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Abstract. The integrity of a graph G, denoted I(G), is defined
by I(G) = min{|S|+ m(G - S) : S C V(G)} where m(G — 5)
denotes the maximum order of a component of G — S; further an I-
set of G is any set S for which the minimum is attained. Firstly some
useful concepts are formalised and basic properties of integrity and I-
sets identified. Then various bounds and interrelationships involving
integrity and other well-known graphical parameters are considered,
and another formulation introduced from which further bounds are
derived. The paper concludes with several results on the integrity of
circulants.

1. Introduction

Integrity was introduced by Barefoot, Entringer and Swart [3] as an alter-
native measure of the vulnerability of graphs to disruption caused by the
removal of vertices. The motivation was that, in some respects, connectivity
is oversensitive to local weaknesses and does not reflect the overall vulner-
ability. For example, the stars K'(1,n + 1) and the graphs K; + (K1 U K,,)
(where + and U denote the join and disjoint union) are all of connectivity
one but differ vastly in how much damage is done to the corresponding
communications network by the removal of a cut vertex: in the former case
all communications are destroyed, whereas in the latter all but two stations
remain in mutual contact.

1This research formed part of the first author's Ph.D. thesis and was supported by a
grant from the Foundation for Research Development.
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It is our aim to lay the groundwork on integrity as a specific graphical
parameter, especially with regard to the fundamental properties of I and I-
sets and the interrelations among integrity and other graphical parameters.
We also consider the integrity of some circulants; circulants are receiving a
lot of attention in vulnerability studies (cf. for example [1}, [2]).

We give first the requisite definitions and formalise some concepts which
are used in the calculation of integrity, noting the integrity of some well-
known (classes of) graphs. From there we explore the basic properties of
integrity and of I-sets, consider various bounds and relationships involving
integrity and other graphical parameters, and introduce another useful for-
mulation. We conclude with some results on the values of the integrity of
circulants.

2. Definitions

In this section, we define integrity and related concepts, and introduce
the necessary terminology and notation. All undefined terminology and
notation is taken from [5]. Specifically we use p(G) to denote the order
or number of vertices of a graph G, and §(G) and A(G) to denote the
minimum and maximum degrees of G. Also, a(G), A(G), X(G), and w(G)
will denote the vertex cover, independence, chromatic and clique numbers
respectively. Further a cut-set is any set of vertices whose removal leaves a
disconnected graph while we shall use C to denote strict containment.
The following definitions are from [3]:

b For any graph G, the maximum order of a component of G is denoted
by m(G).

b For any graph G the integrity of G, denoted I(G), is defined by

I(G) = ;min {IS|+m(G~5)}. - (D)

b An I-set of G is any (strict) subset S of V(G) for which I(G) = |S| +
m(G - S).

Two concepts that are useful computationally are now introduced:

b For any graph G,
De(G) =min{|S]|: SC V(@A) &m(G-S) <k} k=1,2,...
Ei(G) = min{m(G-S5):SCc V(G)&|S|=1} 1=0,1,...,p(G)-1.
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It is easily seen that the definition of Ej(G) is unaffected by the replace-
ment of the condition |S| = I’ by the inequality ‘|S| < I’. It is also obvious
that, for any graph G,

Dy(G) = a(G) and Eo(G) = m(G).

Further, we have the following alternative formulations for integrity:

I(G) = mkin (Dk(G) + Ic) (2)
and
I(G) = ogﬂi,:rzc) (EI(G) + I). 3)

We list the following known results for reference:

Proposition 1. Let G be a graph of order n.
a) (G)=niff G= K,.
b) I(G)=1iff G K,.

Proposition 2. (3]
a) I(K(ai,az,...,a;)) = ; a; + 1 — max; a;.
b) I(K(a,b)) = min{a,b} + 1.

Proposition 3. [4]
o) I(Pa) = [2v/AFT| -2 n=12,...
b) I(Ca) = [2v5] n=3,4,...

3. Basic Properties

In this section, we list simple but useful properties of I and I-sets.
The following result is easily proved:

Lemma 4. For any grephs G and H,

a) if GC H then I(G) < I(H),

b) if G is non-trivial then for allv € V(G), I(G —v) > I(G) - 1,
c) for alle € E(G), I(G—e¢) 2 I(G) - 1.

Similar results may be formulated for D; (and indeed the above follows
from such observations). However while E/(G) < Ey(H) if G C H (for a
given | < p(G)), we note that the difference between Ei(G) and Ei(G — v),
and that between E;(G) and E;(G —e), can both be made arbitrarily large.
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Consider, for example, ! = 0 and the graph G,, formed by taking two disjoint
copies of K,, and inserting a single edge e between them. Letting v be one
of the endpoints of e, one gets that Eo(Gy) = 2n while Eo(G, —€) =n =
Eo(Gn — v).

We now list some properties of I-sets. The following is easily proved:

Lemma 5. For all graphs G,

a) if G is incomplete then every I-set of G is a cut-set of G and hence has
cardinality at least x(G).

b) G is complete iff every strict subset of V(G) is an I-set of G.

Lemma 6. For all graphs G and H,

a) if S is a minimal I-set of G, then for all v € S, v is a cul-vertex of
G- (S-v),

b) if G has a complete component F, then there ezists an I-set S of G such
that S and V(F) are disjoint,

¢c) if G is a spunning subgraph of H and I(G)=I(H) then every I-sel of H is
an I-set of G,

d) if S is an I-set of G then m(G — S) = I(G — S) and 0 is an I-set of
G-3S5,

e) if an I-set S of G exists such that k(G — S) = k(G) then @ is an I-set of
G.

Proof: a) We consider a minimal I-set, S, of G and suppose to the contrary
that v € S and v is not a cut-vertex of G — (S —v). Then m(G—-(S-v)) <
m(G) + 1 so that S — v is an I-set—a contradiction.

b) This follows from a) in that every minimal I-set has the required prop-
erty.

¢) Let S be an I-set of H. Then I(G) < m(G-S8)+|S| < m(H-S)+|S| =
I(H) = I(G), proving the result.

d) Let T be an I-set of G — S. Then

IS|+m(G-S) = IG)
m(G—(SUT))+|SuUT|
IS| +m((G - S) - T)+|T|

IS| + I(G - S).

I IA

Thus I(G — S) > m(G - S) but I(G — S) < m(G — S) and hence the result
follows.
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e) G — S contains at least one vertex from each component of G (consider
the return of one vertex) so that each component of G is represented by
one component in G — S; specifically the largest component G has been
trimmed but not disconnected. Thus m(G — S) > m(G) — |S| so that
m(G —0) + |0] < m(G — S) + |S| = I(G) and the result is proved. |

One may also define integrity ‘recursively’:

Theorem 7. For every nontrivial graph G,

1+ min I(G - v),
I(G) = min veV(G)
m(G).
Proof: We note that I(G) = m(G) iff @ is an I-set of G. Thus, if I(G) <
m(G) then
16) = , min_ (IS|+m(G-5)
= min  min u){ITU {v} +m(G - (TU{v}))}
in {l + i {|T| +m((G-v) - T)}}
= 1 +verr‘1,1(nG)I(G— v)
proving the theorem. |
Using the above theorem and Lemma 5 we get:

Corollary 7.
If G is connecled and nontrivial then I(G) =1 + rr‘l/i(na) I(G - v).
ve

4. Bounds

In this section we give some bounds involving I and other graphical param-
eters. The most obvious relationship is that I(G) > w(G) which follows
from Lemma 4. We follow with a useful theorem, the lower bound of which
is also proved in [4]:

Theorem 8. For every graph G, §(G)+ 1< I(G) < o(G) + 1.

Proof: To establish the lower bound, let S be an I-set of G. Then m(G —
S) > 6(G-S)+1 > §(G)—|S]+1 so that I(G) = |S|+m(G-S) > §(G)+1.
To establish the upper bound, use the alternative formulation 2 noting that
Dy (G) = a(G). |
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Corollary 8. If§(G) = a(G) then I(G) = §(G) +1=a(G) + 1.

The corollary could be used to verify the integrity of the complete mul-
tipartite graphs (Proposition 2). We include another example of equality
at the upper bound in the theorem which we shall use to illustrate the
sharpness or otherwise of some of the bounds. Indeed this graph is nice for

vulnerability consideration with its spread of degrees. Consider the class of
graphs B defined by

Bl = 1{2 (4)
BJ‘+1 = (BJUI(I)"'KI ]:1,2,

(This may also be defined as the unique graph on 2j vertices with degree
sequence 25 — 1,25 — 2,...,j + 1,5, j,j —1,...,1.) It is easily seen (by
induction, say) that a(B;) = j and w(B;) = j+ 1 and hence by Theorem 8
and the opening observations,

I(B;)=j+1 (5)

so that we have equality in the aforementioned results.

We now proceed to investigate general equality at the bounds. Not too
much can be said about equality at the upper bound though we shall have
more to say about this in the next section.

Theorem 9. For all graphs G, I(G) = k(G) + 1 iff &(G) = a(G).

Proof: The ‘if’ part follows directly from the above corollary. To prove
the ‘only if’ part, let I(G) = k(G) + 1. Certainly, if G is complete then the
statement is true; thus we may assume that G is noncomplete. Let S be
an I-set of G. Then, by Lemma 5, |S] > «(G) and therefore m(G—S) =1
(i.e. S is a vertex cover of G) and |S| = k(G). Hence a(G) < |S| = #(G)
and the result follows. |

Theorems 8 and 9 show that one cannot arbitrarily prescribe x, I and
«. But these are the only restrictions, for we may construct a graph G
with £(G) = &k, I(G) = i and a(G) = a iffeither i = k+1=a+1or
k+1<i<a+ 1. For example:

ek+l=i=a+1l LetG=Kpy,.
ekt+l<i<a+1l: LetG=Ki+ (KicgU(a+1-1i)Ks).

ek+l<i=a+1l LetG=K;+(Ki_rUK,).
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One can also categorise graphs G such that I(G) = 6(G) + 1:

Theorem 10. I(G) = 6(G) +1 iff G = F + nK; where n, j are positive
integers and F is a graph such that §(F) > (p(F)—1)—(n—1)j or the null
graph.

Proof: Let G be a graph such that i = I(G) ='6(G)+1. Let S be an I-set
of G of cardinality s. Then

5(G-S)+1<m(G-8)=i-s=5G)+1-s<86G-S)+1

yielding 8(G — S)+1 = m(G — S) = i — 5. This implies that G — 5 = nK;
for some positive integer n, where j = i —s. If S = 0 then we are done (Let
F be the null graph). Assume therefore that s > 0. For any u € V(G - S),
deggu > 6(G) = i — 1 and degg_su = i — s — 1 so that u is adjacent
to every vertex in S. This yields that G = (S) + nK; = F + nKj; (say).
Further, for any vertex v in S, deggv = n(i — 5) + degpv 2> 8(G) = i — 1;
so that 6(F) > (s — 1) — (n — 1)j. Conversely, the given conditions force
8(G) > p(F) + j — 1 while, considering V(F) as a potential I-set yields
I(G) < p(F)+3. n

As a further consideration, note that for every pair of positive integers
i, p such that p > i, there exists a graph G of order p, integrity i and
minimum degree i — 1. Consider, for example, G to be K;_; + I_{,,.H_.- if
i > 2 and K, otherwise.

The next theorem is an extension of the bound I(G) > §(G) + 1.

 Theorem 11. If G is any graph with degree sequence dy, dz, .,.dp where
dy 2dy 2 ... 2dy, then

I(G) > l|r_<£1‘12pma.x{t,d, +1}.

Proof: Consider any set S C V(G) of cardinality s. Then m(G — S) > 1,
obviously. ‘Furthermore

m(G-S8)>AG-S)+12> glaaxsdegav—s+12d,+1-s+l.

Hence |S|+ m(G — S) > max{s + 1,d,41 + 1} and the result follows. H
We note{-in passing, that the bound r<m? max{t,d; + 1} lies between
<p

6(G)+1 and A(G) + 1. Hence, we can find graphs for which the difference
between the bound and the actual integrity is as large as we choose (for
example C¥)..
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Nevertheless, we have the following sequence of inequalities:

I(G) min, max{t,d; + 1}
max; min{t,d; + 1} 6

w(G),

which yields a corollary to the theorem for which we also supply an inde-
pendent proof:

Theorem 12. For all graphs G, I(G) > X(G).

VIVIVIV

Proof: If G has chromatic number n, then G has an n-critical subgraph
H; thus G has a subgraph H for which §(H) > n — 1 and consequently
IG)> I(H) 2 §(H)+ 12> n=Xx(G). |

By the series of inequalities in 6, we have equality in Theorems 11 and
12 for the graphs of our class B; further, equality is achieved in Theorem 11
but not in Theorem 12 (in general) by the complete multipartite graphs.

The next theorem provides an improvement of the lower bound I(G) >
&(G) + 1, bringing in a relationship amongst «, 8 and I

Theorem 13. For all graphs G,

I(G) > [%] + k(G).

Proof: If G is complete then I(G) = RHS = p; so let us assume that
G is not complete and let S C V(G). Let k(G) denote the number of
components of a graph G. Then ¥(G — S) < 8(G - S) < A(G) so that

n0-92 [ie=5]2 [ |

Noting that every I-set S* of G has order at least £(G), we obtain

I(G) = m(G - §%) + |S*] > [%] + x(G)

which is the required result. |

The bound is sharp, equality being attained for, inter alia, graphs G with
a(G) = k(G) or a(G) = k(G) + 1. Nevertheless, we can find graphs G for
which the difference between the bound and the actual value of I(G) is as
large as we please. Take for example the graphs B; of our class B, for j > 2:

I(Bj) =j4+1 while [%] +K,(Bj) = [2]—]——1-] +1=3.
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5. An Alternative Formulation

In this section we introduce an auxiliary parameter which can simplify the
calculation of integrity. We then derive further bounds using this formula-
tion.

b For any graph G, 0(G) = p(G) — m(G).

Thus, 8(G) is the sum of the orders of all but a largest component of G.
One can immediately write ‘

I(G) = p(G) — max 6(H)

for, as S ranges through all strict subsets of V(G), H = G — S ranges
through all induced subgraphs of G.
But, we can go further and restrict the subgraphs H we have to consider:

b H(G) = {H < G : H contains two components of order m(H) }

If 6(H) > 0 then we can repeatedly remove non-cut-vertices from the
largest component of H if necessary to yield a subgraph H’ € H(G) such
that 8(H') = 6(H). This yields on the convention max® = 0:

I(G) = p(G) - 6(H 7

(G) =p(G) — jmax 0(H) ()

This leads to a characterisation of integrity in terms of forbidden subgraphs,

(cf. for instance, Theorem 15). We further note that if for any positive

integer r there exists H € H(G) with 8(H) > r, then there exists H' € H(G)
with (H') =r.

These concepts enable us to prove the following theorems.

Theorem 14. If 2K, £ G then I(G) = o(G) + 1.

Proof: By the definition of H and the preceding discussion, we see that if
2K, # G then the only elements of H(G) are those induced subgraphs H
of G with m(H) = 1. Thus the vertex set of H is an independent set in G
and so

I(G) = p(G)-max{|S|—1:S is an independent set of G }
= p(G)-(B(G)-1)
= a(G)+1
proving the result. |
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Theorem 15.
a) I<p-2iff3K; <G or 2K, < G.
b) I =p—1iff G is nonempty and has girth at least 5.

Proof: a) Using equation 7 and the subsequent discussion, we note that
I(G) < p — 2 iff there exist induced subgraphs H € H(G) with 8(H) = 2.
These are precisely 3K, and 2K».
b) I < p—1iff G is non-empty. Further
I>p—1 iff 3K, £Gand 2K, A£G

iff Kz£GandCy£G

if G has girth at least 5,
where the last equivalence follows from noting that if Cy is a subgraph of

a graph but not induced, then the graph must contain a K3.".Combining
these two results yields the theorem. |

Theorem 16. For every graph G and.nonnegative integer r, if D;(G)+j >
p—rforj=12,...,r+1then I(G)2p—r.

Proof: Suppose to the contrary that I(G) < p — r. Then there exists an
H € H(G) such that 6(H) = r + 1. Letting m = m(H), we see.that by the
definition of H(G) it follows that m < §(H) = r + 1. But

D,h(G)+m < |V(G)-V(H)|+m
= p—-(m+r+1)+m
< p-r,

and a contradiction results. [ |

6. Circulants

The integrity of the most obvious circulants, namely the powers of the cycle
was determined in [4]. There it was shown that:

Theorem 17. [4] If1 < a < n/2 then I(C3) = a(y — 1) + [n/y] where ¢

is given by I-\/n/a +1/4 - 1/2] .

In contrast to the arithmetical manipulation of the above proof, the value
of the integrity of the complement of the powers of the cycle is relatively
easily determined for some powers, as is shown in the following theorem,
which is an extension of (part of) Theorem 15.
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Theorem 18. Consider G = C2 where 1 <a< n/4. Then I(G)=n—a.

Proof: Since a < (n — 1)/2 it holds that w(G) = a + 1 and thus «(G) =
n —a — 1. Further, since 4a < n, G has no induced cycles of length four so
that 2K; £'G and thus by Theorem 14 the result follows. [ |

This result may be extended:

Theorem 19. Let b be a nonnegative integer. Define forn+b=0 (mod 4),
Gn = C2 where a = (n+b)/4. Then for sufficiently large n, I(Gp,) = n—a.

Proof: As in the above proof, a(G,) = n — a — 1 provided 2¢ < n — 1.
Now, for all F < G, such that F = 2K, define F’ as G, — X where X is
the set of all vertices of G,, adjacent to vertices from both components of
F. Then let

M, ={F :F<Gnand F=2K,}.

Then for n sufficiently large, M, contains, up to isomorphism, a fixed
collection of graphs, say G;. Now, any induced subgraph H of G, with two
nontrivial components contains two edges which lie in different components
of H and hence induce a 2K,. Further, any vertex which is adjacent to
an end-vertex of both edges does not lie in H and thus every such H is
an induced subgraph of some graph in M;,. Hence the maximum value of
6(H), taken over all H € H(G,) such that m(H) > 1, can be determined
from M, and hence for n sufficiently large, from G,; it is, therefore, some
value f;, say. Thus I(G,) = min{n—a,n~ f,} = I(G,) = n — a for
sufficiently large n and our result is proved. |

For example, if b = 0 then for n > 4, M,, contains copies of 2K, only
while if & = 1 then for n > 7, M, contains copies of Ps only and thus
fo = fi = 2. Thus we may extend Theorem 18 to include the case a = n/4
provided a >2 i.e. n > 8, and the case a = (n+ 1)/4 provided (a > 2 and)
n>17.

We include a table of the integrity for small-order circulants (cf. table 1).
Listed are the nonisomorphic circulants of orders at most ten for the non-
empty noncomplete circulants. Various procedures may be employed to
determine the relevant values. A suitable method is indicated by a letter
or pair of letters in the “method’ column. These letters have the following
meanings:

A: The graph or its complement is complete multipartite.

B: ‘The graph is a cycle or power thereof so that the result follows from
Proposition 3 or Theorem 17.
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n | Det. set of G | I(G) | I(G) | Method
2 m 3 | 2 A
5 1) 1 | 4 B
6 1) 4 | 5 | BC
6 {2) 3 | 4 A
6 (3) 2 | s A
7 {1} 5 6 B-C
8 1) 5 | 7 | BC
8 {2} 4 | s E
8 {4} 2 7 A
8 {1,2) 6 | 6 | B-C
8 {1,3} 5 | 4 A
9 5y 5 | 8 | BC
9 (3) 3 | 7 A
9 {1,2} 7 | 7 | BC
10 m 6 | 9 | BC
10 {2} 5 9 | E-D
10 {5} 2 9 A
10| {12 7 | 8 | B-C
0| {13 6 | s E
10 {1,5} 6 | 7 E
10 (2,4) 5 | 6 A
10 {4,5) 7 | 8 | E-B

Table 1: The integrity of small-order circulants
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C: The graph is the complement of a cycle or power of cycle so that the
result follows from Theorem 18 or its extension.

D: The graph is the complement of a graph of girth five so that the result
follows from Theorem 15.

E: Some other method was used.

As an example of the other techniques that may be employed, consider the
determination of the value of I(G) for G = Cio(1,3). This (bipartite) graph
has D; = a = 5 (it is the complement of K3 x K5) while x = 4 so that
I(G) = 6 by Theorem 9.
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