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Abstract

The new concept of M-structures is used to unify and generalize a
number of concepts in Hadamard matrices including Williamson matri-
ces, Goethals-Seidel matrices, Wallis-Whiteman matrices and general-
ized quaternion matrices. The concept is used to find many new sym-
metric Williamson-type matrices, both in sets of four and eight, and
many new Hadamard matrices. We give as corollaries “that the exis-
tence of Hadamard matrices of orders 4g and 4Ah implies the existence
of an Hadamard matrix of order 8gh” and “the existence of Williamson
type matrices of orders u and v implies the existence of Williamson type
matrices of order 2uv”. This work generalizes and utilizes the work of
Masahiko Miyamoto and Mieko Yamada.

1 Definitions and Introduction

An orthogonal design of order n and type (si,...,sy), 8 positive integers, is an
n x n matrix X, with entries {0, +zy,...,%z,} (the z; commuting indetermi-

nates) satisfying
u
XxT = (ngzf) I,. (1)

i=1
We write this as OD(n; sy, 52, ..., 5u).

Alternatively, each X has s; entries of the type +z; and the distinct rows
are orthogonal under the Euclidean inner product. We may view X as a matrix
with entries in the field of fractions of the integral domain Z[z,, ..., zy), (Z the
rational integers), and then if we let f = (Z¥.,s;z?), X is an invertible matrix
with inverse }X T, Thus XXT = fI,, and so our alternative definition that the
row vectors are orthogonal applies equally well to the column vectors of X.
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An orthogonal design with no zeros and in which each of the entries is re-
placed by +1 or —1 is called an Hadamard matriz. Alternatively an Hadamard
matrix of order n, H has entries +1 or —1 and the distinct row vectors orthog-

onal so
HHT =nI,.

Orthogonal designs, Hadamard matrices and other definitions not given here
are extensively described in Geramita and Seberry (8] and Jennifer Seberry
Wallis [22].

A special orthogonal design, the OD(4t;1,t,1,1), is especially useful in the
construction of Hadamard matrices. An OD(12;3,3,3,3) was first found by
Baumert and M. Hall Jr [4] and an OD(20;5,5,5,5) by Welch (see below).
OD(4t;t,t,t,t) are sometimes called Baumert-Hall arrays.

X and Y are said to be amicable mairices if

XyT=vxT. 2)

Williamson matrices of order w are four circulant symmetric matrices, A,
B, C, D which have entries +1 or —1 and which satisfy

AAT + BBT + CCT + DDT = 4uwl,. (3)

(Symmetric) Williamson-type matrices of order w are four pairwise amicable
(that is pairwise satisfy (2)) (symmetric) matrices, A, B, C, D which have
entries +1 or —1 and which satisfy

AAT + BBT + CCT + DDT = 4wl,. (4)
(Symmetric) 8 Williamson-type matrices of order w are eight pairwise ami-
cable (that is pairwise satisfy (2)) (symmetric) matrices, A;, i =1,...,8 which
have entries +1 or ~1 and which satisfy
8
Y- AiAT = 8uwl,. (5)
=1

The appropriate theorem for the construction of Hadamard matrices (it is
implied by Williamson, Baumert-Hall, Welch, Cooper-J. Wallis, Turyn) is:

Theorem 1 Suppose there exists an OD(4;t,t,t,t) and four suitable matrices
A, B, C, D of order w which are pairwise amicable, have entries +1 or —1, and

which satisfy
AAT + BBT + CCT + DDT = quwl,.

Then there is an Hadamard matrix of order 4wt.
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Suitable matrices of order w for an OD(n; sy, 52, .. ., Sy) are u pairwise ami-
cable (that is pairwise satisfy (2)) matrices, A;, i = 1,...,u which have entries
+1 or -1 and which satisfy

i ;i A AT = (Es)wl,,. (6)

f=1
They are used in the following theorem.

Theorem 2 (Geramita-Seberry) Suppose there exists an OD(Zsi;81,...,84)
and u suitable matrices of order m. Then there is an Hadamard matrix of order
(Zu;)m.

If some of the suitable matrices have entries 0, +1, —1, then weighing ma-
trices rather than Hadamard matrices could have been constructed.

A set of 4 T-matrices, T;, i = 1,...,4 of order t are four (4) circulant or
type 1 matrices which have entries 0, 4+1 or —1 and which satisfy

(i) T;+T; =0,i#j, (»the Hadamard product)

(i) iy T; is a (1, ~1) matrix, )
(iif) 2?:1 TIT =1L,
(iv) t =t} +t2 +¢3 +t where t; is the row(column) sum of T.

T-matrices are known (see Cohen, Rubie, Koukouvinos, Kounias, Seberry,
Yamada [7] for a recent survey) for many orders including:
1...,70,72,74,...,78, 80, ..., 82, 84, ...,88,90,...,96, 98, ..., 102, 104,
-.., 106, 108, 110, ..., 112, 114, ..., 126, 128, ..., 130, 132, 136, 138, 140, ...,
148, 150, 152, ..., 156, 158, ..., 162, 164, ..., 166, 168, ...; 172, 174, ..., 178,
180, 182, 184, ..., 190, 192, 194, ..., 196, 198, 200, ..., 210, ...

The following result, in a slightly different form, was also discovered by
R.J. Turyn.

Theorem 3 (Cooper-J. Wallis) Suppose there exist T-matrices ( T-sequences)
Xi,i=1,...,4 of order n. Let a, b, ¢, d be commuting variables. Then

A=aX;+bX24cX3+dX,

B=-bX)+aXs+dX;-cX4
=—-cX; - dX, +aX3;+ bX4

D=-dX, +cX; - bX3+aX,

can be used in the Goethal-Seidel (or J. Wallis-Whiteman) array to obtain an
OD(4n;n,n,n,n).
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Example: Let

100 010 0 01
Xi=[010], Xo={0 0 1|, Xg={10 0|, X.=0.
001 1 00 |01 0
Then X, X2, X3, X4, are T-matrices of order 3, and the 0D(12;3,3,3,3) is:

a b ¢|-b a d]-c -d al-d ¢ -b

c a bla d -b|-d a -] ¢ -b -d

b ¢ ald b ala - -d|-b -d ¢

b -a dla b c¢|]d b ¢ ¢ -a d

-a -d bl c a b|l-b ¢ -dl-a d ¢

-d b alb ¢ alec -d b|ld ¢ -a

c d -al]ld b c|]a b ¢|-b d a

d -a ¢|{b ¢ d| ¢ a b|ld a -b

-a ¢ d|-c d b|lb ¢ ala b d

d < bl a -d|b -d -a] a b ¢

< b d|a d «<|-d -a blec¢c a b

b d «|-d ¢ al-a b d|b ¢ a

We will not give the proof here which can be found in J. Wallis [22, p. 360] but
will just quote the results given there. Cyclotomy may be used in constructing
these arrays including the orders ¢t = 13, 19, 25, 31, 37, 41, 61.

Such structures are not limited to constructing OD(4t;t,1,¢,t). For example
it was shown in Geramita and Seberry [8] that the following matrices

a b ¢ a =b c
A= ¢ b|, B= c a -b|,
b a b ¢ a

can be used as follows'to give an OD(12; 4,4, 4)

o K
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a b ¢l a b ¢jla b c|l-a b ¢
c a bl-b ¢ alb - a c -a
b ¢ alec¢ a -b|-¢c a b]c -a b
-a b |l a b e¢f[-a ¢ b|]-a ¢ -b
b ¢ -al ¢ a ble¢c b -ajc -b -a
- -a b|b ¢ alb -a ¢|-b -a ¢
-a -b ¢|]a -« -b|la b c¢|] a ¢ -b
b ¢ -al-c b alc a b|] ¢ -b a
¢ -a -b|-b a <|b ¢ a|l-b a ¢
a b c|/]a - bfj-a «« b|] a b ¢
b ¢ alJ-« b al-c b -al] c¢c a b
< a -b|lb a |b -a <|]b ¢ a

We now introduce some new terminology to unify some previous ideas.

2 M-structures

An orthogonal matrix of order 4¢ can be divided into sixteen (16) ¢ x ¢ blocks
M;;. This partitioned matrix is said to be an M-structure. If the orthogonal
matrix can be partitioned into sixty-four (64) s x s blocks M;; it will be called
a 64 block M-structure.

An Hadamard matrix made from (symmetric) Williamson matrices W, W,
W3, Wy is an M-structure with

Wi =My = Mz = M3z = My,
W2 = My = —Ma = M3g = — My,
W3 =M3=—-M3 = —-Mzg = My;, and
Wi = My = —-Mgy = M3 = -~ Ms,.

An Hadamard matrix made from four (4) circulant (or type 1) matrices A,, As,
As, A4 of order n, where R is the matrix which makes all the 4; R back-circulant
(or type 2), is an M-structure with

Ay = My = Moz = Maz = My,
Ag = M12R = —MnR = RM:;’; = —RM,g;,
A3 = M3R = —~M3R = —RMJ, = RMJ,, .and
A4 = M“R = —-M.uR = RM-}; = —'RMg;

In this paper we will mostly not be concerned with the structure of the M;;
but two interesting cases should first be mentioned.
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Welch’s OD(20;5,5,5,5) composed of block circulant matrices is:

.-DB-C-C-B|C A-D-D-A|-B-AC-C-A|A-B-DD -B
-B.-DB-C-C|-AC A-D-D|-A-B-AC-C|-BA-BDD
.C-B-DB-C|-D-AC A-D|-C-A-B-AC|D-BA-B-D ;
C-C-B-DB|-D-D-ACA|C-C-A-B-A|-DD-BA -B |
B-C-C-B-D|A-D-D-AC|-AC-C-A-B|-B-DD-B A ‘
CADDA|DBCCB|ABDDB|B-ACC -A
AA-CADD|B-D-B-C-C|B-AB-DD|-A-B-A-C C
D-A-CAD|CB-D-B-C/|DB-AB-D|C-A-B-A-C
DD-A-CA|-C-CB-D-B|-DDB-AB|-CC-A-B-A |
ADD-AC|-B-C-CB-D|B-DD B-A|-A-CC-A-B !
B-A-CC-A|lABDDB|D-BCCB|-CA-D-D-A T
AAB-A-CC|BAB-DD|B-D-BC C|-A-CA-D-D
C-AB-AC|DBAB-D|CB-D-BC|-D-A-CA -D
.CC-AB-A|-DDBAB|CCB-D-B|-D-D-A-C A
AA-CC-AB|B.DDBA|-BCCB-D|A-D-D-A-C
ABDD-B|B-ACC-A|[CADD-A|-DBCZC -B
.B-A-B-DD|(-AB-ACC|-ACADDI|-B-DBC C
D-B-A-B-D|-C-AB-AC|D-ACAD|C-B-DB C
-DD-B-A-B|C-C-AB-A|DD-ACA|CC-B-DB
-B-DD-B-A|-AC-C-AB|ADD-AC|BCC-B-D

Each M;; in its M-structure is circulant. In fact it can be constructed using
sixteen (16) circulant matrices with first rows using:

My @ 1 1 -1 -1 -1 Mo : 1 -1 1 1 1;
Ms : -1 1 1 -1 1 My : -1 -1 1 -1 -1

My : -1 -1 -1 -1 1 My @ 1 -1 -1 -1 1 1
Mys @ 1 1 1 -1 1 My : -1 1 -1 1 1 ‘
My @ 1 1 -1 1 1 Mg : -1 1 1 -1 1

My 1 -1 1 1 1 Ma, : -1 -1 1 1 1;

My @ 1 -1 1 1 -1 Mg : 1 1 1 -1 1

Mg : 1 -1 -1 -1 1

Mg 1 1 1 1 -1 i
K. Yamamoto’s [38] restructuring of Ono and Sawade’s 0D(36;9,9,9,9) [13]

composed of blocks of type 1 (or block circulant) matrices. Each M;; in its
M-structure is type 1. In fact it can be constructed using sixteen (16) circulant
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matrices with first rows:

['a a a 1 00
A=|a¢ a a |, I=|0 1 0],
[ a a a 0 01
0 1 =17 0 ¢ d 0 ¢ —d
B=1] -1 0 1}, C=|d 0 ¢|, D= -d 0 c |,
1 -1 0] ¢c d 0 ¢c -d 0

viz
My = A bI+C —bI-CT
My = bI+aBT bI4+DT p1-DT
M13 = el + GBT -'bI+ C bI+ DT
M14= dI+ﬂBT b I-D -bI+CT

My = —bl+aB -bI+D —bI-DT
My = A b -C —bI+CT
M23 = —dI + GBT bI + D —bI - CT
Myy= cI+aB bI+C —bI+ DT
M3yy= —cIl4+aB —bI-D bI-CT

Ms; = dI+aB bI+C =bI-DT
Msys = A —bI+D bI-DT

Mss= =bI+aBT =bI+C =bI-CT
My= -—dI+eB b -C —bI+DT
Myp= —cI+aBT bI-D —bI+CT
My= bl +aB bI+C  bI-CT

My = A ~8I-D bI+DT

When written in full the Ono-Sawade-Yamamoto OD(36;9,9,9,9) is as on
the following page.

The following theorem shows the power of M-structures comprising wholly
circulant or type 1 blocks. The original version with circulant matrices was due
to Turyn.
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12001

a aabcd-b-d<|b.aabcdbdoc<c]c-aabcdbd-dcl|]d-aabcd-bdec
aaadboc<cbd|ab.a.dbec-cbdlac-ad-bccb-dlad-.adb-wcec-bd
a aacdbdc<cbl|-aabc-dbd-«<bfjaaccd-b-dcbl-aad-cdbdecs-b
bd-caaabcd|[bdo<b-aaboc-dlb-dcoc-aa-bcdi{bdocd-2aab.cd
<-b-daaadbc|fecbdab-a-dbocfjcb-dac-addbcl|lc-bdad--.adbd-c
-d-c-baaacdb|d-<b-aabc-dbl|]dcecbb-aaccdbldc-b-aad-.wcdbd
b cd-bd«aaa|lbc-dbd<b-aal]-bcdbdcec-a2a|bocdbdocd-:-aa
d bc-c-b-daaa|-dbec<cbdab-al]dbccb-dac-a|db.cc-bdad-a
c db.d-«c-baaalcdbd-oc<cb-aabdblcd-b-dcb-.aaclc<cdbddec-b-.aad
-ba.abec-dbd-c|[aaaboc-dbdc|d-aabgc-d-b-d-c|c a-abecdb-de
-a-bad-bcc-bd|a aa-db-cc-bdja-d-a-dbec-c-b-df-ac adbecec-b-d
a-abc-d-bd-c-b|la aa-cdbdoc-bl-aa-dc-db--d-c-bla.accdbdddc-b
bdc-ba-abc-d|-bdcaaab-wc-d|b-d-<c-d-aabec-d|bdcca-abecd
«<-bd-a-ba-d-bcl|lc-bdaaa-dbc|c-b-da-d-a-dbcl|lc-b-dacadbdec
d c-ba-a-bc-d-bfdc-baaa-c-dbljd-<c-b-aa-dc-dbljdc-ba-accddb
bc-d-bd-c-ba-a|bc-d-bdcaaalbc-d-b-d-c-d-aalbcdbdcoca-a
d-bc-c-bd-.a-bajdb-cc-bdaaaf{dbc-c-b-da-d-al]dbdbecec-b-d-aca
¢c d-bd-c-ba-.a-blcdbdoc-baaafc-db-d-o<c-b-aa-dicdb--dec-ba-.ac
«ca-a-b-cdb-d-<c|da-.2abcd-bd-c|la a a-bc-dbd<c|b-aa-bcd-b-d-c
-a-cad--bc-cb-dj-ad adbdbcc-bd|aaa-d-bc-cbdja-b-addbec--b-d
a -a-c-«d-b-d-cbja-adcdbd-«-b|la aac-d-bd-.bl-aa-bcd-b-d--<-b
bdw<c-«<ca-abocd|]bd-<cda-abcd{bd-.caaa-dbc-d|b-d-<c-b-aa-becd
<b-d-acad-b<c|-cbd-adadbeclebdaaas-d-bcl|c-b-da-b-ad-be
d-cb a-ac-cd-bld<-ba-.adcdb|d-<<baaac-d-b|fd-c-b.aa-becd-b
bcdbdw<c-<ca-albcdbd-ocda-a|bc-dbd-<aaal|bcdbeadwoc-b-aa
d bc<cb-da-<cal|dbc-cbd-adafld-bc-cbdaaal|ddbecew<c-bdda-b-a
.cd-bd-<cb a-ac|lcdbd-c-ba-ad|c-d-bd-cbaaalcd-b-d-w-b-a2aa-b
da-ab-.cd-bdcl|c-aab-cdb-d-<|ba-.abecdb-d-<|a aa-b-cdd-dec
-a-da-db-.ccb-djac-adbc-c-b-d|-abadbec<b-d|aaaddbw<cecb-d
a ad-<c-db-dec-bljaa-c-cdbdb-dc-b|fa-abecdbb-do<cblaasa-cd-bdcb
bdc-da-abwcd|bde<c-c-aab-cd|{b-d-<cba-.abcd|bdcaaa-b-ecd
cb-d-a.da-dbwc|cbda-c-adbc|cb.d-abadbdbecl|cb-daaad-b-=<
dc-ba-.a-dcdbl|d-c-b-aac-<cdbl|d-cba-abcdbldcbaaaw<d-b
b.<cdbdc-.da.a|lb-cd-bdc-c-aalbcdb-d<cba-albecdbdecaaa
dbcc-b-d-ada|db-c<c-b.da-c-aldboc-cb-d-abaldb-w<ccb--daaa
«<db-dc-ba.adfcdbdc-b-aa-c|/cdb-d-<ba-ablcd-b-dcbaaa

Figure 1: Ono-Sawade-Yamamoto OD(36;9,9,9,9)




Theorem 4 Suppose there are T-matrices of order t. Further suppose there is
an OD(4s;uy,...,un) constructed of sixteen circulant (or type 1) s x s blocks on
the variables z,,...,z,. Then there is an OD(4st;tu,,...,tu,). In particular
if there is an OD(4s;s,s,s,s) constructed of sixteen circulant (or type 1) s x s
blocks then there is an OD(4st; st, st, st, st).

Proof: We write the OD as (), i, = 1,2,3,4, where each N;; is circulant
(or type 1). Hence we are considering the OD purely as an M-structure. Since
we have an OD

4 2 . .
- wpzil,, 1=17,
NaNJi + NiaNJ + NiaNJ + NiaNj, = { g,:k“ FER : # _';
Suppose the T-matrices are T, T3, T3, T4. Then form the matrices
A=Ty x Ny3+Ty x Nay +T3x N33 +T3 x Ny
B=T xNyg+Ty x Nyg+T3 x N3ga+ T4 x N4y

C=Ti xNya+ T2 x Noaa+ T3 x Nag+ T4 X Ng3
D =T x Nig+Tz % Nag+ T3 x Nag + Ty x Nuya.

Now .
AAT + BBT +CCT + DD =1ty wizll,,
k=1
and since A, B, C, D are type 1, they can be used in the J. Wallis-Whiteman
generalization of the Goethals-Seidel array to obtain the result. o

Corollary 5 Suppase the T-matrices are of order t. Then there are orthogonal
designs OD(20¢; 5, 5¢, 5¢, 5t) and OD(36t;9t,9¢,9¢,9t).

Proof: We use the Welch array for the OD(20¢; 5¢, 5¢, 5¢, 5¢) and the Yamamoto-
Ono-Sawade array for the OD(36¢;9¢, 9¢, 9¢,9¢).

Note that to prove the Hadamard conjecture “there is an Hadamard matrix
of order 4t for all t > 0” it would be sufficient to prove:

Conjecture 6 There exists an OD(4t;t,t,t,t) for every positive integer t.

We also conjecture

Conjecture 7 There exists an M-structure OD(4t;t,t,1,t) for every t = 1
(mod 4) comprising sixteen circulant or type 1 blocks.
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3 Some properties of certain amicable
orthogonal matrices

Lemma 8 Suppose there exist two amicable (0,41, —1) matrices U, V of order
u satisfying UUT + VVT = (2u — 1)I. Then there exist matrices A, B, D of
order u satisfying

AAT + BBT = BTB+ D7D = (2u—1)I
AT = (<1)3(=D4, DT = (~1)}-1)p,

where A and D have zero diagonal.

Proof: By the properties of U and V' we have
v v
v=[v %]
is a (0,41, —1) matrix of order 2u satisfying WW7T = (2u — 1)]5,.
Then by the Delsarte-Goethals-Seidel theorem (see (7] or [22, p. 306]) W is
Hadamard equivalent (i.e. use the operations of multiplying rows or columns

by —1 and rearranging rows or columns) to a (0,41, —1) matrix C with zero
diagonal satisfying

CCT = (2u—1)I,y, CT =(-1)}u-c.

Hence C can be written

A B
C= [ +BT +pT ]
where AT = (—1)3(4=14, DT =(-1)3®-1D, and A and D have zero diago-
nal. m}

Lemma 9 Let g+ 1 be the order of a conference matrix. Then there exist four
matrices Cy, Cz, C3, Cy, of order (g — 1) satisfying

C;C’{+Czc'{ =C:;Cg‘+ch(4r =ql-2J,
eCT =eCT =e, eCT =eCT =0,
C;C%'—C:C?=0, CT=01, CI=C4, Cfsr=Cz.

where e is the 1 x %(q— 1) matrix of ones, Cy and C4 have zero diagonal elements
+1, Cy and C4 have elements £1.

106



Proof: By the Delsarte-Goethals-Seidel theorem (see [7] or [22, p. 306]) we can
ensure the conference matrix is symmetric and of the form

_[o € T _
o-[2 4] oo

where D has zero diagonal. We now simultaneously permute the rows and
columns of D (so if row i and j are interchanged then column i and column j
are also interchanged) to keep symmetry and obtain

Since E is orthogonal e—eCT —eCT =0 =e—eCT +eCT soeCT =e¢,eCT =0

and
CiCT + C2CT = C5CT + C4CT = qI - 2J,
eCT = eCT =, eCT =eCT =0,
Cﬁ’{—Csz{':O, C?:Cl, C’{:C.;, C’ar.—..Ca,
a

Lemma 10 Suppose there exist two amicable (0,+1,—1) matrices U, V of
order u satisfying UUT + VVT = (2u ~ 1)I. Further suppose U has zero
diagonal and U, V have other elements +1 or —1. Then there exist matrices A,
B of order u — 1 satisfying

AAT + BBT = (2u - 1)] 1 —=2Ju1,
eAT =e, eBT =0, ABT = BAT,

where A has one zero element per row and column and the other entries of A
and B are %1. Further if U and V are symmetric (or skew-type respectively)
then A and B are symmetric (or skew-type respectively).

Furthermore if U and V satisfy UUT + VVT = 2uI (U, V are (1,~1)
matrices), u even, then there exist matrices A, B of order u — 1, with entries
*1, satisfying

AAT + BBT = 2ul,_y —2Jy_1,
eAT =¢, eBT =e, ABT = BAT,

and if U and V are symmetric (or skew-type respectively) then A and B are
symmetric (or skew-type respectively).
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Proof: Without loss of generality assume V has its (1,1) entry +1, otherwise
replace it by —V. If U has no zeros and non zero (1,1) entry assume it is —1
{the outcome is identical up to equivalence of the desired properties).

Assume U has zero diagonal. Define D = U + iV, then with Dt written for
the Hermitian conjugate (transpose and complex conjugate), we have

(U +iv)(UT —ivT)

vuT +vvT 4iuvT - vuT)

UUT +vVT  (by the amicability of U and V)
(2u - 1)1,

DDt

an orthogonal matrix with diagonal entries +i and other entries £1 +i. We
wish to normalize the first row and column to

i 141 14 1414
1414
E=| 1+i
: F +iG
1+

i 14d 1+i ... 14 ]
-1-i

or By = -1-i

F+iG

=1-i

if U and V are skew-type. If the first element of row/column j of D is 1 + 1,
1-14, —1+41i, —1— i we multiply the row/column by 1, i, —i, —1 respectively,
to form E. We only form E, if both U and V are skew type.
If U and V are symmetric (or skew-type respectively) the operation on row
J is also carried out on column j preserving symmetry (skew-type respectively).
The operations performed have not affected the orthogonality so

EEt = (2u = 1)1,.

We now write £ or E; as

{1 0 e 1 e
E_[eT L]+1[eT N]'
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So

LeT J+LLT (1+N)eT J+NNT
i u-1 eNT 1 [u-1 e(1+4L7)
(L+L)eT J+LNT |~ | NeT J4+NLIT

[ 2u-1 e(LT + NT +1) ]

EE} = [u-—l eL” ]+[ u e(1+NT)

(14 L+ N)eT 2J4+LLT + NNT
. 0 e(NT -1-L7)
la+L-—N)eT LNT-NLT
(2u - 1)1.

Hence LNT = NLT, (14 L+ N)e¥ = 0= (1+ L — N)e7, giving eLT = —e,
eNT =0and LLT + NNT = (2u—1)] — 2J. Set —L = M to get the result.

It remains to be shown that M has zero diagonal. Now MMT + NNT =
(2u — 1)I — 2J. So there is only one zero per row of [M : N]. Also u is odd so
M and N have even order u — 1. Hence eNT =0 tells us N has no zero entries
and thus the one zero entry per row must be in M. Rearrange the columns of
M (if necessary) to ensure M has zero diagonal.

If U and V were (1, —1) matrices of even order then

-1 e {1 e
S P
and
EEt = 2u e(LT + NT)
T [ (L+N)eT 2J+LLT + NNT

+ 0 e(LT — NT +2)
I(N=L-2)eT LNT-NLT
= 2ul.

Hence LNT = NLT, (L+ N)eT = 0 = (N — L — 2)e7, giving eL7 = —e,
eNT =eand LLT + NNT =2ul - 2J. Set —L = M to get the result. o

Remark 11 This lemma is very similar to the beautiful Lemma 1 of Miyamoto
(12].

Remark 12 Let I + W and V be normalized amicable Hadamard matrices of
order h (see Jennifer Seberry [16] for a list of their orders). Then there exist
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two matrices A, B of order h — 1 satisfying

AAT 4+ BBT = (2h = 1)1y = 2Jp-1,
eAT =0, eBT =e, ABT = BAT, AT =—A, BT=B,
AAT =(h—-1)I-J, BBT=hI-J,

where A has zero diagonal and the other entries of A and B are £1.

Remark 13 Let I+ W and V be amicable Hadamard matrices of order h (see
Jennifer Seberry [16] for a list of their orders). Then there exist two matrices
W, V of order h satisfying

wwT +vvT =@Qh-1)I, wvT=vw?, wi=-w, Vvi=V.

Remark 14 From Jennifer Seberry Wallis’ restatement [22, p. 291) of a theo-
rem of R.E.A.C. Paley we have

(i) f¢g=3 (mod 4) is a prime power or there is a skew-Hadamard matrix of
order ¢+ 1 then there is a skew symmetric matrix W of order ¢ such that
WWT = (¢ +1)I - J, WT = —W. Let R be a symmetric permutation
matrix such that WR is symmetric (in the case of ¢ a prime power the
back diagonal matrix has this property) then

(WRYWR)T = (g+1)I-J, (WR)T =(WR),
and (WR)IT = I(WR)T.

(i) If g =1 (mod 4) is a prime power or there is a symmetric conference
matrix C + I of order ¢+ 1 then there is 2 symmetric matrix Q of order
g such that QQT = ¢I — J, QT = Q and so that

Q+DQ+DT+(Q-NQ-NT=2(¢+1)I-2J.

Remark 15 From Geramita and Seberry’s restatement {8, p. 92, Theorem 4.41]
of a theorem of Goethals and Seidel we have

Ifg=1 (mod 4)is a prime power there are two circulant symmet-
ric, amicable matrices M and N of order -’f(q + 1) satisfying

MMT + NNT = qLy04)-
Remark 16 From Seberry-Wallis’s restatement [22, p. 321, Theorem 4.6] of

a theorem of Szekeres for ¢ = 5 (mod 8) and by Yamada'’s theorem (45, Ap-
pendix] for g = a? =1 (mod 8) we have
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(i) If g=5 (mod 8) is a prime power then there are two circulant or type 1
amicable matrices U, V of order ¢ satisfying

UUT +vVT =291 - 2J,
eUT =0, evT=0, UVT=VUT, UT=-U VI=-V

With R the appropriate permutation matrix (as mentioned in Remark 14(i)
above) set W = I+ V; then

UUT + (WR)WR)T = (2¢ + 1)I = 2J,
eUT =0, e(WR)T =e,
UWR)T = (WR)WUT, UT=-U (WR)T =(WR).

(i) f g =a® =1 (mod 8) is a prime power then there are two circulant or
type 1 amicable matrices U, V of order ¢ satisfying

UUT +vVT = 2(¢ + 1)1 - 2J,
eUT=e, eVl =e,
vvT=vuT, UT=U, VvT=V

Remark 17 From Seberry-Wallis’s restatement [22, p. 323, Theorem 4.7] of a
theorem found independently by Szekeres and Whiteman, we have

Ifg=p"=1 (mod8)isa prime power, p =5 (mod 8), then
there are two circulant or type 1 amicable matrices U, V of order ¢
satisfying

UUT +VVT = 29I - 2J,
eUT =0, eVT=0, UVI=VUT, UT=-U, VT=-V.

With R the appropriate permutation matrix (as mentioned in Remark 14(i)
above) set W = I+ V then

UUT + (WRYWR)T = (2¢+ 1)I - 2J,
eUT =0, e(WR)T =e,
UWR)T = (WRWUT, UT =-U, (WR)T =(WR).

Remark 18 From Geramita and Seberry’s restatement {8, p. 256, Theorem
5.80) of a theorem of Szekeres we have

Ifg=4m +3 =3 (mod 4) is a prime power then there are two
cyclic supplementary diflerence sets 2 — {2m + 1;m;m—1}, M and
N, called Szekeres difference sets, such that a € M = —a ¢ M,
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BeN = -be N. Thusif U = I, V are the (1,—1) incidence
matrices of M, N respectively,

vUT +vvT =qI -2J,
eUT =0, eVl=—e, UT=-U VT=V.

Now let R be the back diagonal matrix (as above) andset W = —V R
then U and W are amicable matrices of order 3(g — 1), U with zero
diagonal and W symmetric such that

UUT + WWT =qI —2J,
UT =0, eWTl=e, UT=-U WT=W.

Indeed the process just described ensures that if there are Szekeres
difference sets on an abelian group of order ¢ then the matrices U
and W, just mentioned, can be constructed of order g.

Remark 19 If ¢ = 1 (mod 4) is a prime power, Yamada [42] showed that
there exist two circulant matrices U, V' of order (g — 1) satisfying

UUT +VVT =qI - 2J,
eUT=¢, eVT =0, UT =V,

where U has zero diagonal. With R the appropriate permutation matrix (as
mentioned in Remark 14(i) above) set W = VR then
UUT + WWT =qI -2J,
eUT =e, eWT =0, UWT=wWUT, UT=U, WT=wW.
Remark 20 If g = s>+4 =5 (mod 8) is a prime power then J. Wallis {29}

and independently Yamada [45] showed that there are two.circulant or type 1
matrices U and V of order ¢ where

UUT +VVT = (2 + 1)I - 2J,
eUT =0, eVT=e, UT=-U VT=V,
and where U has zero diagonal. Now let R be the back diagonal matrix (as

above) and set W = VR then U and W are amicable matrices of order q, U
with zero diagonal and W symmetric with zero back diagonal such that

UUT + WWT =291 - 2J,
eUT =0, eW?=0, UT=-U, WT=w, UWT=wUT.

Note Yamada has observed that there are other suitable matrices for these
orders.
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4 A multiplication Theorem using M-structures

Theorem 21 Let N = (Njj), i,j = 1,2,3,4 be an Hadamard matrix of order
4n of M-structure. Further let T;, i,j = 1,2,3,4 be 16 (0,+1,—1) type 1 or
circulant matrices of order t which satisfy

(i) Tij * T = 0, Tji * Tes = 0, j # &, (+ the Hadamard product)

(i) Yaoy Tix is 2 (1, —1) matrix, (8)
(iii) Thor TTh = thy = They TuTE,
(iv) Z:k =1 'kTT;:-O Ek 1Tln ni#F .

Then there is an M-structure Hadamard matrix of order 4nt.

Proof: Define the matrix X = (X;;) as follows *

4
X.'j:ZT}gXN

k=1

From the conditions of the T-matrices and from the M-structure, we have
4 4 T
Soxuxh = (ZT.;, x N} ) (Z Tim xN,.T,,,>
i=1 m=1

4
Z lkTaqv:: ;'I;gij)

m=1
tkTam X <Z kNim) .

If k # m, then 2;___1 NﬂN;m = 0. Hence the above equation becomes

I
Mh EMA (IM:-
ﬂ[\’]*- EM“

L
1

4
S xixy = STl xS M
j=1 k=1

= 4tnIg,,.

For i # k,

4 4 /4 4 T
ZX,‘]'XET]- = E (ZTW X NI’) (Z Tem % NJT,,,)
j=1 J=1

g=1 m=1
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TiQTkTm x Nj'I;N)'m

[
M&
M.ﬁ
M-

e,
1]
—-

«
1
-

1
—

[
NI
[\/]a

«
1
-
3
il
-

TigTT, % (Z Nj,,.)

'ngg X Z NJ'!

1}
[ uM.:.

Hence the matrix X is an Hadamard matrix of order 4nt of M-structure and
the matrix X' = (Xj;) is also an Hadamard matrix of M-structure.

We further note that if 3°}_, Tk is a (1, —1) matrix and define the matrices
Y = (Yi;), Z = (Zi;), and W = (W;;) as follows:

Y= 2& 1 Tei x N,
Zij =Yty Thi ¥ N}, and

VV’J Ek— ik X Nk]

Then, as in the case for X, we see all three matrices Y, Z and W are Hadamard
matrices of order 4nt of M-structure. Furthermore Y’ = (¥};), 2’ = (Zj;), and
W' = (Wj;) are also Hadamard matrices of M-structure. o

Corollary 22 If there exists an Hadamard matrix of order 4h and an orthog-
onal design OD(4u; vy, uz, u3, u4), then an OD(8hu; 2huy, 2huz, 2hus, 2hu,) ex-
ists.

Proof: Let H = (H;;),4,j =1,2,3,4 be an Hadamard matrix of order 4h. Put
1 1 1 1

P = ;;;(H.'1+Hiz). Qi= E(Hﬂ—Hi!), R = E(Hea-*-Hu), Si = §(Hi3"Hi4),

and the required T-matrices of order 2A for the theorem are

N P B P O Pl P P £

fori=1,2,3,4. Since

4 4
STTE = Y (RPF+QiQT + RiRT +SiST) x I

=1
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4
% (ZH,','H;{,:) x I

j=1

2hI2hv

and
it TuT}, =0, Y i1 TTl =0, fori# j, and
YA T, i=1,2,3,4 isa(l,—1) matrix.

Now let the OD(4u; uy, uz,us, us) = D = (Dy5), 4,5 = 1,2,3,4 defined on the
commuting variables z,, 2, z3, 24. Then we have

DDT = (4,22 + uaz} + u3zd + uszd) au,

that is
4

4
> DyDf = 3 DiDi
j=1 j=t
= (uyz? +uzz3 + uazd + vazi)ly,
YiDaDh =0, Ti.DuDf=0, ij=1234 i#j

We now define the matrix X = (X;;) as follows

4
Xij = ZTik x D};.

k=1

Then, as in the theorem, we have

4
Z X X% = 2h(u12? + u2z3 + uaz3 + vaz3) onu,
j=1

and for i # k,
4

z Xasz; =0.
k=1

Thus X = (Xi;) and X’ = (Xj;) are OD(8hu; 2hu,, 2huz, 2hus, 2huy) of M-
structure and Y =(Y;;) = (‘22=1 Tis % D;’;—), Z =(Z;) = (Z:=1 T X DJT,,)
and W=(W;;)= (22:17'-} x N,',’;-), Y'=(Yj), 2'=(Z;;) and W’ =(Wj;), are
also OD(8hu; 2hu, 2hua, 2hus, 2huy) of M-structure. m}
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Corollary 23 If there exists an Hadamard matrix of order 4h and an orthogo-
nal design OD(4u; u,u,u,u), then there exists an OD(8hu; 2hu, 2hu, 2hu, 2hu).

This gives the theorem of Agayan and Sarukhanyan [2] as a corollary by
setting all variables equal to one:

Corollary 24 If there exists Hadamard matrices of orders 4h and 4u then there
exists an Hadamard matrix of order 8hu.

We now give as a corollary a result, motivated by, and a little stronger than
that of Agayan and Sarukhanyan [2]:

Corollary 25 Suppose there are Williamson or Williamson type matrices of
orders u and v. Then there are Williamson type matrices of order 2uv.

If the matrices of orders u and v are symmetric the matrices of order 2uv
are also symmetric.

If the matrices of orders u and v are circulant and/or type 1 the matrices of
order 2uv are type 1.

Proof: Suppose 4, B, C, D are (symmetric) Williamson or Williamson type
matrices of order u then they are pairwise amicable and satisfy

AAT + BBT + CCT + DDT = qul,. '
Define
1 1 1 1
E=-2-(A+B), F=-2°(A—B), G=§(C+D), H=§(C—D),
then E, F, G, H are pairwise amicable (and symmetric) and satisfy
EET + FFT + GGT + HHT = 2ul,.

Now define

[E o0 [F o [0 ¢ [0 &
T"[o E]’ T"[o F]’ L=|g o]' and T"[H o]’

so that
T =T11=T22=T33 =Ty,
Tg = T12 = —Tzl = T34 = —T43,
T3 = T13 = —Tal = —T24 = T42 and
Ti=Td=-T4l = T3 = -T32,

in the theorem. Note Ty, T5, T3, Ty are pairwise amicable. If A, B, C, D were
circulant (or type 1) they would be type 1 of order 2u.
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Let X,Y, Z, W be the Williamson or Williamson type (symmetric) matrices
of order v. Then X, Y, Z, W are pairwise amicable and

XXT+YYT +227 + WWT = 4o1,.
Then

= MixX4+DoxY+D3xZ+TixW

“NixY+DoxX+TaxW-Tyx 2
“TixZ-TaxW+T3xX+TyxY
SN xW+TexZ-T3xY +Ty x X.

w2z R =~
I

are 4 Williamson type (symmetric) matrices of order 2uv. If the matrices of
orders u and v were circulant or type 1 these matrices are type 1. ]

5 Miyamoto’s Theorem and Corollaries
via M-structures

We reformulate Miyamoto’s results so that symmetric Williamson-type matrices
can be obtained.

Lemma 26 (Miyamoto’s Lemma Reformulated) LetU;, V;,4,j = 1,2,3,4
be (0,+1,—1) matrices of order n which satisfy
(i) Ui, U;, i # j are pairwise amicable,
(ii)) Vi, V;, i # j are pairwise amicable,
(iii) U; £ V;, (+1, —~1) matrices, i = 1,2, 3,4,
(iv) the row sum of U is 1, and the row sum of U;, i = 2,3,4 is zero,
(v) S UUT =(@n+ DI -2J, T, iVT = (@2n + 1)1

1=1

Then there are 4 Williamson type matrices of order 2n + 1. If U; and V;
are symmetric, i = 1,2,3,4 then the Williamson-type matrices are symmetric.
Hence there is a Williamson type Hadamard matrix of order 4(2n + 1).

Proof: Let.S), Sa2, S3, S4 be 4 (+1, —1)-matrices of order 2n defined by

7. 11 : 1 -1
S,—U,x[l l]+V‘,><[_1 1 ]
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So the row sum of 5; = 2 and of 5; = 0, i = 2,3,4. Now define
- 1 —€2n - 1 €an ] .

First note that since U;, Uj, i # j and V;, Vj}, i # j are pairwise amicable,

CH R ID(":" ][ 47))

U;U,-Tx[z 2]+v.-v,.Tx[ 2 -2]

SiST

2 2 -2 2
= 5;7.

(Note this relationship is valid if and only if conditions (i) and (ii) of the theorem
are valid.)

SSST = YU x [ ] SV [2 ‘22]

=1 i=1 i=1
2Q2n+ 1)1 -2J7 -2J
-2J 22n+1)I-2J
4(2n + 1)1 — 4724

Next we observe

T _ 1-2n €2n R .
= [ eg‘n —J+SIS?‘ ] =X:X; i=2,3,4,
and
1 + 2n e . o
xT = 2n = x.xT _
i [ e J+5:ST ] Xx§ i#i 1i=234
Further
4
. T — 1 + 2” —sezn 1 + 2n ezn
‘Z_;X"Yi = [ —36%;, J+ Sx.S'T E e?n J+S.'S;r

4(2n +1) 0
0 47 +4(n+1)I—4J

Thus we have shown that X;, X2, X3, X4 are 4 Williamson type matrices
of order 2n + 1.
Hence there is a Williamson type Hadamard matrix of order 4(2n+1). O
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Corollary 27 Let ¢g=1 (mod 4) be a prime power then there are symmetric
Williamson type matrices of order ¢ + 2 whenever -;-(q + 1) is a prime power or
-;-(q + 3) is the order of a symmetric conference matrix. Also there exists an
Hadamard matrix of Williamson type of order 4(q + 2).

Proof: (i) Let B be the skew-symmetric core of order (g + 1) formed via the
quadratic residues (see Remark 14(i)) and R the back-diagonal matrix so that
BR is back circulant or type2 and symmetric;

(ii) Let X be the symmetric core of order $(g + 1) of the conference matrix

(see Remark 14(ii));

(iii) Let M, N be the two circulant symmetric matrices of order (g + 1),
M with zero diagonal satisfying MM7T + NNT = gI (see Remark 15).

Then in Lemma 26 use

(ia) Uy=1,U2=0,Us=Us = BR,

(iia) i=M,Vo=N,Va=V; =R,

@) Uhh=1,Uz=0,Us=Us =X,

(iib) i =M,V =N,Va=V, =1,

to obtain the result. o

Remark 28 Some of the results in Corollary 27 are also due to A.L. Whiteman
[35). This gives symmetric Williamson-type matrices of orders

7 11 15 19 27 39 51 35 63 75

83 91 99 123 159 195 243 279 315 339

363 399 423 451 459 543 579 6156 627 663

675 735 759 843 879 883 999 1095 1155 1203

1216 1239 1251 1323 1383 1455 1623 1659 1683 1755
1875 1935 1995

(since Mathon found conference matrices of orders 46 and 442). Almost all
these, with symmetry, are new though Miyamoto [12] has found Williamson-
type matrices for these orders and hence Hadamard matrices for four times
these orders.

Koukouvinos and Kounias [10] have shown there are no circulant symmet-
ric Williamson matrices of order 39 but here a symmetric but not circulant
Williamson matrix of order 39 is given.
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Corollary 29 Let ¢g=1 (mod 4) be a prime power. Then

(i) if there are Williamson type matrices of order (q — 1)/4 or an Hadamard
matrix of order l(q — 1) there exist Williamson type matrices of order q;

(if) if there exist symmetric conference matrices of order 3(q — 1) or a sym-
metric Hadamard matrix of order 3(q — 1) then there exist symmetric
Williamson type matrices of order q.

Hence there exists an Hadamard matrix of Williamson type of order 4q.

Proof: (i) Use Yamada’s matrices A and C = BR of order -;-(q — 1) (see Re-
mark 19) as

Ur=A, Uz;=C, Ua=Us=0, and V1 =1, V=0,

and for

V3=

W, W,
W, -W

Vi = W3 W4
R /7

where W;, i = 1,2,3,4 are Williamson-type matrices, or V3 = V4 = H , where
H is an Hadamard matrix of order (g — 1), and

(ii) with N the appropriate symmetric conference matrix and H the appropriate
Hadamard matrix use

Va=N+1, Vy=N-I, or V3=V, =H,
as indicated in Lemma 26 to obtain Williamson-type matrices. D

Remark 30 Part (i) of Corollary 29 for Williamson matrices of order (q 1)/4
was found by Miyamoto [12]. Part (i) with Hadamard matrices of order 2(q 1)
is new. Part (ii) with symmetry is new.

Corollary 29 part (ii) gives symmetric Williamson-type matrices of order ¢
when ¢ =1 (mod 4) is a prime power and %(q — 1) is the order of a symmet-
ric conference matrix. This gives symmetric Williamson-type matrices for the
following orders:

13 29 37 53 61 101 109 125 149 181
197 229 277 317 349 389 397 461 541 557
677 701 709 797 821 1021 1061 1117 1229 1237

1549 1597 1621 1709 1861 1877 1997

120




Corollary 29 will also give Williamson-type matrices of orders 293, 373, 613,
653, 733, 757, 853, 1013, 1069, 1213, 1277, 1373, 1381, 1453, 1493, 1669, 1693,
1733, 1901, 1933, or 1973 if symmetric conference matrices of orders 146, 186,
306, 326, 366, 378, 426, 506, 534, 606, 638, 686, 690, 726, 746, 834, 866, 950,
966 or 986 exist, respectively.

Corollary 29 part (ii) gives symmetric Williamson-type matrices of order ¢
when ¢ = 1 (mod 4) is a prime power and -;-(q — 1) is the order of a sym-
metric Hadamard matrix. Rembering that symmetric Hadamard matrices exist
for orders p+ 1 when p = 3 (mod 4) is a prime power we have symmetric
Williamson-type matrices for the following orders:

5 9 17 25 41 49 73 81 89 97
113 121 169 193 241 257 281 289 337 353
361 401 409 433 449 457 529 569 577 593
601 617 625 641 673 729 761 769 841 88l
929 937 961 977 1009 1033 1049 1097 1129 1153

1201 1217 1249 1289 1297 1321 1361 1369 1409 1481
1489 1553 1601 1609 1657 1681 1697 1721 1777 1801
1849 1873

Corollary 29 also gives symmetric Williamson-type matrices of orders 233,
313, 521, 809, 857, 953, 1193, 1433, 1753, 1889, 1913, and 1993 when symmetric
Hadamard matrices of orders 4.29, 4.39, 4.65, 4.101, 4.107, 4.119, 4.149, 4.179,
4.219, 16.59, 4.239 and 4.249 are discovered.

Corollary 29 part (i) gives Williamson-type matrices of order ¢ when ¢ =1
(mod 4) is a prime power and %(q — 1) is the order of an Hadamard matrix.
This gives Williamson-type matrices for the following orders not given above:

137 233 313 521 809 953 1193 1753 1889 1993

Corollary 29 part (i) gives Williamson-type matrices of order ¢ when ¢ = 1
(mod 4) is a prime power and (g—1)/4 is the order of Williamson-type matrices.
This result is also due to Miyamoto {12]. This gives Williamson-type matrices
for the following orders:

157 173 293 373 613 757 757 773 1109 1301
1453 1493 1637 1693 1733 1741
Corollary 29 will also gives Williamson-type matrices of orders 857, 1433 and
1913 when Hadamard matrices of orders 4.107, 4.179 and 4.239 are discovered.
Further it will give Williamson-type matrices of orders
269 421 509 653 661 733 829 853 877 941
1069 1093 1181 1213 1277 1373 1381 1429 1613 1669
1789 1901 1933 1949 1973
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when Williamson-type matrices of orders

67 105 127 163 165 183 207 213 219 235
267 273 295 303 319 343 3456 357 403 417
447 475 483 487 493

are discovered.

Corollary 31 Let ¢ = 1 (mod 4) be a prime power or ¢ + 1 the order of a
symmetric conference matrix. Let 2¢ — 1 be a prime power. Then there exist
symmetric Williamson type matrices of order 2q + 1 and an Hadamard matrix
of Williamson type of order 4(2q + 1).

Proof: Form the core Q as in Remark 14(i). Thus we choose a symmetric Q
of order ¢ satisfying eQ = 0, QQT = ¢ — J. From Remark 15 there exist
symmetric matrices M and N of order ¢ satisfying

MMT 4+ NNT = (2¢-1)I, M with zero diagonal.

Use
U1=Iv U'.’:US:Q) U4=0)

and
1/1=A4) ‘,2=V3=It V4=N1

4 4
SUUT =(q+1)I-2], Y ViVl =(29+1)L

i=1 i=1

Hence by Lemma 26 we have four symmetric Williamson type matrices of
order 2¢ + 1 and a Williamson type Hadamard matrix of order 4(2¢+1). O

Remark 32 Corollary 31 is satisfied for the appropriate primes or conference
matrix orders to give symmetric Williamson-type matrices for the following
orders:

11 19 27 51 75 83 91 99 123 195
243 315 339 363 451 459 579 627 675 843
883 1155 1203 1251 1323 1659 1683 1755 1875 1995

2019 2139 2403 2475 2595 2859 3043 3219 3315 3363
3483 3699 3723

Note this last corollary is a modified version of Miyamoto’s Corollary §
(original manuscript). A new proof of Miyamoto’s result, preserving symmetry,
is:
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Corollary 33 Let ¢ =5 (mod 8) be a prime power. Further let }(q — 3) be
a prime power or }(g — 1) be the order of a symmetric conference matrix then
there exist symmetric Williamson type matrices of order ¢ and an Hadamard
matrix of Williamson type of order 4q.

Proof: Since ¢ =1 (mod 4) is a prime power, Yamada’s matrices A and C =
BR of order 3(q— 1) (see Remark 19) satisfy AT = A,eA=¢,eB =0, eC =0,
A has zero diagonal, B and C have elements +1 and ~1, and AAT 4+ CCT =
gl —2J, where R is the back diagonal matrix which makes C = B R symmetric.

From Remark 14, since %(q-3) is a prime power =1 (mod 4), there exists
a symmetric conference matrix, N, of order -;-(q —1). Let

X=N+I, and Y=N-1,
then X, Y are symmetric and amicable of order (g — 1) satisfying
XXT+YYT = (¢g-1)I

Let
U1=A, U2=Cs U3=U4=01
and V=1, Voe=0, V=X, Vy=Y,
then
4 4
ZU.-U?:qI—?J, ZV"V‘T=‘1L
i=l i=1
So the lemma gives the result. o

Theorem 34 (Miyamoto’s Theorem Reformulated) Let Uj;, Vij, 1,7 =
1,2,3,4 be (0,+1, —1) matrices of order n which satisfy
(i) Ui, Usj, i # j are pairwise amicable, k = 1,2,3,4,
(i) Vii, Vaj, i # j are pairwise amicable, k = 1,2,3,4,
(iii) Uri & Vi, (+1,—1) matrices, i,k = 1,2,3,4,
(iv) therowsumofU;; is 1, and the rowsum of U;j is zero,i # 7,1, = 1,2,3,4,
() Tima UUf = @n+ DI -2, T, ViV =@+ 1), =1,234,
(vi) Tic  UsiUE =0, TH,ViVE=0,7#k 5,k=1,2,3,4.
If conditons (i) to (v) hold, there are four Williamson matrices type of order
2n + 1 and thus 2 Williamson type Hadamard matrix of order 4(2n + 1). Fur-
thermore if the matrices U; and Vi; are symmetric for all i,5 = 1,2,3,4 the

Williamson matrices obtained of order 2n + 1 are also symmetric.
If conditons (iii) to (vi) hold, there is an M-structure Hadamard matrix of

order 4(2n + 1).
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Proof: Let Sij, be 16 (+1,—1)-matrices of order 2n defined by
11 1 -1
S;,-:U,-,-x[l 1]+V;jx[_l l]'

So the row sum of S;; =2 and of S;; = 0,1 # j, i,5 = 1,2,3,4. Now define

1 e -1 e
Xu=[_er S“] X12=[cr S:z] X13=[£r Sn] xu=[er s“]

1 -1 —e 1 e -1 e
x21=[cr 5:1 ] X22=[ —eT Sy ] x23=[ T Sy ] x24=[ T S ]

1 1 e -1 —e -1 e
sz=[ T s; ] X32=[er S32 ] X33=[ —eT Sa3 ] X:u=[ T Su ]

1 e -1 e -1 —e
xu=[ T -Su] X42=[¢1- _5‘2] X43=[ T _5‘3] Xn=[_cr _s“]

We note that the following always holds as it is just a case of Miyamoto’s
Lemma Reformulated:

4
Y 5iiSE = 4(2n + 1) n — 472n. )

i=1

In all cases though assumption (vi) assures us that

4
Y SuSk=0, j#k (10)

i=1

We separate the remainder of the proof into two parts: Case A where condi-
tions (i) to (v) of the enunciation hold and Case 2 where conditions (iii) to (vi)
of the enunciation hold.

Case A. We now note that, as in Miyamoto’s Lemma:

SuST; = S;iSE (11)
if and only if Uy;, Uy;, i # j are pairwise amicable, k = 1,2,3,4, and V};, Vs
i # j are pairwise amicable, k = 1,2,3,4. Thus

1-2n —e
T _ 2n — v i
X'“X“i - [ _eg;' _.J+ S‘“S;I; ] - X‘JX44 = 1s2’3

and

1+2 —€aq
X.,,,XZ}=[ +Tn_ €3

= % XT e
—€2, J+S4k5’£-]—x4lx4k k#]r k=123
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Further we note

2 3
. T - 1 + 2n 332’. 1 + 2n —e2n
gX-uX“ - [ 36;11 J +S44Sg; ] + g [ —eg;l J+ 54..5;1; ]

_ [ 4@n+1) 0
= 0 4J+4(2n+1)—4J
= 4(21‘2 + 1)I2n+1

Hence X41, Xa2, Xa3, Xaa are 4 Williamson type matrices of order 2n + 1
and thus a Williamson type Hadamard matrix of order 4(2n + 1) exists.

Case B. We now assume conditions (i) and (ii) do not hold but that condition
(vi) does hold. By straightforward checking we can assert that

4
> XjiXE=0 j#k, if and only if (10) holds.

=1

4
Y X;iX] =40+ Dlansr §=1,2,3,4 as(9) holds.
i=1

Hence there is an M-structure Hadamard matrix of order 4(2n + 1). o
Note that if we write our M-structure from the theorem as

-1 1 1 -1 -e e
1 -1 1 -1 e -e
1 1 -1 -1 e e

e
e
-e
-e
S13
—eT e €T Su S S Su
Sa3
Saa

—T T T & S Si2 S14
eT
eT eT —eT eT 531 532 334
—eT T _—eT eT Su S ,Sa4

and we can see Yamada’s matrix with trimming [46] or the J. Wallis-Whiteman
{30] matrix with a border embodied in the construction.

Corollary 35 Suppose there exists a symmetric conference matrix of order
g+ 1 = 4t + 2 and an Hadamard matrix of order 4t = q — 1. Then there is
an Hadamard matrix with M-structure of order 4(4t + 1) = 4q. Further if the
Hadamard matrix is symmetric the Hadamard matrix of order 4¢ is of the form
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[5 %]

where X, Y are amicable and symmetric.

Proof: Use Lemma 9 to obtain four matrices C;, C;, C3, Cy, of order -;-(q -1)
satisfying

CiCT +C,CT = CiCT +CsCT
= ql-J
eCT =eCT =e, eCT=eCf =0, CTCT-CIcCT =0,
=0, T=¢C;, Cf=0C,.

Write the Hadamard matrix with four blocks of size }(g — 1) as

H, H,
Hs Hy |~
If this matrix is symmetric then HT H] + Hf H =0, HT = H,, HT = H,,
HT = H,.
Now write U = (Ui;) and V = (V;;) with 16 blocks of size 4(g—1)x (¢ 1)

GG C 0 0 I 0 H, H
_ | -Cs Cy 0 0 _ 0 I H; H,
U= o o & | ®™V=|_gr _gr T o |
0 0 -C3 C -Hf -HT o 1
and straightforward use of Miyamoto’s theorem gives the result. 0

We note that complex Hadamard matrices of order n =2 (mod 4) do exist
when symmetric conference matrices cannot exist (see (22, Chapter VIJ). These
complex Hadamard matrices may be written as K = X +iY where KK»* = kI,
(* the Hermitian conjugate).

Hence we have

Corollary 36 Let ¢ = 4f + 1 be a prime power. Suppose there is a complex
Hadamard matrix of order 2f. Then there is an Hadamard matrix of order
4(4f +1).
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Proof: Use Yamada’s construction (see the method of Remark 19) to make
A with zero diagonal and +1 elsewhere, AT = A, and back-circulant B with
elements 1 of order (g — 1) = 2f satisfying AAT + BBT '=qI - 2J.

Let C' = X +iY be a complex Hadamard matrix of order 2f. Choose

A B 0 0
-B A 0 0
U= 0 0 A B and
0 0 -B 4
I 0 X+Y X-Y
V= 0 I -X+Y X+Y
T -XxT-yT XT_YT I 0
—XT +YT _XT-YT 0 I
Then the theorem gives us an Hadamard matrix of order 4(4f + 1). (]

Note complex Hadamard matrices exist for orders 22, 34, 58, 86, 306, 650,
870, 1046, 2450, 3782, ..., for which either a symmetric conference matrix
cannot exist or is not known. None of these orders give new Hadamard matrices.

6 Using 64 Block M-structures

In a similar fashion, we consider the following lemma so symmetric 8-Williamson-
type matrices can be obtained.

Lemma 37 Let U;, V;, 4,7 =1,...,8 be (0,41, —1) matrices of order n which
satisfy
(i) Ui, Uj, i # j are pairwise amicable,
(ii) V;, V;, i # j are pairwise amicable,
(iii) U; £ V;, (+1,~1) matrices, i = 1,...,8,

(iv) the row(column) sums of U, and Uy are both 1, and the row sum of U;,
i=3,...,8 is zero,

(v) T UUT =220+ 1)1 - 4], T2, VT =2(2n + 1)I.

Then there are 8-Williamson type matrices of order 2n + 1. Furthermore, if the
U; and V; are symmetric, i = 1,...,8, then the 8-Williamson type matrices are
symmetric. Hence there is a block type Hadamard matrix of order 8(2n + 1).
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Proof: Let Sy,...,Sg be 8 (+1, —1)-matrices of order 2n defined by

11 1 -1
S,-:ij[l l]+ij[_1 1]'.

So the row sums of S; and S are both 2 and of $; = 0,1 =3,...,8. Now
define

L — 1 —€2n . o 1 ean .
X,—[_egvn s; | j=1,2 and X.—[cg-" S: ], i=3,...,8

First note that since U;, Uj, i # j and V;, Vj, i # j are pairwise amicable,

o _ (11 1 -1Nfrr_ 11 r. [1 -1
SiS; = (U.x[l 1]+V.x[_1 ID(Uj x[l 1]+V‘,- x[—l ID
=U.-U,.Tx[§ §]+mffx[__22 ';2]

s;ST.

(Note this relationship is valid if and only if conditions (i) and (ii) of the
theorem are valid.)

2 8 2 2 8 2 -2
St = Yuorx[) i]+xwex] % 7]
i=1 =1 =1

_ o[ 4em+nI-4 —4J

= —4J 42n+ 1)1 -4J

8(2n + 1) I, — 8J2n.

Next we observe

T _ 1+2n —-382“ _ T
X1X2 = [ -33;'; J+81.S';" = szl )

X XT = [ 1;,3" i ] =X;XT, k=1,2,andi=3,...,8,
3

and

T _ 1+2n €2n —_ yv.vT . PR
XiX; _[ el J+S,'S;~r ] = X; X i#£7 4,7=3,...,8.
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Further

8 8
xyT _ 1+2a —3ean 1 + 2n ean
D XXT = 2[ ~3el, J+515T7 ] ‘X;[ ef, J+SST ]

i=1

9 8(2n+1) 0
0 87 +8(2n+1)I-8J
Thus we have shown that X, ..., X3 are 8-Williamson type matrices of order

2n+ 1.

Hence there is a block type Hadamard matrix of order 8(2n + 1) obtained
by replacing the variables of an orthogonal design OD(8;1,1,1,1,1,1,1,1) by
the 8-Williamson type matrices.

Corollary 38 Let ¢ + 1 be the order of amicable Hadamard matrices I + S
and P. Suppose there exist 4 Williamson type matrices of order q. Then there
exist Williamson type matrices of order 2q + 1. Furthermore there exists an
Hadamard matrix of block type of order 8(2q + 1).

Proof: Now (I + S)PT = P(I + S)7 and write e for the 1 x ¢ matrix of ones.
From Remark 12 we have matrices A, B of order ¢ satisfying:

ABT = BAT, BT =-B, AT=—-A, eA=—-¢, eB=0,

AAT = (q+1)I-J, BBT =qI-J.

Thus we choose
U1=U2=—A, Ua=U4=B, Us=Us=U7=Ug=0,

and I/1=V"\=0, V3=‘/4=Is Vi+4=wh

where W; are Williamson type matrices. Hence

8 8
STUUT =220+ 1)1 -4J, Y ViVT =2(2¢+ 1)1

i=1 i=1
These are then used in the Lemma 37 to obtain the result. a
Using the amicable Hadamard matrices given in [22] and [16, Table 1} we

get 8 Williamson type matrices for the following orders for which 4 Williamson
matrices are not known:
47, 111, 127, 167, 319, 487, 655, 831, ...

This gives new constructions for Hadamard matrices of orders 8.167 and
8.487.

129



Corollary 39 Let ¢ be a prime power and (g —1)/2 be the order of four (sym-
metric) Williamson type matrices. Then there exist (symmetric) 8-Williamson
type matrices of order ¢ and an Hadamard matrix of block structure of order
8q.

Proof: If g=1 (mod 4), by Remark 19, Yamada has found circulant matrices
A, B of order (g —1)/2 where

AAT + BBT =qI-2J, eA=e, eB=0,

where A has zero diagonal. Let R be the back-diagonal matrix so C = BR is
symmetric; then A and C are amicable. Choose

U1=Uy=A, Us=Us=C, Us=Ug=Ur=Ug =0,
VisVe=l, Va=Vy=0, Vi+4=W,,
i=1,2,3,4, where
8 8
D UUT =2qI-4J, Y ViV =2I,
i=1 =1

and W; are (symmetric) Williamson type matrices. The result now follows from
Lemma 37.

If g =3 (mod 4), by Remark 18, Szekeres has found circulant matrices A,
B of order 3(g — 1) where

AAT + BBT =qI - 2J, eA=0, eB=-—e,

and A has zero diagonal. Let R be the back-diagonal matrix so C = —BR is
symmetric; then A and C are amicable and eC = e. Choose

Ur=U;=C, Us=Uy=A, Us=Us=Ur=Usg=0,
so the U; are pairwise amicable of order 3(g — 1) and
W=V=0, Va=Vy=1, Vi+4=W;, i=1,23,4,

where . .
S uUT =2q1-47, Y VVT =2,

i=1 i=1
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and W; are (symmetric) Williamson type matrices. Since Williamson type ma-
trices are by definition amicable, the V; are all pairwise amicable (and sym-
metric) and thus we have the conditions of the lemma satisfied and hence the
corollary follows. ]

In particular we have 8-Williamson matrices for the following orders for
which no Williamson type matrices are known:
59, 67, 103, 107, 151, 163, 179, 227, 251, 283, 347, 463, 467, 523, 563, 571, 587,
631, 643, 823, 859, 919, 947, ...

This gives new Hadamard matrices or new constructions for Hadamard ma-

trices of orders 8.107, 8.163, 8.179, 8.251, 8.283, 8.347, 8.463, 8.523, 8.571, 8.631,
8.643, 8.823, 8.859, 8.919, 8.947, ...

Corollary 40 Let ¢ = 1 (mod 4) be a prime power or ¢ + 1 the order of a
symmetric conference matrix. Suppose there exist four (symmetric) Williamson
type matrices of order q. Then there exist (symmetric) 8-Williamson type ma-
trices of order 2¢ + 1 and an Hadamard matrix of block structure of order

8(2¢+1).
Proof: Form the core @ as in Remark 14(ii). Thus we choose
h=I+Q, U:=I-Q, Us=Us=Q, Us=Us=Ur=Us=0
and Vy=V,=0, Va=Vy=1, V=W,

i=1,2,3,4, where W; are (symmetric) Williamson type matrices. Then

8 8
STUUT =22q+ DI -4J, Y ViVT =2(2¢+ 11

i=1 i=1

These U; and V; are then used in Lemma 37 to obtain the (symmetric)
8-Williamson type matrices. o
This corollary gives 8 Williamson type matrices for the following new orders:
219, 275, 299, 395, 483, 515, 579, 635, 699, 707, 723, 779, 795, 803, 899, 915,

923, ...
It does not give new Hadamard matrices for these orders.

Corollary 41 Let ¢ = 9*,t > 0. Now there exist four (symmetric) Williamson
type matrices of order 9%, t > 0. Hence there exist (symmetric) 8-Williamson
type matrices of order 2.9* + 1, ¢ > 0, and an Hadamard matrix of block
structure of order 8(2-9* + 1).
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This gives symmetric 8-Williamson type matrices for the new order 163,
13123, ...
Also we have the following theorem:

Theorem 43 Let Uj, Vij, i,j = 1,...,8 be:(0,+1,-1) matrices of order n
which satisfy
(i) Usi, Usj, i # j are pairwise amicable, k = 1,...,8,
(i) Vii, Vij, i # j are pairwise amicable, k =1,...,8,
(iii) Uri £ Vi, (+1,~1) matrices, i,k =1,...,8,

(iv) the row(column) sum of Ua is 1 for (a,b)e{(i,1),(3,i + 1),(i + 1,1)},
i=1,3,5,7, the row(column) sum of U,, is -1 for (d,a) = 2,4,6,8 and
otherwise, and the row(column) sum of Usj, i # j is zero,

(v) Tim UiUf =220+ DI - 47, U0, ViiVE =2@n+ 1)1, j = 1,...,8,
(i) i UsiUE =0, T8 ViVE =0, j £k, 5,k=1,...,8.

If (iii) to (vi) hold, there is a 64 block M-structure Hadamard matrix of
order 8(2n + 1).

Proof: Let S;; be 64 (+1, —1)-matrices of order 2n defined by
11 1 -1
S;,-:U,-,-x[l 1]+Ve,~x[_l 1].
So the row(column) sum of Sj;, S 541, Si41,i § = 1,3,5,7is 2, the row(column)
sum of Sj; is —2 for (4§,4), i = 2,4, 6,8 and otherwise, the row(column) sum of

Si; =0, 1 # j. Now define

-1 - -1 - 1
Xn=[_cr Su]’ Xu=[_er 51:]’ Xn=[¢7' 5:3

-1 - e -1 -
X = [ ~eT Sa ] , X22= [ T S22 ] y Xaa= [ T Sa | x21=[ —eT 32: ] '
1 e ] -1 -e _ e = 1 —e
X2s= [ e Sas ] » K= [ N [ e sy ) x,,_[ -eT Sz ]
Xag = e X e Xz = -1 - Xng = -1 =
31 T Sa |’ 32= T Saz | RB= ~eT Sas |’ 4= —eT Sa |’
e ¢ _| =1 e | =1 e
Xas—[er 535]. Xas-[c'r 535]' X;v-[ T 53,]. Xsa—[ T 5”].
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1 e -1 —e -1 - 1
xu=[¢'r S.,]' X42=[_er Soz]' X43=[_e'r s‘: ) xu=[er S:‘J'

1 e -1 -e -1 | S
x45=[e1~ 5’45]' qu=[_,r s“]. X47=[e-r 3:7]. Xu=[_¢r s‘:],

S S A TR NP S R |
x55=[_';},- .ST!’:],Xu:[_:lr 5-5:]. X57=[:7! 5:7]. Xsa=[:} s;]»
ras[ b ] xe=[Zh 5] mes[d o] 2 e
o] Pl B A P I P S e )

]

1 - 1 - 1 - -1 -
X11=[_c'r 7:]. X72=['_=r 51;]. X73=[_cr 57:]. X-u=[_¢r 37:

1 - 1 ¢ 1 e
) Xu-‘:{_cr 510]' X11-[e-r s"]. Xu—[e‘r Sn]’

- -1 1 - -1
X1 = _11- ¢ s Xsa=|Tr & |, Xo3= T oo |, Xea= r o |,
T Sg T Sy e’ Ss3 e’ S

Xas = [ _:-r Se: ] , Xso=[ 31! s:, ]. Xar= e!r s:_, ] , Xu=[ _:r Sa: ].
Then provided conditions (i) to (v) hold and S% = Sy, i = 1,...,8 are
symmetric, X7;, i = 1,...,8 are symmetric 8-Williamson type matrices. Other-
wise X7;, i = 1,...,8 are 8 Williamson type matrices. This can be verified by
straightforward checking. Hence there is an Hadamard matrix of block structure
of order 8(2n + 1).
If conditions (iii) to (vi) hold then straightforward verification shows the 64
block M-structure X;; is an Hadamard matrix of order 8(2n + 1). o

Corollary 43 Let g be an odd prime power and suppose there exist Williamson-
type matrices of order $(q — 1). Then there exists an M-structure Hadamard

matrix of order 8q.

Proof: Let U = (U;;) and V = (V;;) be defined by the following M-structures
and write O for the matrix of zeros of order 4(g — 1). Let
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c C A A 0 0 0 0]
cC -C A -A 0 0 0 O
A A C C 0 0 0 0
y=|4A -A C -C 0 0 0 0 and
=lo o o 0 ¢c C A A
0 0 0 0 C -C A -4
0 0 0 0 A A C C
0 0 0 0 A -A C —-C|
[0 0 I I wm W, Wi W)
0 0 I -1 W, W, -W, Wi
-1 -1 0 0 -Ws Wy W, -W:
v=| -I I 0 0 W, -Wa W W
=\ -wrf wl wf w] 0 0 I -I
-wr -wf -w§ wi 0 0o -I I
-wr wi -wf -wi I I 0 0
| Zwr _wr wf wr 1 -1 0 0

where A, C are defined in the proof of Corollary 39 and W1, W,, Ws, and W,

are Williamson-type matrices. Then by Theorem 41 we have the result.

Remark 44 This corollary gives new Hadamard matrices of order 8¢ for ¢ =
179, 1087, 1283, 1327, 1619, 1907, 2099, 2459, 2579, 2647, .. ..

Corollary 45 Letg=2m+1=9 (mod 16) be a prime power. Suppose there
are Williamson-type matrices of order g. Then there is a M-structure Hadamard
matrix of order 8(2¢ + 1).

Proof: J. Wallis and A.L. Whiteman [22, Theorem 4.17, pp. 334-336) showed
there are four circulant or type 1 matrices with entries +1, and row and column
sum =*1 at will.

We construct, using cyclotomy, the type 1 4 — {2m + 1;m;2(m — 1)} sup-
plementary difference sets X3, X2, Xa and X4, where y € Xi = -y ¢ X,
i=1,2,3,4.

Let A be the back-circulant or type 2 matrix given by
A =(J —2X1)R so A has row sum +1.

Let B, C and D be the circulant or type 1 matrices given by
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B =J -2X; so B has row sum +1,
C =J -2X3—Iso C has row sum 0 and zero diagonal, and
D =J —-2X4~1so D has row sum 0 and zero diagonal.

Now we modify the Wallis-Whiteman core, noting that
AAT + BBT 4. CCT + DDT =2(g+ 1)1 — 4J.

We use V as in Corollary 43 and the following matrix for U to obtain the
result

A B cC D o
B —-A -DT CT 0
-Cc -DT A BT 0
0
A

v=| D -C7 BT -A
0 0 0 0 B
0 0 0 0 B -A -DT
0o 0 o0 0 -C -D* A BT
|0 0o o 0 D -C* BT -A|
a
The analogous Yamada-J. Wallis-Whiteman structure to Theorem 42 is:
-1 =1 1 1 1 1 =1 -1 =~e¢ —e¢ e e e e e e
-1 1 1 1 -1 1 =1 1 - e e —e e —e e =-e
1 1 -1 -1 1 1 -1 -1 e e —e - ¢ e e e
1 -1 -1 1 1 -1 -1 1 e =¢ —c¢ ¢ e = e =¢
1 1 1 1 -1 =1 -1 =1 e e e e =~ =~c¢ ¢ e
1 -1 1 -1 -1 1 -1 1 e - e - =c e e =e
1 1 1 1 1 1 1 1 - —& —e —e —e -—-& ¢ e
11' _lr }I‘ -1! !r -1} !r -’} - e —e —¢ e e —e e
—e  —e’ e e e el el e S S12 Sia S S1s Sie Sir Sis
—eT T &T T T T T —eT Sy Sz S23 Saq Szs S2e S27 Sas
el eT  —eT —eT T o7 T T 53 Sy2 Saz Sau Sas Sae S3r Sas
eT  —eT T T T _eT T T S41 S42 S43 Si4 Sis Sie S47 Sis
eT T T T T T T T Ss1 Ss2 Ss3 Sss4 Sss Ssg Ss7 Sss
eT el T —eT —eT T T —eT Sg Sez Ses Ses Ses Ses Ssr Ses
—eT —eT —oT =T =T =T T T 51y S72 S73 S714 S715 St S717 S718
—eT T T T —eT T T T Ss1 Ss2 Ssa Sse Sss Sss Ssr Sss

We can see Yamada’s matrix with trimming [46] or the J. Wallis-Whiteman
[30] matrix with a border embodied in the construction.
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