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Abstract. A graph G is defined by Chvétal [4] to be n-fough if, given any set of ver-
ices §,SC G, o(G-98) £ 1‘%1 We present several results relating to the recognition
and construction of 1-tough graphs, including the demonstration that all n-regular, n-
connected graphs are 1-tough. We introduce the notion of minimal 1-tough graphs, and
tough graph augmentation, and present results relating to these topics.

1. Introduction

All graphs are assumed to be undirected, finite and connected, with no loops or
multiple edges.

Let G be a graph on v vertices and n be a real number. Let |S| denote the
cardinality of S, and ¢(G) denote the number of components of G. Then G is
said to be n-tough, if, given any set of vertices S where S C G, ¢(G — S) < ng
[4].

Graph toughness was originally introduced by Chvétal [4] as an invariant prop-
erty important for hamiltonicity. Chvétal indicated that every hamiltonian graph
is 1-tough, and made several conjectures relating toughness and hamiltonicity. In
keeping with the emphasis set by Chvital, much of the subsequent research in-
volving the property of toughness has continued to elucidate properties of graphs
contingent upon toughness. Enomoto, et al [6], have proven Chvital’s conjecture
that every k-tough graph has a k-factor, where k is a positive integer, with the
restrictions that k|G| must be even and |G| > k + 1. Nishizeki [8] has shown that
1-toughness is not a sufficient condition for a maximal planar graph to be hamil-
tonian. Other results relating 1-toughness and hamiltonicity, and 1-toughness and
k-factors may be found in Ainouche and Christofides [1], and Katerinis [7], re-
spectively. Relationships have also been established between degree of toughness
and degree of matching extendability [9], and 1-toughness and Delaunay triangu-
lations [5].

Toughness is a measure of how well the vertices of a graph are bound together.
Our interest in toughness stems from its natural application to problems of network
design and analysis. For example, with regard to flow reliability, it is quite clear
that a network with one or more bottlenecks is likely to have a graph topology with
a low degree of toughness. On the other hand, a network with no bottlenecks is

1'This paper was presented at the Third Carbondale Combinatorics Conference.
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likely to have a topology with a high degree of toughness (for example, a complete
graph is infinitely tough).

Graph toughness also appears to be a desirable property for fault-tolerant net-
works. The traditional measure of fault-tolerance in networks has been graph con-
nectivity. Connectivity effectively measures the smallest number of node failures
required to disconnect a network. One problem with this measure is that it pro-
vides no information as to the size of the resulting network components. (Note
that a distributed processing network with one or more failed nodes where a suf-
ficiently large connected component remains active may still be able to function
adequately.) Skillicorn and Kocay [10] have proposed a more informative mea-
sure, the connectivity function, ¢( G, t), which denotes the minimum number of
vertices that must be deleted from G in order to produce a graph in which the
smallest component has size t. However, because this measure does not indicate
the number of components, it does not necessarily provide any information re-
garding the size of the largest component. As an alternative measure, 1-toughness
guarantees that if k nodes fail, at least one component will have [t vertices.
Comparisons of several such “vulnerability” measures, including connectivity and
toughness, may be found in [2].

To the best of our knowledge, very little research has sought to uncover exactly
what structural characteristics render a graph 1-tough. The aim of this research is
to begin to enumerate various classes of 1-tough graphs. In this paper, we restrict
our attention to the recognition and construction of 1-tough graphs, as defined by
Chvatal, particularly non-hamiltonian 1-tough graphs.

2. Recognition and Construction of 1-Tough Graphs

2.1 Recognition of 1-Toughness

Given a graph G, how difficult is it to determine whether G is 1-tough? Clearly,
1-tough recognition is in co-NP. Very recently, Bauer, Hakimi, and Schmeichel [3]
have shown that recognizing 1-toughness is an NP-hard problem. This suggests
that this problem is probably not in NP, since the equality of NP and co-NP would
be an immediate consequence.

Under these circumstances, structural characterizations of 1-tough graphs be-
come essential for recognition. Hamiltonicity is sufficient, but not necessary for
1-toughness. The following result utilizes more easily-recognized structural prop-
erties:

Theorem 1. Let G be a k-regular, k-connected graph on n vertices (where k >
2 andn > 3 ); then G is 1-lough.

Proof: Let S be any sct of vertices of G, |S] = t. Let C,C,,---,C; be the
components of G — § (see Figure 1). Suppose r > t (i.e. G is not 1-tough).
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Let z; be a vertex in C;, 1 < 1 < r. By a well-known theorem of Whitney
[11], each z; must be connected to each z;, 1 # 7, by k disjoint paths. Since x;
and z; (i # ) are in different components of G — S, all of these paths must pass
through S. Thus there must exist at least k edges joining each C; to vertices in S.
Therefore there are at least & - » edges incident to vertices in §. However, the sum
of all degrees in S is exactly k - t, which is less than & - r.

Therefore, all k-regular, k-connected graphs are 1-tough. §

Figure 1.

2.2 Construction of 1-Tough Graphs

Consider the following problem: Given n, how can we construct a 1-tough graph
on 7 vertices?

Constructing hamiltonian 1-tough graphs is trivial. Any cycle on n vertices, C,,
is 1-tough; one can begin with C,,, then add edges to achieve any desired property
(e.g. high connectivity, small diameter, eic.). However, as hamiltonicity is not a
necessary condition for 1-toughness, we turn our attention to the construction of
non-hamiltonian tough graphs.

Nishizeki [8] demonstrates a construction of a highly structurcd family of 1-
tough, non-hamiltonian maximal planar graphs, essentially by embedding graphs
in others. We now apply a similar technique to construct a diverse family of non-
hamiltonian 1-tough graphs.

Theorem 2. Let G be a 1-tough graph, with a vertex = of degree 2. Replace x
with the graph H shown in Figure 2. The resulting graph G' is 1-tough.
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Figure 2.

Proof: Suppose G’ is not 1-tough. Let V' be the vertex setof G’,and let S C V'
be such that ¢(G' — S) > |S).

LetT = SN H. Clearly |T| #0.

LetS'=S—T.

Clearly, ¢(G' — S") < |&'| (else G is not 1-tough).

Consider the component M of G’ — S’ containing H. Simple examination
reveals thatVT € H,c(M —-T) < |T| + 1.

Thus ¢(G' = 8) = e(G' - 8+ (M -T) -1 < |8'| + |T| = |S].

Furthermore, we observe that the graph G’ constructed in the theorem just stated
is non-hamiltonian.

In fact, the graph H used in the previous theorem may be replaced by any cycle
of length > 6 with one added edge, provided that at least one of z;, and z; is
adjacent to two vertices of degree 2 in the augmented cycle, and that the added
edge is incident to neither z; nor z, . The graph H shown is the smallest such, but
whatever graph is used, the resulting graph will be 1-tough and non-hamiltonian.

This technique permits us to observe that the cardinality of the set of non-
hamiltonian 1-tough graphs is at least as great as that of the hamiltonian 1-tough
graphs.

Let G be any hamiltonian graph. If G contains a vertex of degree 2, the con-
struction step outlined above can be applied, giving a non-hamiltonian 1-tough
graph containing vertices of degree 2. If G contains no vertex of degree 2, let e
be any edge on a hamiltonian cycle of G. Replacing e by a path of length 3 (i.e.
subdividing e) gives a hamiltonian graph with a vertex of degree 2, to which the
construction step may be applied.

Thus each hamiltonian graph generates a family of non-hamiltonian 1-tough
graphs. i

2.2.2 Construction of Non-Hamiltonian Minimal 1-Tough Graphs

Let G(V, E) be a graph. Then G is a minimal 1-tough graph if G is 1-tough, but
Ve € E, G — e is not 1-tough.
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Clearly, every 1-tough graph can be constructed from some minimal 1-tough
graph by adding O or more edges. For example, all hamiltonian minimal 1-tough
graphs are cycles. As with non-hamiltonian 1-tough graphs in general, the struc-
tural requirements for non-hamiltonian minimal 1-tough graphs are unknown.
However, we can use the following construction method to generate one relatively
dense class of these graphs:

Theorem 3. Given acomplete graph K,, construct a tree by identifying one end-
vertex of t paths, each path of length > 3. Let v be the resulting vertex of degree
t. Attach one leaf of the tree to each vertex of K., as depicted in Figure 3. The
resulting graph is a minimally 1-tough graph. If t = 2, then G is a cycle and thus
minimally 1-tough; if t > 3, G is a non-hamiltonian minimal 1-tough graph.

Figure 3.

Proof: Fort = 2, the proof is immediate. Assume ¢ > 3, and let G be constructed
as above. Clearly G is non-hamiltonian. To see that G is 1-tough, consider the
following. Suppose S C V is suchthatc(G— 8) > |S|, and let S be the smallest
such set of vertices. Clearly v € S (else (G — S) < 2, and |S| > 3). No
neighbour of v can be in $, 50 S = v + {r vertices of K;} for0 < r < t. But
deleting v and any r vertices of K, produces precisely r + 1 components. Thus G
is 1-tough.

We now demonstrate that G is minimally 1-tough. Let e = (z,y) be any edge
of G. If e is incident to a vertex of degree 2, then clearly G — e is not 1-tough
(G — e has a vertex of degree 1). If e is not incident to a vertex of degree 2, then
e is an edge of K,. Consider G' = G — e.

LetS=Ki—z—y+v. |S|=t—1,bute(G' — S) = t. G' is not 1-tough,
and it follows that G is minimally 1-tough. |

The density of these graphs approaches 1/4 as t approaches infinity. We con-
jecture that 1/4 is an upper bound on the density of minimally 1-tough graphs.

2.2.3 1-Tough Graph Augmentation
We now address the following problem:
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Given a graph G, find the minimum set of edges S such that G + S is 1-tough.
Clearly, the complexity of this problem is at least equivalent to that of 1-toughness
recognition. However, if the minimum requirement is relaxed, the problem be-
comes more tractable. For example, consider the following rather simple-minded
algorithm:

Given a graph G on » vertices:

1. Find any path P in G.
2. Add edges as required to extend P into a hamiltonian cycle.

This method will require the addition of no more than n — 1 edges. Since
hamiltonicity is not necessary for 1-toughness, we cannot expect this algorithm to
find optimal solutions, even if we could identify a maximum length path in G.

We observe that any 1-connected graph on n > 3 vertices can be augmented to
1-toughness with no more than n — 2 edges, and that this bound is achieved for
the graph Ky 4-1.

Similarly, K;,¢,n > 2t, can be augmented to 1-toughness with an edge-set
of size n~ 2t. We conjecture that this is the upper bound for augmenting sets for
t-connected graphs.

3. Concluding Remarks

We have introduced several new directions for research into the property of graph
toughness, particularly 1-toughness. We have shown that all k-regular, k-connected
graphs are 1-tough. This is an interesting result in view of the fact that many such
graphs are non-hamiltonian. We have also shown that it is possible to construct
infinitely many non-hamiltonian tough graphs and infinitely many minimal tough
graphs, and have proposed a tractable though simplistic algorithm for the tough
graph augmentation problem.

Certainly, much work remains to be done on the subject of the structural charac-
teristics of tough graphs. We are presently investigating critically-1-tough graphs
(1-tough graphs on n vertices which have no 1-tough subgraphs on n— 1 vertices),
and extensions to the results presented here.
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