There are no circulant symmetric Williamson matrices of order 39
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Abstract. It is shown, through an exhaustive search, that there are no circulant sym-
metric Williamson matrices of order 39. The construction of symmetric but not cir-
culant Williamson-type matrices of order 39, first given by Miyamoto, Seberry and
Yamada, is given explicitly.

1. Introduction

An Hadamard matrix is a square matrix of ones and minus ones whose row
(and hence column) vectors are orthogonal. The order n of an Hadamard matrix
is necessarily 1,2 or4 m, with m a positive integer. For more details of their con-
struction see [8],[9],[10],{17], [20]. Since we can easily construct an Hadamard
matrix of order 2 n, from one of order n, the interest lies in the case n = 4 m where
m is odd.

In particular if an OD(4t;1,t,t,t) (otherwise called Baumert-Hall array of
order t) and Williamson-type matrices of order m are known, then there exists an
Hadamard matrix of order 4 m¢. Note that OD(41;t,¢,t,t) are known for many
values of ¢, see [1],[5],(61,[7]; (8, p. 145];[12],[13],[17],(18] and [20, p. 360].
Hence the potential number of solutions of order 4 mt is increased by increasing
the number of solutions of order n and/or §.

We give now two basic definitions:

(I) Williamson matrices of order m are four (+1,—1) circulant symmetric
matrices, A, B, C, D which satisfy

A2+ B2+ C*+ D* =4mI, )
(I) Williamson-type matrices of order m are four (+1, —1) matrices A, B, C,
D which satisfy

(@) MNT=NMT, M,N € {A,B,C, D}
(i) AAT + BBT + CCT + DDT = 4m1,,.
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Williamson and Williamson-type matrices have been constructed for many val-
ues of m, see [1],{2],[3),[41,[11],(13], (14],[15],(16],[18],[191,[20, pp. 388-389],
[21],[22],[23]. Originally Williamson [22] considered circulant and symmetric A,
B, C, D and constructed them for m < 21, m = 25,37,43. Baumert, Golomb
and Hall [3] constructed Williamson matrices for m = 23, Baumert and Hall [4]
gave all solutions for 3 < m < 23 and some solutions for m = 25,27,37,43
and Baumert [2] gave one solution for m = 29. Sawade [14] did an exhaustive
search for m = 25,27. Yamada [23] considered a restricted class of Williamson
matrices and gave a new one for m = 37.

The exhaustive search for Williamson matrices for m > 29, however, turns out
to be much more difficult because of the formidable computational time.

Koukouvinos and Kounias [11] developed a method, and described an algo-
rithm, for constructing Williamson matrices of order m, suitable for the case where
m is not a prime. With this algorithm the computational time is reduced consid-
erably. When m is odd, m = p. g with p, ¢ > 1 this algorithm is implemented by
first finding all solutions (mod p),then (mod ¢) and then merging them. This
gives a considerable reduction in computer time. Koukouvinos and Kounias [11],
applying their algorithm, found all solutions for m = 33.

In this paper we show, through an exhaustive search, that there are no circulant
symmetric Williamson matrices (definition I) of order 39. We also give (explicitly)
the construction of symmetric but not circulant Williamson-type matrices (defini-
tion IT) of order 39 which has been proved previously by Seberry and Yamada
[18].

The non-existence of circulant symmetric Williamson matrices
of order 39

Form =39=p-qg=3 -13 withp, ¢ > 1 we apply the algorithm which is de-
scribed by Koukouvinos and Kounias [11]. First we find all solutions (mod 13)
and then merge them.

We observe that if we have a quadruple of Williamson matrices of order m,
A = (ap,a1,::*,8m-1), B = (bo,b1, -+ ,bm-1), C = (co,c1,** ,&m-1),
D =(do,dy, - ,dm-1), then applying the transformation j — j - s (mod m),
(s, m) = 1, we obtain another quadruple of Williamson matrices. These quadru-
ples are called equivalent and we need to know only one quadruple from each
equivalence class.

In each equivalence class there are at most ¢(m)/2 such quadruples where
¢(m) is the number of integers s : (s, m) = 1,0 < s < m. This is because some
quadruples may be transformed into themselves and the transformations j — j -s
(mod m) and j — j(m — s) (mod m) are identical due to the symmetry of A,
B,C,D.
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There are four different representations of 156 = 4 . 39 as the sum of four odd
squares, i. e. ,
() 156 =112 +52 4+ 32+ 12,
(i) 156 =92 + 7% + 52 + 12,
(i) 156=92 + 52 + 52 + 52,
(iv) 156=72+72 + 72 + 32,
With the application of our algorithm we found that there are no circulant symmet-
ric Williamson matrices of order 39. It is known that if the Williamson equation
is satisfied on the commutative (cyclic) group, then it is satisfied on a subgroup.
this is essentially described in Theorem 1 (see [11] for the proof), but in a context
suitable for our purposes. In Theorem 2 (see [11] for the proof), we describe a
result similar to Williamson’s which is useful for our algorithm.
Let GT = (Ip, Ip,--- ,I,) beap x p - g matrix, i. e. the unit matrix I, of order
p is repeated g times.
Theorem 1 (see[11]). If ()m=p-q p,g>1,{)V = (vo,v1, -+ ,Vm1) IS
a circulant matrix of order m, then
() GT -V =U-GF, whereU = (uo,u1,-- ,up_1) is circulant matrix of
orderp with

u; = E vi, j=0:1s"'sp_l

tof (mod p)
i<m

(ii) U is symmetric if V is symmetric.
Now multiplying on the left A, B, C, D by G we obtain:

= T Terv T =
GiA=X,G;, GIB=Y,G;, G,C=2,GT, GID=W,,GT,
where

Xp=(10)xl""|zp-l)) Witha;j=za,-

Y= (yo,v1, - ,Yp1), Withy; = b [0)
§

Zp=(20,21,""" ,2p-1), Withz]-=zc,-
s

WP=(w00w1;"°th—l): Mthw}=zd!
i

and the summations are over alli = j (mod p), i < m. If we multiply both
members of (1), on the left by G';" and on the right by G, we oblain in the sym-
melric case: ) ) )
2 =
Xp+Yy + Z, + Wy =4mlp,. 3
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Of course we do not know 4, B, C, D so we do not know X, Yy, Zp, Wp.
However it is easier to find X, Yy, Z,, W,, satisfying (3) than A, B, C, D because
p is much smaller than m. Now to construct X, Yy, Zp, W), note that:

Theorem 2 (see [11]). If (i) A, B, C, D are circulant and symmetric (+1,—1) -
matrices satisfying (1) with row (and hence column) sums a, b, c, d, (i) Xp, Yy,
Zy,, W, are as defined in (2), then

®
p-1 p-1 p-1 p-1
Yosi=e, Y y=b Y z=c Y wi=d, @
=0 j=0 j=0 j=0

a2+ +F+d=4m, -9 < =;, 95, 25, w; £ 4, Tj, Y5, 25, Wj, 0dd,
Tj = Tpj, Y5 = Yp—js 2 = Zp—jy Wj = Wp—j, f = 1,2,-+,(p—1)/2,
(ii) If moreoverap + b + cp + do = 0,4, then
(zo+yo+20+wo)—(ao+bo+co+dp) =0 (med 8),ifg=1 (mod 4),
=4 (mod 8),ifg=3 (mod 4),
&)
Ti+tyi+zi+w;=2 (mod 4), j=1,2,..-,(p—1)/2.
Corollary 1 (see [11]). Ifin Theorem 2 we have (i) ao + bo + co + do = £2
instead of (ii), then
(Zo+ yo + 20 + wo) — (ao + bo + co + dp) =0 (mod 8),
Ti+yj+2zj+w; =0 (mod 4), j=1,2,--- ,(p—1)/2.

Now for a given decomposition a® + b% + ¢ + d* = 4m, we can takea, b, c,d to
be positive and soay, bo, co, do are uniquely determined.
In our algorithm we first find all sequences X, = (%o, %1, - , Tp-1) Such that

-flSZ’qua j=0,l,2,---,p—l
T = Tpj, xjiSOdd, j=1,2,"':(p_l)/2

-1
E Zj; = a.

j=0
Similarly we construct all sequences, Yy = (yo, 1, ,Yp-1),Zp = (20,21,
zp—l)’Wp= (w(hwl"" twp—l)'

Now we examine which quadruples X, Yy, Z,, W, satisfy also (3). However
it is computationally faster to examine first if for a given quadruple X, Yy, Z,,
W, the relations in Theorem 2 (i) hold when

ao+bo+co+dp=0,+4
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(or of Corollary 1 when ag + bo + co + do = £2). These quadruples are then ex-
amined to ascertain whether they satisfy (3). We repeat this procedure interchang-
ing p and g. Another serious reduction of the computational time is achieved if
we consider only non-equivalent quadruples, i. e. if we apply the transformation
j —j-s (mod m), where (s,m) = 1,thena; — aj-s, by — bj-s, ¢; — ¢ -3,
dj - dj-s8,7=0,1,2,--. ,m— 1 and the transformed A, B, C, D remain
circulant and symmetric.

Note that j and m — j give identical quadruples because of the symmetry of A,
B,C,D.

We need only to know one quadruple in every equivalence class. For m
39 there are at most 12 equivalent quadruples in each equivalence class (s
1,2,4,5,7,8,10,11,14,16,17,19).

Now the transformation j — j - s (mod m), (s, m) = 1 because of (2) trans-
forms equivalence classes of A, B, C, D into equivalence classes of Xp, Yy, Zp,
Wy and X,, Y, Z,, W, with corresponding transformations

j—Jj-s(modp), (s,m)=1, s<p and
f_'j's(mOdQ). (s,m):l, 3<q'

(Fromj — j.s (mod p) and j — j(p — s) (mod p) apply only one, be-
cause they give identical transformations due to the symmetry of Xp: Yp, Zp, Wy,
similarly forj — ;- s (mod ¢) and j — j(g— s) (mod q).)

Knowing (X, Yy, Z,, W,) and (X,,Y,, Z,, W,) we can find their equivalence
classes.

Care is needed here because for a given representative of a class A, B, C, D we
do not know which is the pair of representatives from the corresponding classes
of Xy, Yp, Zp, Wp and X, Yy, Z,, W,.

However, if we consider one representative from each class of Xo Yy, 24, W,
(g > p) and combine it with all solutions (equivalent or not) of X, Yp, Zp, Wy,
then all non-equivalent A, B, C, D will be found.

The Algorithm

For a given decomposition 4m = a? + b + & + &, withm = p-¢,p < g, our
algorithm consists of four stages:
)
(1) Form all sequences Xp=(zo,71,++ ,Tp_1) satisfying
O Yiozi=a,
(i) —¢< 7 <g,
@iii) z; odd,
(lV) Ti = Tpei, £=1J2)""(p—l)/2'
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(2) Repeat the consruction for Yy, Z,, W; replacing a with b, c, d, respectively.
(3) Examine which quadruples X, Yy, Z,, W, satisfy

2,.y2, 72 2 _
Xp+Y, +2; + W, =4ml,.

1)

(1) Repeat stage I interchanging p and g.

(2) Find all non-equivalent solutions by applying the transformation j — j - s
(mod g) to each solution X,, Y, Z,, W,, where (s,m) = 1 for every
8<q.(Fromj — j-s (mod ¢) andj — j(g—s) (mod g) apply only
one).

110

(1) If there are h; solutions X, Yp, Z,, W), and h; non-equivalent solunons
X,,, Y;,, Z,,, W,,, form the h, - h; combined solutions X, Yy, Zp, Wy, X,,
Y. 20, W,

(2) Find A = (ao,a1,-- ,am-1) from:

8 =8m—i, $1=1,2,---(m-1)/2,
E g = Iy, j=0:1p23""(p_1)/2x

iz/ (wod p)
i<m
E ai=5)'t 7=0,1,2,--- ,(g=1)/2
= (wod g)
i<m
where X, = (20,21, ,Tp-1), Xg = (80, B1, -+ , Bgut)-

(3) Find B, C, D similarly.
IV) Examine which quadruples A, B, C, D satisfy A2+ B2+ C?+ D? = 4mI,,.
Now repeat stages I, I, III, IV for every decomposition of 4 m as the sum of four
odd squares.

Form = 39,p 3, g = 13 weuse s = 2,4,5,7, 10 to find all non-equivalent
solutions X,, ¥,, Z,, W With the application of our algorithm for m = 39 we
have:

(i) For 156 = 112 + 52 + 32 + 12 we found 14 solutions for p = 3 and 676
non-equivalent solutions for ¢ = 13. So we examined 14 . 676 = 9464
pairs of solutions which gave no solution for A, B, C, D.

(i) For 156 = 92 + 72 + 52 + 12 we found 14 solutions for p = 3 and 615
non-equivalent solutions for ¢ = 13. So we examined 14 - 615 = 8610
pairs of solutions which gave no solution for A, B, C, D.

(iii) For 156 = 92 + 52 + 52 + 52 we found 14 solutions for p = 3 and 149
non-equivalent solutions for ¢ = 13. So we examined 14 - 149 = 2086
pairs of solutions which gave no solution for A, B, C, D.
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(iv) For 156 = 72 + 72 + 72 + 32 we found 14 solutions for p = 3 and 202
non-equivalent solutions for ¢ = 13. So we examined 14 . 202 = 2828
pairs of solutions which gave no solution for A, B, C, D.
So we obtain the required result that there are no circulant symmetric Williamson
matrices of order 39.
Remark: The detailed calculations can be obtained from the first author if re-
quired but have been omitted from the paper in order to be concise.

3. Construction of symmetric but not circulant Williamson-type matrices
of order 39

We use a result of Miyamoto [13], reformulated by Seberry and Yamada [18,
Lemma 25, Corollary 26). Since 37 = 1 (mod 4), we use B, the skew-symmetric
core of order ¥21) = 19, formed via the quadratic residues:

B=(0+——++++—+—+———=—++-).
If R is the back-diagonal matrix, i. e.
o0 .. .01
R= 00 1 0
10...00
then the matrix BR is back-circulant and symmetric.

Let
M=0—-—++++—++++—-++++—-)
N=(—+—4++——+——t——+++—+)
be the two circulant symmetric matrices of order (37 + 1) /2 = 19, satisfying
MMT + NNT = 371.
The four (+1, —1) matrices

_| 1 —es B 7
Xy = [_eg; S ], X.—[eg; S;]""2’3’4
are of the Williamson-type of order 39, where

S = [I"'M I_M] with row sum 2,

I-M I+M
N =N
SZ"[_N N]s
_o _|BR+R BR-R .
S3-S4—[BR_R BR+R] with row sum 0.
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It is easy to see (Seberry and Yamada {18]) that

T _ —3ess ess
EX‘X [ 3338 J+ SIST] 2 [333 J+ SjS,T]

_14-39 0
- 0 47 +4.391—-47
=4 .39 .

These Williamson-type matrices are symmetric but not circulant.
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