC*U~! is the required tridiagonal matrix.

The discussion above outlines the theory for a tridiagonalization
algorithm. The existence problem resides in the fact that if A(}) is
irreducible with companion matrix M, then there exists a vector y
such that Y = K(M, y) is nonsingular and has an LU factorization.
In the complex field such vectors always can be found, according
to [5, p.20-21]. In GF(2), a finite set of candidate vectors must be
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constructed according to the LU decomposition requirements, as
shown below.

The nonsingularity of Y is guaranteed by the following Theo-
rem.

Theorem 3 [7, Theorem 6.51, p.214] If M is the companion ma-
triz of an irreducible polynomial of degree n over a finite field, then
K(M?t,y) is nonsingular for any nonzero n-vector y.

The next Theorem is valid over any field and specifies necessary
and sufficient conditions for the existence of an LU factorization.

Theorem 4 [6] Annxn matriz M has an LU factorization if and
only if the leading principal minors of size < n— 1 are nonzero. M
is nonsingular and has an LU factorization if and only if all leading
principal minors are nonzero.

The next Theorem concerns the periods of the state cycles for
a transition matrix with irreducible characteristic polynomial.

Theorem 5 [7, Theorem 6.28, p.199] Let M be an n X n matriz
with irreducible characteristic polynomial A()) such that A(0) # 0.
Then for any nonzero n—vector z, the sequence of vectors {z, Mz,
M?z,...} is periodic with least period ord (A())), where ord p(z)
is defined to be the least positive integer e such that p(z)|(z€ - 1).

Note that for e = 2™ —1, this also defines a primitive polynomial
in GF(2), whose only cycle has order 2™ — 1. Consider the problem
of actually finding a vector y such that Y = K(M,y) (for some
companion matrix M) is nonsingular and has an LU factorization.
For small values of n it is simple to compute an exhaustive list of all
possible nonsingular n X n Hankel matrices over GF(2) that have
LU factorizations.

As an example, for n = 4 there are precisely 8 such matrices,
listed in Table 1, representing each matrix by the defining vector
of length 7.

These vectors are obtained in general through a binary search.
The idea is to construct a Hankel matrix whose leading principal
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Table 1: LU sequences of order 4
01 0 0 01

= = e e e
= -0 OO
O OO O - = =
O O O
OO == O
O QO -
-_ O~ OO0 -O

minors are nonzero, in order to fulfill the LU decomposition re-
quirements. For n = 4, the matrix has the form:

Y1 Y2 Y3 Y4
Y2 Y3 Ya Y5
Y3 Y4 Ys Ys
Y4 Ys Ye Y7

For Table 1, an example of the search follows. Note that y;
is always 1. Then for y, we have the constraint that y3 + y53 =
ya+y2 = 1, that is y3 # yo, for the leading minor of order 2. There
are thus 2 possibilities, to satisfy the LU decomposition:

1 0 1 w4 1 1 0 y,
0 1 ys us 1 0 yq4 s
a or b
(e) 1 ys ¥s e ®) 0 va ys s
Ya Ys Ye Y7 Y4 Ys Ys Y7

For case (a), the condition for the leading minor of size 3 reduces
to ys = ¥4, leading to 2 more possibilities:

10 1 0 111 1
01 0 0 111 1
(aa) 10 0 g or (ab) 11 1 v
0 0 y¢ w7 1 1 vy v
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Similarly, for case (b), the condition is y4 # ys, giving:

110 0 110 1
10 0 1 101 0
(ba) 00 1 v or (bd) 01 0 g
0 1 ys 97 1 0 yo y7

So far the 4 partial vectors constructed are:

1 010 0 y 7
1 0111 y 7
11001 yo y7
11010 yo yr

The process continues in a similar manner to fix values for.y¢ and
Y7-

We refer to a vector of length 2n—1 as an LU sequence of order n
if the Hankel matrix it represents is nonsingular and has an LU fac-
torization. Also we refer to the vector consisting of the first n com-
ponents of an LU sequence as an LU state vector. We see from Table
1 that for n = 4, only 4 of the 15 possible nonzero state vectors are
LU state vectors. In this case they are (1010),(1011),(1100),(1101).
The following Theorems give precise values for the number of LU
sequences and LU state vectors of a given order.

Theorem 6 The number of LU sequences of order n is 2"~1.

Proof: The proof is by induction on n. For n = 1, 21-1 =1 and
there is only one LU sequence of order 1, namely (1). Assume that
for some n > 1 there are 2"~2 LU sequences of order n — 1. Let
z = (z1,%2,...,%T2n-3) be one of these sequences and let

T T2 *** ZTp-l
T 3 - Ty
X =
Tp-1 Tn -+ T2n-3

be the Hankel matrix generated by z. By the definition of an LU
sequence, the row vectors of X are linearly independent. Select an
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element z2,_3 arbitrarily from GF(2), let 2/ = (z1,22,...,%2n-3,
Tap-2, ) and let

T 2 o+ Tp- Tn
T2 T3 tee Tn Tntl
XI — . .
Zn1 ZTn cor Tan-3 T2n-2
Tn Tn4l ot Top-2 a

be the Hankel matrix generated by z’, where O indicates a missing
component to be filled in when z2,. is specified.
From the independence of X, there is a unique row vector

a = [a1,09,...,ap_1] such that X = [z,,Tny1,-..,T2n-2], the
first n — 1 components in the last row of X’. Let 25,1 = 1 +
01 Zn + 2Ty + -+ -+ p_1ZTon—2, then z4,_; is the unique element
of GF(2) which makes X' linearly independent when substituted
for O. Consequently, each LU sequence z of order n — 1 is the
parent of two LU sequences of order n, which implies that there
are 2"~1 LU sequences of order n. il

Corollary 6.1 The number of LU state vectors of length n is2 [2].

Proof: The statement concerning the number of LU state vec-
tors follows immediately from the Theorem above, since the con-
struction of an LU sequence involves two alternating phases. In
the first phase, an arbitrary element of GF(2) is added to a pre-
viously constructed sequence, and in the second phase, a uniquely
determined element is added. B

4.1 The Constructive Algorithm

The revised Lanczos method constructs a similarity transformation
from the companion matrix C of a polynomial p(z) to a tridiag-
onal matrix provided there is some vector y such that K(C,y) is
nonsingular and has an LU factorization. By Theorem 6 there
are precisely 221 LU state vectors and these are the only possible
choices for y. The new algorithm operates by executing a loop in
which an LU state vector y is generated, the matrix Y = K(C,y) is
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computed and it is factorized intoa Y = LU. If successful, UC tg-1
is a tridiagonal matrix similar to C (and also to C'*).
The following notation is used in the statement of the algorithm.

(i) The set of LU state vectors of order n is denoted by LUS(n).

(ii) The Krylov matrix with respect to a matrix M and vector y
is denoted by K(M,y).

Algorithm :

Purpose: To compute a tridiagonal matrix over GF(2) which
is similar to the companion matrix of a given polyno-
mial.

Input n: the degree of the polynomial.

C: the companion matrix of the polynomial.

Output A tridiagonal matrix over GF(2) which is similar to
C.

(1) Compute the set LUS(n);
(2) found := FALSE; empty := FALSE;
3) while ( found = FALSE and empty = FALSE ) do

begin
(4) if (LUS(n)=0) then
(5) empty := TRUE;
else
begin
(6) select y € LUS(n); LUS(n) = LUS(n) — {y};
(7) Y := K(C,y);
(8) if (Y is nonsingular and has an LU
factorization) then
9) found := TRUE endif
end
endif
end while
(10)  if ( found = TRUE ) then
begin
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(11) compute Y = LU;

(12) return UC!UY;
end
else
(13) output “no LU sequence ezists” endif

4.1.1 A Complete Example

Example 1 This is an ezample of the application of the algorithm
to the polynomial p(z) = 2® + 2% + 23 4+ 2 + 1 which is primitive
over GF(2).

We wish to find a 90/150 matrix which has p(z) as its char-
acteristic polynomial, given a companion matrix, C, for p(z). By

Theorem 6 there are precisely 2 l2] LU state vectors which we List
below

$7 101000
v2 101001
s 101110
e 1 01111
ys 1 100 10
v 1 100 1 1
y7 110100
ve 1 1010 1

For LU state vector y; = [101000], we have

1 0 1 O 0 0

01 0 0 0 pu
1 0 0 0 pr ps
0 0 0 pr ps o
0 0 pr ps po pio
0 pr ps po mi0 pn
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and we compute

—
O = = O O ~
OO m™m=O0OOQ
OO~ —~0O
- OO O —
S OO O
- o — 000
N————

I

Py

=

N

0

=

[

]

P

which does not have an LU factorization. Similarly, LU state vector

[101001] does not yield an LU factorization. However for

y3 = [101110] we have

Y2

- - - O O
-0 OO
oO-0 OO0
- o O O oo
e g
— —~ —~
O-M OO OO0 O
- O O rmre OO0 O ™ ™
OO - OO - O
- - -H O OO0 -0 O -
O A O OO
—_ O - O 101110U
~— B —

K(C,y3) =

We then compute

|

010000
which is a 90/150 tridiagonal matrix as required. il

111000
011100
001110
000101
000011

|

ucty-?
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5 Implementation and Results.

The constructive Lanczos-based algorithm was first implemented
in C using Sun workstations and used to construct tables. All
irreducible and primitive polynomials up to degree 32 from the
tables in [9] have been processed and for each of them the diagonal
vector for the state transition matrix of the CA has been found.
Recently, the algorithm has been rewritten for an IBM 3090 with a
vectorizing compiler, and work is currently under way to produce
the CA corresponding to some of the primitive polynomials up to
degree 300 listed in [1].

For all above polynomials, we have a unique tridiagonal matrix
(up to reversal of the diagonal), similar to the companion matrix.
The complete set of tables is available in [12].
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A Appendix: The Finite State Machines
Application

This appendix contains a summary of the application of tridiagonal
90/150 matrices and of the Lanczos algorithm for GF(2). It is
not necessarily intended for publication here, but it is provided for
information and clarification.

A.1 Linear Finite State Machines: CA and LFSR

A basic result in Linear Algebra is that a linear transformation in
a vector space is represented by a matrix and that, in turn, such
a transition matrix represents a linear transformation. A function
f :V = V'is a linear function from a vector space V into a vector
space V' over the same scalar field K as V if, for all ¢; and ¢z in K
and all v; and v in V,

flervy + cav2) = e1 f(v1) + caf(v2).

The linear transformations describe the behaviour of a correspond-
ing linear finite state machine, whose definition follows.

Definition 11 [14] A machine M is a Linear Finite State Machine
if

1. the state space Sy of M, the input space Ips, and the oulput
space Yps are each vector spaces over the appropriate finite
field (here GF(2));

2. let the vector s; denote the state of the machine, the vector
u; denote the inputs to the machine, and the vector y; denote
the outputs of the machine. The nezt state s} of M is defined

by
s;" = Rs; + Pu;

and the output is defined by

i = Ts;i + Qu;
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(90) (150) 90) (150) 0

L Sa Sa Sa

Figure 1: Example of Cellular Automaton

where R, P, T, and Q are transformation matrices of the
appropriate size over the finite field. In the case of an au-
tonomous machine (with no ezternal input u;), the second
term is omitted from each equation.

The particular instance of machines under investigation is called
a One Dimensional Linear Cellular Automata, defined as a uniform
array of identical cells in an n-dimensional space. They are char-
acterized by the cellular geometry and the rule to compute the
successor state. Cells are restricted to local neighbourhood inter-
action and have no global communication. Cells use an algorithm
to compute their successor state, called its computation rule [15],
based on the information received from its nearest neighbors.

Figure 1 is an example of the type of machine being described.
Each site, labelled s;, 1 < i < k, can contain the values 0 or 1, and
receives an input from each neighbour, s;_; and s;;1, at every clock
cycle. The state of the CA is given by the bit pattern sy,...,ss,
where k is the length of the CA. It is said to have null boundary
conditions, as shown, when the first and last site always receive a
0.

The next state of the CA is determined by the current state
and the rules which govern its behaviour. In Figure 1, no external
input is entered in the CA, except for the boundaries where the
input is constant. Only linear one-dimensional CA are of interest
to us. The linear rules used in the example are Rules 90 and 150,
as classified in [15]). They are defined as follows:
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Rule90:s} = si_1 ®sip
Rule150: s} = si_1 @ 8@ sipya

where s} denotes the next state for site s; and @ denotes addition
Mod 2 over GF(2). Hence Rule 90 updates the machine only with
inputs from the two neighbours, while Rule 150 also includes the
present state of the site. In Figure 1, an hybrid CA is shown, as
sites do not all use the same rule.

Since the rules of operation are linear, a state transition matrix
can be written for a given such CA, derived from the next state
equations defined by the rules used. For the CA shown in Figure
1 and the linear rules described above, the state transition matrix
is given by

0100
1110
B=lo101
0011

Notice that for any one dimensional linear CA using nearest neigh-
bour rules, this matrix is tridiagonal. It can be shown that, in fact,
the only acceptable structure is such a tridiagonal matrix with unit
super diagonal and sub diagonal, and we denote it as a 90/150
matriz. Moreover, such a matrix is always non-derogatory and the
structure is necessary for the characteristic polynomial to be irre-
ducible (but not sufficient) [11]. The matrix B has a characteristic
polynomial, and, if it is non-derogatory, similarity transformations
can produce its companion matrix C which has the same charac-
teristic polynomial.

The properties of Cellular Automata (CA) have been studied by
Wolfram [15] and later by Pries et al [10]. Some particular classes
of linear CA have been found to have very good randomness prop-
erties, using standard randomness tests. In fact, they are superior
to the more common linear feedback shift registers (LFSRs) which
have been used for pseudo-random pattern generation. LFSRs have
also been used as random pattern generators for input stimuli to a
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Figure 2: Type 2 LFSR

binary circuit under test and as testers for signature analysis (8],
as their random sequencing and inexpensive implementation makes
them suitable for hardware testing.

LFSRs are the original linear finite state machines used in al-
most all testing applications and pseudo-random pattern generation
over GF(2). It is worth giving a brief overview. Figure 2 shows the
structure of an LFSR, given in Type 2 form. The LFSR is made up
of simple memory elements, and Exclusive-Or gates which perform
addition Mod 2, chained together and controlled by a synchronous
clock. The linear finite-state machine, which defines the LFSR, per-
forms polynomial division over GF(2), where the LFSR implements
the divisor, the serial stream of inputs represents the dividend, the
serial output stream gives the quotient, while the last state of the
LFSR describes the remainder polynomial (see [9]).

A set of linear equations can be used to describe the transition
to the next state (see below). For example, the equations for the
LFSR of Figure 2 are:

8'1*' = 82
s;' = 83
83' = 84
sT = s1@s2
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The corresponding matrix for the transformation is:

= O OO
=0 O
OO = O
O = OO

whose characteristic polynomial is A4 + X 4+ 1, which is also repre-
sented in the LFSR construction.

If there is no input stream, then the LFSR behaves as an au-
tonomous linear finite state machine, and the sequences of states
produced can be used as a pseudo-random pattern generator, while
the output sequence can be used to produce group codes. The gen-
eral theory of LFSRs dates back to coding theory and can be found
in [2, 9], or in more general books on discrete mathematics [14].

A.2 The Similarity

The research in [11] was aimed at proving the isomorphism in the
behaviour of a CA and an LFSR, if the two machines are based
on the same irreducible(or primitive) polynomial as characteris-
tic polynomial of their transition matrix. The isomorphism in
behaviour implies that the machines have the same cycle struc-
ture, which is directly determined by the minimum polynomial of
the transition matrix [14). If the characteristic polynomial is irre-
ducible, then it is equal to the minimum polynomial.

In fact, the machines shown in the examples above have the
same behaviour in their cycle structure, as the two matrices B and C
have the same irreducible characteristic polynomial and are similar.
Since a lot was known about LFSRs the interest turned to finding a
linear CA isomorphic to a given LFSR. That is, the problem was of
finding a tridiagonal matrix similar to a given companion matrix.

The first prerequisite, as shown in [11] is that the matrix has an
irreducible characteristic polynomial. If the characteristic polyno-
mial is also primitive, then the cycle structure of the machine has
only two cycles, one with the all zero state and one which chains
together the remaining 2" — 1 states, where n is the number of cells
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in the machine. A list of primitive polynomials over GF(2), from
which one can easily construct a maximal length LFSR, is available,
and the algorithm presented constructs the corresponding one di-
mensional linear CA. While the CA has the same cycle structure as
the LFSR, the sequencing of states shows better randomness when
used as a pseudo-random pattern generator.
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