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Abstract. We consider a generalization of the well-known gossip problem: Let the
information of each point of a set X be conveyed to each point of a set ¥ by k-party
conference calls. These calls are organized step-wisely, such that each point takes part
in at most one call per step. During a call all the k panticipants exchange all the infor-
mation they already know.

We investigate the mutual dependence of the number L of calls and the number T"
of steps of such an information exchange. At first a general lower bound for L- kT
is proved. For the case that X and Y equal the set of all participants, we give lower
bounds for L or T', if T resp. L is as small as possible. Using these results the existence
of information exchanges with minimum L and T is investigated. For k = 2 we prove
that for even n, there is one of this kind iff n < 8.

1. Introduction.

We consider the following version of the well-known telephone or “gossip” prob-
lem: Let a set V' of n persons (points) be given, and suppose that each person of
a subset X knows an item of information which is not known to any of the oth-
ers. We arrange a step-wise exchange of information such that at its end each
person of a subset Y knows all the units of information originally known to one
of the persons of X . Each step consists of some parallel k-party conference calls
(k > 2), every person takes part in at most one call per step. During such a call
the k participants exchange all the information, which they already have. Any
sequence of this kind is called a (X, Y') -complete information flow (IF), and we
are interested in its length L, that is, the number of calls, and its time T, that is,
the number of steps. Already a lot of results have been proved. The reader is re-
ferred to the introduction of [6] and to [10] for a survey on well-known results and
a more extensive list of references. For motivating the present paper we explain
the situation in the “classical” case X =Y = V, k = 2, n > 4. For the sake
of brevity we use “complete” instead of “(V, V')-complete”. Then in [1, 3, 10] it
has been proved that any complete IF contains at least 2n — 4 calls. Even there
are complete IF of this length, but the construction used in the above-mentioned
papers yields one with no less than 2 [log, n] — 2 steps. This is much, because
in [5] it has been shown that the smallest possible time of any complete IF equals
[log, n] (if n even) or [log, =] + 1 (if n odd). But also the complete IF of this
time are “bad” in some sense, since, for example, for even n they need 2 [log, n]
calls, that is, much more than the smallest possible number 2n— 4.
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Let us call a complete IF ideal, if it has the smallest possible number of calls
and of steps. For which n we can find an ideal IF? We will answer this ques-
tion completely for even » at the end of our paper. The other sections contain
generalizations of this problem.

In Section 2 we start with the most general case of arbitrarily chosen k, X,Y.
Here an inequality is shown, which expresses the mutual dependence of L and
T. More precisely we estimate the length of a complete IF with smallest possible
time in Section 3, and the time of a complete IF with smallest possible length in
Section 4. Using these results the existence of ideal IF is investigated in Section
5.

At first we should prove a technical proposition.

Proposition 1. For any positive integers k, v, s (r < 8) and any real a;
(i=r7...,8),

8—-r—1 s—j-1 8
Ek“ a=(k=1)- Y K. (t a,')+Zag.

i=r j=0 isr

Proof: We start from

-1
3k = 3 ko= S~ et D,
f=r 1=r i=r i=r

represent the coefficient in the first sum as a geometric progression and change the
sums:

s—1 s—-1 s—i—1 s=r=1a8—j-1
Yk = Dai= (k-1 Y (Z k’) ai=(k-1) E zl: Ka; .

i=r i=r j=0 i=r

2. Distributing subgraphs.

We use the basic and more general model introduced in detail in [6] and should
briefly recall the notation. Throughout the paper let n and k& be natural numbers
withn > k> 2,andV:={1,2,...,n}. Let H: = (V, E) denote any connected
k-uniform hypergraph on V' with edge-set E, that is, a collection of k-element
subsets of V. To the edges we assign finite sets of natural numbers, ¢ is possible.
The arising numeration ¢ of H is called information flow (IF) iff for any pair of
different adjacent e, e’ € E, p(e) Nyp(e’) = ¢ holds. Furthermore we call the
elements of p(e) numbers of e. A call of p on H is a pair ¢ = (e; 7) withe'€ E,
r € p(e) and the set of all calls with fixed number r is the rth step S,. We will
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also write in this situation that c takes place on e during the rth step and that every
point v € e participates in c or “v € ¢” for the sake of brevity.

Foranyv,w € V,apathe,,e3,... ,en in H iscalled p-monotonic ( v, w) -path
iff v € e1, w € ey, and there are numbers r; € p(e;) withr; < 13 < ... < T
Then information is conveyed from v to w during the consecutive calls (e;; r;),
(e2;72),...,(em:Tm), and we write that w knows v’s information. To include
the case v = w formally, any path of length 0 should be called p-monotonic, t0o.
Let us fix now two nonempty subsets X,Y C V. Iff for any points z € X,
y € Y there is a p-monotonic ( z, y)-path, then p is called (X, Y)-complete, or
completeif X =Y = V.

We measure the quality of an IF with two parameters,

the length L(H,p):= )" .z |o(e)], and

the time T(H, p): = | Ueeg p(e)|.

If there is no danger of ambiguity, then L or T are used instead of L( H, ) or
T(H, ), respectively.

In this section we will investigate the mutual dependence of L and T". Because
we are interested in “best possible” IF between the n points, a call can be carried
out between any group of k points. So throughout the paper we restrict the above-
introduced model to the case that H = HE: = (V, (})) is the complete k-uniform
hypergraph on n points. (Note that not every edge must be used during the IF!)
Of course, results to the appropriate problems for restricted hypergraphs would be
very interesting. Let any (X,Y")-complete IF p on H¥ be fixed arbitrarily. At
first, for an arbitrarily chosen point z € X and fort = 1,2,...,T, let p(x)
denote the number of calls that pass along z’s information during the tth step.
Collecting all these calls fort = 1,2,... ,T we get a numbered subgraph of H,'f
which describes the transmission of the unit of information originally known to
z only to all the other points. The investigation of all those so-called distributing
subgraphs and their connection to the IF will lead to the first results. We start with
a lemma on one distributing subgraph.

Lemmal. Foranyz € X andt=1,2,...,T,

t
> (@) 2 [TV = 1) /(k - D).
i=1
Proof: We prove

t
kt_T[l'*'(k_ I)Zpt(z)] 2 IYI (t= 1121"' vT)

i=1

by showing that this inequality holds for ¢ = T and that the left-hand side is
monotone decreasing in ¢. In each call that conveys z’s information we can find at
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least one participant who knows this item already before that call, that is, at most
k — 1 additional points can be informed about it. Consequently, after ¢ steps, at
mostl1+ (k—1) E§=| pi( z) points know z’s information, where the summand
1 represents z itself. This implies:

T
1+ (k=1)) piz) 2],

i=1

because after the step ¢ = T all the points of Y must know that unit of information,
and

t
Pi(z) 1+ (k=1 Y p(z) (t=1,2,...,T-1),
i=1

because any two calls of the same step do not have common participants, but each
of the p+1 () calls has at least one participant who learned z’s information during
the first ¢ steps. Adding 3., p:(z) to our last inequality, we get

t+1 t
Sz <1+ kY pi2),
i=1 1=1

and finally

t+1
gT-(t+1) [1 +(k-1) Zp&(z‘)]

i=1

t t
< K700 [k DEY 5| = 4714 (k= 1) o],
§=1 i=1
that is, the asserted monotonicity holds. |
Now we will get a lower bound for the number L of calls in terms of our pa-
rameters p;(x) by considering all the distributing subgraphs.

Lemma 2.

T
L2 Y[kt ma)].
t=1 zeX
Proof: First we prove by induction over ¢ that any point z knows at most k*~!
items of information before the tth step (resp. after S;—;). Thecaset = 1 is trivial
because of our basic model. Suppose we proved the statement for t. Obviously, it
remains true if z does not take part in a call of S;. If x participates, then it can learn
additionally all the items known to the k — 1 other participants of the same call.
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By induction hypothesis, each of the k points knows at most k*~! items, hence =
(and all the others also) knows no more than k* items after S; resp. before Si, ;.

Consequently, each call of S; transmits at most & items of information, or
in other words, it belongs to at most k* distributing subgraphs. Therefore, in
3 zex P(x) every call of S, is counted no more than kf times, thatis, " _.x p¢(z)
< k!|S;|. Since obviously L = Y7, |St|, this implies the assertion. ]

A lower bound for L depending on T is given by the minimum of the right-
hand side in the inequality of Lemma 2, where the numbers p;(z) have to fulfill
the restrictions given in Lemma 1. This can be formulated as a problem of integer
programming, but we were not able to solve it exactly in the general case. Thus
we should use certain estimates. Note that logarithms are taken base k throughout
the paper.

Theorem 1. For any nonempty X,Y C V and any (X,Y’) -complete IF ¢ on
HE,
LCHE, @) K70 > L] (v log [Y]] - ——( & — 2 ) 1x] [¥]
n =k k—1\m ’

where m: = [Y|/kN8 ¥ -1,
Proof: Starting from Lemma 2 we get

T T T
L2y [ Y@ 2 Y (k-‘zn(z)) =Y ) (K 'm(z)), (1)
t=1

z€X t=1 zeX z€X t=1
and by Proposition 1,
T-2 ,T-j-1 T
L> Ek"'{(k— 1 Ekf( > p,-(z)) + Ep,-(z)}.
z€X =0 i=1 i=1

Since all the coefficients in the last expression are non-negative, we may continue
the inequality using Lemma 1 forall z € X:

T-2
L 2|X|k‘T{(k—l) E K (k7Y |-1) /(k=1)]+[(JY|-1) /(k—l)]}. (V)

j=0

It is well-known and easy to see that the number of points knowing a fixed unit of
information can increase at most by the factor & per step (see, for example, [8]).
Thus T > ¢:= [log [Y[], because all the points of Y have to know that unit of
information at the end. Consequently, the summation in (2) runs up to ¢ — 2 at
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least. But for j > ¢ — 1, [(k~7~'|Y| — 1)/(k — 1)] = O in that sum. Therefore
(2) becomes

q-2
L> |X|k""'{(lc— DY K[V =D /(k— D]+ (V|- 1)/ (k- 1)1}.

j=0

From this we get our final result by using [z] > z for each summand:

q-2
17 2 XU S0 1= #) + (Y1 = D/ 1)}

j=0

= |X|{%|Y|(q— 1) — (k% = D/Gk—D+[Y|/[(k—1)—1/(k- 1)}
=1 1 11N Gnce ki =
= lel |Y|q 1 IX| |Y|(m k), since k¥~ = |[V'|/m. ]

It might be useful to have another representation of this bound.

Corollary 1.
1
L-k" 2 ZIX|[Y]log [Y] + K- |X| [¥],

where K:= = (1 = 1) — Llog m and0 < K < }.
=1 m & )

Proof: Setting g = log |[Y'|+ (1 —log m) in Theorem 1, we get the first inequality.
It remains to prove the bounds for the coefficient K . Since 1 = [Y|/k¢ ¥l < m <
[Y|/ke®1-1 = k, we have K < g (1 — §) — }log 1= }. On the other hand,
it is a well-known fact that the term (1 + i)“l for z > 0 monotone decreases.
Substituting z = ;17 withy > 1 we get that y1*(-D7" increases in y. Therefore
m™/(m=1) < Ek/(k=1) and by elementary calculations, K < 0. ]
Remarks:

1. In the course of the proof we found (2) by replacing each ZL, pi(z) by
its lower bound given in Lemma 1. Considering the problem as one of
integer programming as mentioned above, we should point out that indeed
equality holds in all the auxiliary conditions (Lemma 1) at the same time,
ifforanyz € Xandt=1,2,...,T, weset

pe(z) = [(BTIY| = /(= D] = [(6TY] - 1)/(k - D] > 0.
2. Reversing the IF i, that is, replacing each number ¢ by T+ 1 — ¢, we get

a (Y, X)-complete IF o~ on H¥, the so-called inverse IF, with the same
number of calls and steps as y has. Therefore Theorem 1 also holds after
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changing X and Y, what would yield a better bound if [X| > [Y]. So
we could explain the non-symmetry of the lower bound given in Theorem
1 by considering this under the assumption |X| < [Y| without loss of
generality.

Indeed Theorem 1 expresses the mutual dependence of L and T'. It is easy to
see that both parameters cannot become “small” at the same time. So one has to
pay with more calls or steps for less steps or calls, respectively. This very general
statement should be made more concrete in the remaining part of our paper.

The most interesting case is to estimate one of our parameters L or T if the
value of the other is supposed to be as small as possible. In the following sections
we should present some results concerning these situations, where we restrict our-
selves to complete IF, that is, X =Y = V. Let us start with

3. Fast complete information flows.

From [8] we know for any complete IF  on H, T > [log n] and this bound
can be achieved if k/n. So throughout this section we consider the case k/n. Let
a complete IF p on H be chosen such that T = [log =], that is, with as few steps
as possible.

Lemma3. a) For t=1,2,...,T, |S| < n/k.
b) Forany veV, pi(v) =1,
o |Si|= |Sr| = n/k.

Proof: a) immediately follows from the fact that by definition every point can
take part in at most one call per step.
b) Forany v € V, we get from Lemma 1 witht = 1, T = [log n]:

p1(v) > [(nk'-M8™ _ 1) /(k - 1)].

Since [logn] — 1 < logn, also n > kM&71-1 anq finally p,(v) >
1 follows. On the other hand, p;(v) < 1 because in the first step, v’s
information can be transmitted in that single call only which v itself takes
partin.

) Consequently, every point of V indeed must take part in one call of the first
step, that is, |S; | = n/k. Finally, we consider the inverse IF ™ defined in
Remark 2 at the end of Section 2. It is complete and contains T = [log n]
steps. Hence, as we just proved, there are n/k calls in its first step. But
the calls of this step correspond to the calls of the last step of p, that is, we
have |S;| = n/k, too. 1

This enables us to improve Theorem 1 here.
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Theorem 2. If k/n, then for any complete p on HY with [log =] steps,

2k—3

_2k 1
Ek—1) F~mns L(H,9) < rflog o],

-;%'n[log n| +

where m: = nfkfenl-1,

Proof: By Lemma 3a, L = 31, |Si| < T-2 = La[log ). To prove the lower
bound we proceed as in Section 2, but let us introduce some more notation for the
purposes of Section 5. Using Lemma 3b in Lemma 1 and Lemma 3c in Lemma 2
we get a “new” optimization problem (OP):

forv=1,...,nand t=2,...,T -1, p(v) > 0, integer;

t T-1 n
, 1 t-T . 4B —t
Z;p.(v)z [k_l(k " k)], 2k+§[k ‘Z;pt(v).l — MIN.

Let us denote the minimum of this function under the auxiliary conditions by
11 (m). We estimate 1, (%) by determining the minimal value 13 ( n) of the smaller

expression
T-1 =

2% + 33 k(v

t=2 v=1
as in the proof of Theorem 1. We get with Proposition 1:

=22+ n/c-T“{(fc--l)%—:4 K/ [—I-(k-f'-lu—k)]+[L (E—k)]}
k 22 15 k—1 \k '

and as in the proof of Theorem 1:

n “T—Vpm _ay _ n 2 -
12(n)22k+712k (T-3) k(k—l)+k—lk
m 2k-3
= ‘anl-lOg'ﬂ] + m(k'— m)n=: 13(11),
because T = [log ] and kT = £, 1

Remark 3: Obviously,
0<i(n) — () <T -2 and

T4
0 < Iz(n) — 13(n) < nk™™*! ((k— DY K+ 1) = nk~2,
j=0

that is,
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13(n) < 1i(n) < 13(n) + n/k? + [logn] — 2.

Thus, even the exact solution of (OP) would improve the lower order terms of the
lower bound in Theorem 2 only.

By several authors ([7, 4]) it has been shown that any complete IF on HY has
no less than 2 [(n — k) /(k — 1)] calls. Because this is a linear term in #n, our
Theorem already shows that IF with [log n] steps demand essentially more calls,
the order of magnitude is n[log ] in this case.

If nitself is a power of k, then m = k and from the above theorem itimmediately
follows L = £[log n]. So, in some sense, our inequalities are even strong.

The exact determination of the number of calls is also possible in some more
cases.

Theorem 3. If k/nandn > kP8 — (k — 1). kI8 4721 then any complete
IFp on HY with [log n] steps contains exactly :[log n) calls.

Proof: We prove |S;| = n/k fort = 1,...,|T/2]. Then by considering the
inverse IF ™ the same also holds for the remaining steps, and altogether L =
ST 18 = RT as asserted.

Let us assume that in the step ¢, where t < |T°/2], the point v € V does not
take part in any call. We already mentioned that at most k*~! points know v’s item
of information before S;. During S; at most (k — 1)(k*~! — 1) additional points
can learn it because v itself does not work. Hence, after S; at most k* — (k — 1)
points know that item. In the rest of the IF this number can increase at most by
the factor k per step, that is, at the end at most

KR —(k—1)) =kT — (k= DET < kT — (k- DK™ < 5
points will know v’s initial item of information. Since this contradicts the com-
pleteness of p, each point must take part in a call of S, that is, |S;] = n/k. 1

If n lies at the beginning of the interval (kM8 ®-1; kM ], then in Theorem

2 a great gap remains. So the exact determination of the minimal value for the
number of calls is still an open problem for these n.

4. Short complete information flows.
Let us consider now a complete IF p on H¥ with
L={ [=£]+ 3] if n< k2
2[a=k ifn> k2.
From [7] and [4] we know that this is the smallest possible length for any complete
IF. One can easily check that the inequality of Theorem 1 is fulfilled by L =

[(n—k)/(k—1)] + [n/k] and T = [log n] if n < k2. Hence we cannot get a
better estimate than the general lower bound for the number of steps in this case.
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Theorem 4. Ifn > k2, then for any complete IF p on HY with?2 F=y '| calls,
T(H,p) > logn+ loglog n— log -]

Proof: For |X| = [Y'| = n we get from Theorem 1:
rol2 1,
Lk" > T [log n] > " logn

andT >2logn+loglogn—1—log L. ButL <2 (Ex+1) =255 <22,
that is, logL<logn+log;:— |

However, we cannot give any construction achieving this bound. So we should
present a short complete IF with 2 [log ] steps on the complete k-uniform hy-
pergraph on n points.

Lemma 4. If n= 1+ r(k — 1) for some non-negative integer r, then there is
an IF x,, withr calls and [log n| steps, such that at its end each point knows the
information of 1.

Proof: To each point v we join the uniquely determined vectory = (vy,v2,... ,vr)
withy; € {0,1,... ,k—~1}andv—1= :’.';1 v;k*~1. Obviously 1 = (0,0,...,0).
Now we define x,, with the help of this vector-representation: The first step con-
sists of one call between the points (7,0,0,...,0) forj =0,1,... ,k—1. After
this all these points know 1°s information.

For t=2,...,T — 1, during the ¢th step it is carried out a call on every edge
of the type

{(ilrin 1'?— !]l ). 0) ] = k"’ l}s

where (41,12, ... ,4:—1) is any (¢ — 1)-tuple with elements of {0,1,... ,k—1}.
Since k* < kT~! < nindeed all of these vectors correspond to points of V. So
such a step contains k*~! calls, and after them each of the &* points w € V with
W1 = W = ... = wp = 0 knows the information originally known to 1.
Wehaven—kT~! = r(k—1) = (kT-1=1) = (k—1) (r—(1+k+...+kT~2))
=:(k — 1)7'. Hence the remaining n— kT~! points can be shared into r' disjoint
groups Vi, Va,...,Vy of exactly k — 1 elements. Thenfori=1,2,...,7,inthe
last step Sr of X acall takes place on the edge V; U {1}. Since 0 < n— IcT'l <
kT — kT-1 = (k— 1)kT-!, we have ' < kT-!, that is, the point { < r' < kT-!
already after the first T — 1 steps knew 1’s information. Therefore after Sp all n
points know the information of 1,and L = ¥07" k*~! + +' = r by the definition

of r'. |

Figure 1 shows the example £ = 3,n= 15= 1+ 7-2. We denoted each point
v€E€Vbyyandthecallsofthel.or2.or 3.stepby--- .- or --- or 3
respectively.
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In the following proof we also use the inverse IF x, which ensures the trans-
mission of the information of all points of V to 1.

Theorem 5. If n= k% + v(k — 1) for some non-negative integerr, then there is
a complete IF with 2 [2=%] calls and no more than 2 [log 7] steps.

Proof: Letber = smod k? (0 < s < k?), 7= |r/k?| fori=1,... ,k* — s
and ry:= [r/k?] fori = k — s+ 1,... k%, Then Y5, r; = r, and we may
share the n — k% = r(k — 1) points k2 + 1,... ,n € V in exactly k? disjoint
subsets i,... , Viz with |V;| = r;(k — 1). Now on each subset V; U {1} we carry
out Xgr. 15 such that i learns the information of ail points of V;. By Lemma 9 this

requires Zf; r; = rcalls and [log( 1+ |Vi])] < [log(1+ [r/k*](k—1))] steps.

After this there take place parallel calls on the edges {(1 — 1)-k + j: j =
1,2,...,k} fori = 1,2,...,k in one step, and in the next step parallel calls
on the edges {(i — 1)-k+ j: i=1,2,... ,k} forj = 1,2,... k. Aliogether
these are 2 k calls in 2 steps, and after them each point 1,2, ... ,k? knows all
information.

Finally we carry out x|y;+1 on V; U {1}, such that all information is transmitted
from i to the pointsof V- (i = 1,... , k?). ThisIFhas 2 k+2 r callsand 2 [log ( 1+
[r/k*](k —1))] + 2 steps. But

2[2:’:] =2[’°2"°k"_'(lk"l)] =2[k+r]=2k+2r and
ng[log (1+ klz(k-l)+(k-1))] +2

gz[log (k+%(k—l))] +2=2|’log%'|+2=2|'logn'|. 1
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In the case k£ = 2 one can use a complete IF on 8 points with 3 steps and 12
calls (see Section 5, Figure 2) instead of the above-used mid-part of the IF, Then
evenT < 2[log, n] — 3 follows. It remains a gap to the lower bound proved in
Theorem 4. We conjecture that the exact minimum number of steps is nearer to
this constructed value.

S. Ideal information flows.

Let us turn now to our original question. A complete IF » on the complete k-
uniform hypergraph H; % on npomts is called ideal, if there is no complete IF ¢’
on H¥ wnh L(H ,(p) < L(HY,p) and no complete IF " with T(H¥, o")
< T(HE, p), that is, an ideal IF has minimum length and minimum time among
all complete IF. Again we restrict ourselves to the case k/n, where we know that
any ideal IF on H} has exactly [log n] steps and [3=£] + [2] (if » < k?) or
2[2=k) (ifn > kz)calls

Theorem 6.
a) If n< k?* and k/n, then there is an ideal IF on HE.

b) Ifk = 2, then there is an ideal IF on the complete graph K., for every
even n< 23 =8,

Proof:

a) The statement is obvious for n = k, because a complete exchange of in-
formation can be realized with one call. Let be k < n= pk. We consider
the IF defined in [8]. It consists of the steps

¢
St={<{3+]l; +1: j=0,1,.. k—l};t):3=0,k,2k,...,(p—l)k}

fort = 1,2,...,[logn], where the numbers of the points have to be
computed modulo » In the mentioned paper the completeness of this IF
has been proved. Furthermore we have T" = [logn] = 2,and L = 2p,
because in every step exactly p calls take place. But since p < k we have
—1<(p-Dgr =+ 2 (p-1) =(p-1) + &} < p, thatis,
f(p— Dgirl =pandL =2p= [(p- D] +p= [ 1 +[%1. Hence
the above defined IF indeed turns out to be ideal.
b) For the remaining cases n= 6 and n= 8 we give an example for an ideal
IF in Figure 2. |

An immediate consequence of Theorem 1 is that ideal IF cannot exist for arbi-
trarily large n. More precisely we get the following results.

Lemma 5. Supposc n > k? and k/n If there is some ideal IF on HY, then
n< B kog w11 where B = m
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3
n=6 n=S§
L=2n-4=8 L=2n-4=12
T =[logyn] =3 T=[logyn]=3

Figure 2
Proof: On the one hand we have
n-k k-2 2n—4
L= 2[k—1]<2< -1+k-1)“ k=1

On the other hand we may apply Theorem 2. Using T = [log ] and m = n/kT!
this yields:

2k-3 2k-3
-r-1,2 _ -T-1, 2.
L>Tk n+k(k—l)n k =1
Altogether this means
o1 T(k=1) — (2k—3) 2k-3 2 4
T-1 ..2 —_—— ——
k k-1 YRR D S 1T T
and
i 3)?; D*k2 _3nrak<o, 3)
and with (T — 3)(k — 1) + k = k- }: g3=rn® — 3n < 0. This finally implies
n< B-kT-1, ]

Theorem 7. Letbe k> 3. Then there does not exist any ideal IF for HY, ifk/n
and:n> (1+ 525) k* or 3+ 725) K <n< k* or3k? <n< K.

Proof: We prove that for these values of » the necessary condition of Lemma 5 is
not fulfilled.
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Ifn> k°,then [log %] > 6 and B < Wg 1.

But log n > [log n] — 1, thatis, n > kfg -1 2B fetos -1

Ifk* <n< k®, then [logn] =5 and B= W 3,‘2=1+5-,372-.
Ifk* <n< k* then [log n] = 4 and B= =t = 7i57 = 7 + 7oz
If k2 < n <k, then [log n] = 3 and B= 3.

So in all these cases n > Bks -1, [ |
Without any gap we therefore proved the non-existence of ideal IF for n >
K+ 83,

In the last part of our paper we investigate the question for the “classical” case
k = 2. For a well-ordered arrangement we share the proof into some propositions.
We should remark that an ideal IF has 2n — 4 calls and T' = [log, n] steps.
Proposition 2. Forevenn > 14, n+ 18, there is no ideal IF for K, = HZ.

Proof: Forn > 2% = 64, T > 7, and in Lemma 5: B < 1. Therefore, n >
2T > B- kT-!, and the assertion follows from Lemma 5. If there is some ideal IF
on K,, then inequality (3) of the proof of Lemma 5 holds. Here it reads as
T -
3T
We are interested in its solution

3 -1 Tr-1\ _.
IDRERIRROY o oo

12 if T=4
[N]= { 20 if T=5
35 if T=6,
that is, our assertion also holds for 14 < n< 16, 22 <1< 32,36 < n< 64.
In the remaining cases the estimate of Theorem 2 is not strong enough. Therefore

we compute the exact minimum 13 (n) , which has been introduced in the proof of
Theorem 2. One gets

T-4
L>1z(n) =n+ n.z-m{ S22 ta-2]+ |2 - 2]}

j=0

W —3n+8<0.

We have

2 T-4
=t L, " i[_"_
—2T+2+2T-1;202 2).+2].

Itis 12(34) = 68 > 64 =2-34 — 4 and 1,(20) = 36 + ,’,— >36=2-20 -4,
that is, the proof is completed for n= 34 and n= 20. |

For the next open value n = 18, even the computation of 1, (n) does not siffice.
But an estimate of 1) (n) yields
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Proposition 3. There is no ideal IF on K.

Proof: For any complete IF on K3 with T = [log, 18] = 5 we have in (OP):
p2(v) 2 1,p2(v) +p3(v) > 3,p2(v) + p3(v) + ps(v) > 7 forv=1,...,18.
For t = 2,3,4 let us consider the sums

18
St = EP:(")
v=1
and formulate a new problem (OP’) in these new variables:
s > 18 s32>54 —s; 84 > 126 — 38y — 383
1
18 + [ ] [8 33] [Tg&a] =! 15(s2,83,54) = MIN.

In the following we solve (OP’). For this we need the fact that for arbitrary real u
and v,

@

|'u—l'|+[v+ ] [u]+[v+%—l]<[u]+[v] )

The inequalities of (OP') have solutions, for instance the triple (18,36,72). So
among all those, which minimize 11(32 83,54) we may select one triple with
minimal first coordinate, say (s, s, sj). Assume 32 > 22. Theneven (s —
4,85 + 4, 5)) fulfills (4), but by (5), 11(32 —4,3y +4,8)) < 11(sh,s5,8,).
This contradicts to the choice of (s}, s, s}), that s, sj < 21.

Now among all solutions of (OP') with minimal first coordinate we select one
with minimal second coordinatc letit be denoted by (s}, s§, s ). Then the analo-
gous way as above leads to s3 < 61 — s5. Finally from (4) it immediately follows
that(sz,s3, 126 — &) — sf ) is solution of (4) and 1,(s}, sy, s3) > 1:1(sh,s],
126 — s — &).

Consequently, among all triples which fulfill (4) and minimize 1, (s;, s3, s4),
wefindone with 18 < 85 < 21, 54 —s3 < 53 < 61—35; andsg = 126 —s5 —s3.
But for this we have:

[4132] >5; 83 >33, thatis, [%33] >5 and
84 = 126 — (32 + 53) > 65, thatis, [_34] > 5.

Therefore 1y(s2,s3,34) > 18+ 3-5 = 33. Since each solution of our original
problem (OP) generates an according solution of (OP’), the minimal value 1, (18)
is no smaller than the minimum of 1,(s3, s3,s4), hence 1;(18) > 33 > 32 =
2.18 —4. |

The investigation of the remaining cases n = 10 and n = 12 is somewhat
harder. For both we would get 1, (n) = 2n— 4, but indeed ideal IF do not exist,
as the following propositions show.
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Proposition 4. Any complete IF on K, with 4 steps contains at least 21 calls.

Proof: From Lemma 3 c) we have |S1| = |Ss4] = 6. Without loss of generality
we may assume |Sz| < |Ss|, because otherwise the inverse IF can be considered.
The inequalities of (OP) read as p,(v) > 1,p2(v) + p3(v) > 4 forallv € V.
On the other hand, p, (v) < 2 because after the first step at most 2 points know
v’s information. Let us define

Wi={veV: pp(v) =i} for i=1,2.

As we already showed in the course of the proof of Lemma 2, for each step ¢,

Y oi(v) < 248 ©)

vev

Consequently, |S | > +- .2, p2(v) > 3.

Case 1: |S;| = 3. We have /2, p2 (v) < 4-3 = 12 by (6), that is, pp (v) = 1
forallv € V. Forany v € Wi, pa(v) > 4 — p2(v) = 3. On the other hand, v’s
information is known to at most 2 other points before the third step because it has
been transmitted in one call of the first resp. second step. Consequently, v itself
takes part in a call of S3 (and so do both the other points which know that unit of
information). Since W; = V, all points participate in calls of S3, thatis |S3| = 6
andL=6+3+6+6=21.

Case 2: |Sz| = 4. Then analogously

12
16=22.4 >3 " py(v) = [Wi|+(12—|W1])- 2 = 24 — W3 |, that is, |[#1] > 8.

v=1

Case 2.1: S or S, contains a call between a point v € W; and a point w € W;.
Then w knows v’s information after the second step, and as we have shown in Case
1, all the points of W; and w have to take part in calls of S3. Hence |S3] > 5,
because these are at least 9 points.

Case 2.2: There is no such call. Then the information of points of W> cannot be
conveyed by points of W, in S3. But forevery w € Wa, ;3(w) >4 —pp(w) =
2, that is, at least one point of W, has to take part in a call of S5 besides the 8 points
of W1. So here |S3]| > 5, too. Thus, inour secondcase L > 6+ 4+ 5+ 6 = 21.

Case3: |S5]>5.Thenby|S:|>|S:|>5, L>6+5+5+6=22. |

Figure 3 shows a complete IF with 4 steps and 21 calls on a graph on 12 points.
Hence the bound from Proposition 5 indeed can be achieved.
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Figure 3

Proposition 5. Any complete IF on K19 with 4 steps contains at least 17 calls.

Proof: We already know that it has to contain at least 2.10 — 4 = 16 calls.
Assume, there is a complete IF on Ky with exactly 16 calls. By Lemma 3 ¢) we
have |Si| = |Ss4| = 5, and again we may assume |S2] < |S3| without loss of
generality. Then 16 = 10+ |Sz2| + |S3] > 10+ 2- S|, that is, |S2| < 3. On the
other hand we get from (OP): p, (v) > 1 and by Lemma 6: |Sz| > 2-2-10 > 2.
Hence |S2| = |S3| = 3. We continue the proof with the help of the minimal order
of the calls introduced in [2]. The definition can be found there, all the properties
used in our proof are immediate consequences of this definition. Let g or < denote
the order or its covering relation, respectively. Because all points take part in calls
of S, each call of S, has exactly 2 predecessors in S; . Conversely, by p2(v) > 1,
each call of Sy has at least one successor in S;. The analogous statements hold
for S4 (instead of S,) and S5 (instead of S;). Thus the minimal order contains
the relations shown in Figure 4, of course, up to isomorphisms.

a Y d e f Sy
L]
v \/ \\/ w
P g W S3
c g h S
W \ /\ W
o/ b :t/\e ! S

Figure 4
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In the following we use the notations given in Figure 4, where

Wi = {a'b:c} W,y = {d,e,f,g,h}
Wl’ = {a’,b’,c’} Wé = {dlﬁe'vf';gln h’}~

Furthermore we use the two following basic properties of the minimal order:

(I) Every call of S is smaller than every call of Ss.

(ID) Every call has at most 2 immediate predecessors and at most 2 immediate
SUCCessors.

Because W, does not contain any greatest element, d’ and g have to cover at least
2 elements of W,, that d, e, f a d'. But d' and g’ cover at most 3 elements, that
is, at most one element of ;. Because a, b a d', this has to be ¢. Analogously,
cah' or ¢« f'. Therefore c cannot have any successor in W] . Because, except of
¢, a has no more than one immediate successor, but a ¢ o' and a g &', we found
a < ¢ and analogously b « ¢/. Thus ¢ has no predecessors in ;. Consequently
a’ has to cover exactly one element of W, such that d, e, f g o’. Since W, does
not contain any greatest element, this is impossible. Thus we got a contradiction
to (I) or, equivalently, to the completeness of our IF, and L > 16 is proved. |

Figure § shows a complete IF with 4 steps and 17 calls on a graph on 10 points.
Hence the bound from Proposition 6 can be achieved.

2 3
a1 2 |4
1 : 3
1
4 32
Figure 5
So we altogether proved

Theorem 8. Foreven n, there is an ideal IFon K, ifand only if n < 8.

This result means that the demand for minimum length and time is too strong.
To find “good” IF with respect to both parameters, one should introduce and min-
imize mixed parameters. The function F = L- kT is one possibility, for which our
Theorem 1 gives a first lower bound.
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