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Abstract
We compute the limiting average connectivity & of the family
of 3-regular expander graphs whose members are formed from the

finite fields Z, by connecting every z € Z, with  + 1 and 7}, all
computations performed modulo p. Namely, we show

pllngo R(Zp) =3

for primes p. We compare this behavior with an upper bound on the
expected value of &(Z.) for a more general class {Zn}nen of related
graphs.

1 Introduction

In [2], Beineke, Oellermann, and Pippert defined the average connectivity
of a finite graph in order to generalize connectivity by giving a more robust
measure of a graph’s integrity.

Let G = (V, E) be a finite undirected graph. We denote by uv the edge
from u to v, or by (u,v) only when simply juxtaposition might cause confu-
sion. Given u # v € V, an alternating sequence p = (u = ug, €1, 41, ..., €n, Up =
v) of consecutively incident vertices and edges is called a (u, v)-path of length
n if 1 # j = u; # uj. Any collection P(u,v) of such paths will be called
disjoint if p # q € P(u,v) = pNgq = {u,v}. We then define

kg (u,v) = max{|P| | P = P(u,v) is disjoint}.
From this, the connectivity of G is defined by
#(G) = min{kg(u,v) | u # v € V},
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giving the smallest number of edges whose removal will result in separation
of two or more remaining vertices.

A more “global” measure of connectivity is given by the average con-
nectivity,

1
M) =y Y. ra(w),

2 /) uveV
giving the expected number of edges one would have to remove to disconnect
distinct vertices selected uniformly randomly. For instance, while k(K,,) =
R(K,) = n — 1 for a complete graph K, on n vertices, if K, is formed
from K, by adding a single edge incident to one of the original vertices,
k(K}) =1 while R(K}) = s ;3_'{ 3 ~ n—2 gives a better amortized picture
of the graph'’s structure.

In this paper we investigate the behavior of & as applied to a family of
expander graphs, {Zp}p prime, defined by Z, = (V, E},

Vv={01,.,p-1},E= {:z;(.'z: +1),zz7 ! |z € V},

where all computations are modulo p and we define 0~! = 0. The resulting
graph, though not simple, is 3-regular, if one defines the degree of a vertex
to be the number d(v) of undirected edges incident to it.

Note. This notion of degree contrasts from the usual one in that here a
self-loop contributes only a single edge, rather than 2, to the degree of the
vertex incident to it.

Like other expander graph families, this collection of graphs enjoys prop-
erties that make it useful in coding theory, random number generation,
network design, statistical modeling, and myriad other mathematical set-
tings. For more information on expander graphs, the reader should consult
the excellent survey article [5] by Hoory, Linial, and Wigderson; for our
purposes it is enough to know that expanders are highly, yet efficiently,
well-connected. Just how well-connected we hope to measure using &.

It is obvious that in computing & no pair of vertices can contribute a
quantity greater than the minimum of the pair’s vertex degrees. Thus, since
each Z,, is 3-regular, we hope that &(Z;) ~ 3. In fact, we will prove

Theorem 1.1. Let Z,, be the graph defined as above. Then lin(:O R(Zp) = 3.
p—O

In order to obtain this fact, we need to find a way of navigating through
the graphs Z,, and of enumerating the paths we find in our travels. This
involves a few number theoretic facts in which both the distribution of
inverses modulo p and properties of quadratic residues play important roles.



We note that the connectivity x(Z,) = 2 for all primes p, since we need
only remove two edges, (0, 1) and (p—1,0), in order to obtain two connected
components.

In the concluding section we will compare the behavior of Z,, p prime,
with that of a class of more general graphs Z,, for arbitrary n € N.

2 Paths in Z,

Let us first examine the coarse structural elements of G = Z, = (V, E),
particularly those of E.

We realize Z,, geometrically as a circle subdivided p times, and for each
edge zz~! we include a straight line segment interior to the circle between
the appropriate vertices. These interior edges we will call chords, the re-
maining edges, boundary edges. When considered in sequence, chords may
be take on a natural orientation, as we will see below. For the purpose of
computing average connectivity, we have no need for self-loops or multiple
edges. Therefore, we may discard the loops at the vertices {0,1,p—1}, and
should z~! = £ + 1, we may remove one of the edges incident these two
vertices, leaving a single boundary edge between them. In our modified,
now simple, graph, each vertex v has degree d(v) € {2,3}, so every pair
{u, v} will contribute either 2 or 3 to &(Z,), since traversing the boundary
in either direction from u to v gives two paths.

For our first lemma and throughout, we remind the reader of the Leg-
endre symbol (%), which we will need only for positive integers. We let
(%) =1, -1 according as whether a is a quadratic residue modulo b or not.
That is, (§) =1 if and only if the equation 22 = a mod b has a solution in
the ring Z,. (For more number theoretic details, please consult [6].)

Lemma 2.1. Let p > 11 be prime. Then if p = 2,3 mod 5, Z, has 3
vertices of degree 2; if p= 1,4 mod 5, Z, has 7 vertices of degree 2.

Proof. Every Z, has at least 3 vertices of degree 2, namely {0,1,p—1}. The
only other such vertices arise from pairs {z,z~! = z + 1}, where without
loss we assume z < z7 1.

Should such vertices appear, z(z + 1) = 22 + z = 1 mod p, so the
quadratic equation z2 + £ — 1 = 0 mod p is solvable. Since (4,p) = 1,
472 + 42 — 4 = 0 mod p is also solvable. Completing the square we obtain
the equation (2z + 1)? = 5 mod p, which is solvable if and only if (2) = 1.
However, quadratic reciprocity implies that (2) = (). Yet (§) =1 if and
only if p = 1,4 mod 5, so we obtain new vertices of degree 2 only in these
cases, and here the frequency of quadratic residues gives two new pairs of
such vertices, giving us a total of 7 should p = 1,4 mod 5 hold. a



Of importance will be the way in which chords intersect. A chord com-
ponent (or simply component) is a collection C of chords, maximal with
respect to the following property:

c € C = there exists ¢’ € C,c’ # ¢, such that cnc’ #0.

We may abuse this notation by using “component” to refer also to the
vertices incident to edges of C.

Given Zj, the number of chord components in E will be very small, as
we will see in the next section. For now, let us prove the following

Proposition 2.2. If u,v € V lie in the same chord component, then
ke(u,v) = 3.

Proof. Given u,v € C, we must describe how to obtain 3 vertex-disjoint
paths from u to v.

Begin by selecting from C a shortest sequence of chords P = (¢, 2, ..., Ck)
such that ¢; = {4, 7) (¢ = 1,..,k), 1 = u, 7x = v, and ¢; crosses ¢;1
(¢ = 1,..,k = 1). (That is, ¢; and ¢;4; intersect as straight segments in
the plane.) Note that endpoints of consecutive chords are not necessarily
adjacent as vertices in G. Note also that chords carry a natural orientation:
for i > 2 the boundary of the entire graph is divided into two components
by removing the vertices ¢;—; and 7;_;. Then ¢; lies in the component of
the graph’s boundary that does not contain the endpoints of c;4+1. In this
manner the chords in the path P are “directed” from u to v.

All three paths we construct will make use only of chords from this
chord path, as well as certain boundary edges.

Consider the chord path P lying in Z3; shown in Figure 1 (all other
chords are omitted for clarity); we describe the manner in which its chords
intersect. The transition ¢; — ¢;41 constitutes a left turn if one of the
following conditions is met:

1. ¢ < tiy1 < 7 (in which case either 7341 < ¢; or 7341 > 73) or
2. T; < Ti41 < t; (in which case either t;41 < 75 or i1 > ).

In any other case, the transition ¢; — ¢ is a right turn.

In our example, the transition from ¢; = (8,4) to c2 = (6,26) is a right
turn, because 7, < ¢; but 72 is not between these two values. Similarly,
we have a right turn from ¢; to eg = (29, 15) since ¢t < T2 while ¢3 is not
between these values. The transition from c3 to ¢4 = (11,17) is a left turn,
however, since 15 < 17 < 29.

Any maximal subsequence of consecutive chords S = (¢m,...,cn) € P
in which every intervening turn is of the same type is called a segment in
the path P. In our example, P has two segments, (c1, ¢2,¢3) and (cq).



Figure 1: A chord path

To each segment S of P there corresponds a subset 35 of the graph’s
boundary edges. With S as above,

38 = [, tm+1] U [Tm, tm+2] U [Tt 15 tmaa) U -+ - U [Tn2, tn),

where [u, v] denotes the collection of boundary edges between u and v, with
the obvious orientation. Also, 7' is the final vertex of the preceding segment
in P; if S is the first segment, 7/ = ¢;. (If m = n, 8S = 0.) We call the
collection of edges contained in a segment S together with its boundary 88,
the leg corresponding to S.

Lemma 2.3. Let P be a chord path with N segments, 51,52, ..., SN, and
let 7} denote the final vertex in the jth segment. Denote by 8S the traversal
of 8S in the orientation opposite that given above.

1. If N is odd and P begins with a right turn, the following vertices
appear on the boundary of G in the order given, reading clockwise
from the initial vertex of S1:

084,085, ..., aSN,ES'N_,,ﬁN_s, ...08,.



If N is even, the ordering reads instead
051,08;, ..., aSN—laggNaggN—% '")5-5’-2'

If P begins with a left turn, the above give a counterclockwise listing
of the same vertices.

2. Let v; denote the initial vertez of S, and let 7} denote the endpoint
of the penultimate chord in S;, should S; have more than one chord.
Then if P begins with a right turn, the 'uertzces tj and T appear within
the order given above as follows:

1" ac " AT
...6S,~, Tj » 442, 6Sj+g, vany 3Sk, L, rk_2,65k+2,

As before, if P begins with a left turn, this listing gives a counter-
clockwise ordering.

Proof. This lemma is easily proven by induction on N, simply by applying
the definitions both of P and S;, and of right and left turns. O

We may describe an edge path p in the graph by the manner in which
it traverses each leg of P, tacitly applying Lemma 2.3 where needed.

Let S; = (c1y...,¢n) be the jth segment in P. Our path p begins at
;. We may first follow ¢; to 71, and from here travel along the boundary
edges [71,¢a] to t3. From here, we follow c3 to 73, and then proceed along
the boundary to ¢5, and so forth. If S has even length n, the S-portion of
the path p will proceed in this fashion until we conclude by crossing c,_; to
Tn—1, from which we may follow the boundary from to the initial vertex of
the segment S, omitting Sj4;. A similar traversal of S;4+2 may proceed
from there. If n is odd, we conclude by crossing ¢, to 7,, putting us in a
place to begin a traversal of Sj;1 as described in the next paragraph. We
refer to the above method of traversing a segment as a chord-first traversal,
or simply a C-traversal.

Alternatively, we may begin along the boundary 85, at the terminal
vertex 7/ of the previous segment, S;_;. We proceed along the boundary
edges [, t2), from there crossing c; to 72, then once more returning to the
boundary, and so forth. If n is odd, we follow the boundary to the initial
vertex of S;y2, omitting S;;1, ready to begin a C-traversal of S;io. If
n is even, we end at 7; and are in position to begin a traversal of S;41
as just described. This sort of traversal will be called boundary-first, or a
B-traversal.

As above, if a path p traverses neither a segment’s chords nor its bound-
ary, we say the path is an omission that segment. Note that the first seg-
ment S; can be omitted by proceeding from its initial vertex ¢; to the initial
vertex of Ss.



We are almost ready to describe our disjoint paths. Suppose P has N
segments, and let s : {1,2,...,N} — {E, O} be defined by s(j) = E if S;
has even length, and s(j) = O otherwise. We now define three edge paths
in the following fashion:

1. p is given by a sequence {p(j)};-\;l in {B, C, —}, these symbols indi-
cating, respectively, a B-traversal, a C-traversal, or an omission, of
the corresponding segment.

2. If p(j) = B and s(j) = E, then p(j + 1) = B.
3. If p(j) = B and s(j) = O, then p(j + 1) = —.
4. If p(§j) = C and s(j) = E, then p( + 1) = —.
5. If p(j) = C and s(j) = O, then p(j + 1) = B.
6. If p(j) = —, then p(j +1) =C.
Lemma 2.4. The rules given above define edge paths in G.

Proof. The above rules are defined precisely in order to ensure we obtain
a path. For instance, after a B-traversal of an even-length segment S;, we
end at TJf, poised to B-traverse S;41. The other transitions are just as easily
checked. a

Lemma 2.5. Any path p satisfying (1)-(6) above is completely determined
by its first coordinate. Moreover, if p(1) # q(1), then p and g overlap only
at their initial and terminal points, u and v.

Proof. A glance at the rules shows that they are completely deterministic,
so p(j + 1) depends entirely on p(j), and thus inductively p depends only
on p(1). Because of the way B- and C-traversals and omissions are defined,
p and q will be disjoint if we can show that p(j) # ¢(j) for all j, should
p(1) # g(1) hold.

Inductively, assume that p(j) # g(j) for some j. If s(j + 1) = E, Rules
(2), (4), and (6) ensure that p(j +1) # q(j +1). If s(j +1) = O, Rules (3),
(5), and (6) play the same role, so in either case p(j + 1) £¢q(7+1). 0O

Lemmas 2.4 and 2.5 together imply the existence of three mutually dis-
joint edge paths from u to v: each is determined by a sequence in {B,C, -}
beginning with a different symbol.

This concludes the proof of Proposition 2.2. (]



3 Component structure

Our goal is to show that nearly every vertex of degree 3 lies in the same
chord component of G = Z,.

Our first easy fact is the following lemma, whose proof uses the symme-
try of the graph G across an imaginary line drawn from 0 to the midpoint
of [%1, ’";—1] If we place 0 at the rightmost extremum of the graph and
number in a counterclockwise fashion, our symmetry axis is horizontal.
We call the portion of G above this axis the top half, G;, of the graph,
the bottom half G, defined similarly. Note G; NV = {1,2,..,, 2;—1} and
GyNV = {E'g—l,...,p— 2,p-1}.

Lemma 3.1. Let C be a component and let u € C satisfyu € Gy & u~l €
Gy. Thenve C & p—v €l for all verticesv € C.

Proof. This follows from the fact that the chords {(u,u~!) and (p—u,p—u~1)
intersect. a

The same symmetry shows that for every component contained entirely
in G¢ (resp. Gp), there is another contained entirely in G; (resp. Gi).
Our next step is to constrain the size and number of these components; by
symmetry we will work only with components lying entirely in G;.

Proposition 3.2. Let C C G; be a component. Then |C| = O(,/p).

To prove this result we will need some probabilistic results indicated by
Gonek, Krishnaswami, and Sondhi in [4]. As in that paper, given a prime
P, an integer H < p, and integers M, N such that [M, M + N) C (0, p), we
let

f(mH)=|{n€[mm+H)|n"' modpe[MM+N)}|,

for0<m<p-1.

Note. The value f(m, H) gives the number of elements in the interval
[m,m + H) of length H that are inverses (modulo p) of elements in the
fixed interval [M,M + N). For instance, if f(m, H) is large, the interval
[m,m 4+ H) contains a large number of inverses modulo p. We desire that
f not be too large in order to ensure that inverses are distributed quite
evenly throughout Z,.

Simple computation yields a mean of ﬂl{-’- for f(m, H) over all m, and
the function

MeCH) = 3 (f0m, 1) - MEY*
m=0

gives the kth moment about this mean.
We will need the following fact, a special case of the main theorem from
[4], credited to Cobeli, [3]:

10



Theorem 3.3. For any prime p and N, H < p, Mo(H,p) = HN - .Lf_:’\’_a +

O(H 2\/1310g2 p), where the constant involved in the big-oh term is indepen-
dent of the choice of p.

The exact portion of the righthand side of Theorem 3.3 represents the
second moment, po(H, %’-), of a binomial random variable with parameters

Ha,nd%.

Proof of Proposition 8.2. Let C be the largest component contained com-
pletely within G;. We note that C is convex, in that z,y € C = [z,y] C C.
Thus we may suppose C = {z,z+1,...,2+N—1},s0|C| = N. Let H = N.
We obtain f(z +i,N) =N —ifor0<i< N, and f(m, N) = 0 whenever
|m — z| > N, modulo p. Thus we may easily compute Ma(N, p):

2 N-1 2 4
Ms(N,p) = (N-fvz-)-)2+2 ) (i——N?)2+(p—2N+1)]Z—2 = %N+§N3—1—19-N4.

i=1

Meanwhile pa (N, —-1;' )=N2— %N"‘, and the equality in Theorem 3.3 obtains
if and only if

1 2 2 Iya 1oy 2 2

— —_ —_ - [ <

3N N +(3+ )N N cN*\/plog°p

for some constant ¢ independent of p. Clearing denominators we see
pN —3N?%p + 2N3p + 3N3 - 3N* < IN?p*?log’p

must hold for a fixed c.

Should N ~ p/2+¢ for ¢ > 0, the lefthand side of this equation has order
p®/?*+3¢ while the righthand side has order p5/2+2¢]og?p, a contradiction
for large enough p. Thus N = O(,/p), as claimed. O

Finally, we can limit the number of vertices involved in components
o (- th

Proposition 3.4. The totel number of vertices lying in components con-
tained completely in G, is O(\/p).

This result is obtained almost immediately from the following:

Lemma 3.5. Given any number n < p, there are either 0 or 2 values
z € {2,3,...,p — 2} such that x < 27! and z~! — z =n. In either case, no
more than one such = lies in G;.

11



Indeed, assume Lemma 3.5. Note that by Proposition 3.2 any = €
C C G, satisfies z=! — z < |C| — 1 = O(,/p), yet Lemma 3.5 implies that
this difference occurs at most once among all pairs {z,z'} in G;. There
can thus be no more than O(,/p) such inverse pairs in Gy, establishing
Proposition 3.4.

Proof of Lemma 3.5. Suppose z < £~ ! and 27! —z = n < p. Then z2 +
nz—1 = 0 mod p, and since (4, p) = 0, the equation 4z2+4nz—4 = 0 mod p
has the same solutions modulo p. Completing the square, we find £ must
satisfy (2 + n)? = n? + 4 mod p; this equation is solvable if and only if
(%;'ﬁ) = 1, in which case there are two solutions modulo p, only one of

which (our purported z) lies in 2, ..., ”-;—1 O

4 Computing R(Z,)
We can now prove the stated limit for X(G), G = Z,.

Proof of Theorem 1.1. Given = # y € V(G), Section 2 assures us that the
pair {z,y} contributes either 2 or 3 to &(G), depending on whether or
not z and y lie in different components. Let C be the (unique) maximal
component in G, comprising at least p—k./p of G’s vertices, k independent
of p, by Proposition 3.2.

We obtain a lower bound for £(G) by treating every pair of vertices
chosen from V' \ C as though they lie in different components. That is,

R(G) > ﬁ(z(“’;c') +ov\cl-(C] +3('§')) > %

Thus X X ]
lim &(G) > lim 32— FVPP-kP-D o
p—oo p—o0 p(p—1)
Meanwhile, of course, the upper bound %(G) < 3 is trivial. a

Remark. While a direct proof is not attempted here, it is possible that
all vertices of degree 3 are contained in the maximal component C, for any
p; the author has verified this fact for the first 100000 primes.

5 A comparison

We may naturally generalize the class of graphs {Zp}, prime in the following
manner: let n € N be given, and as before begin with the cycle graph C,

12



with n edges. For each m € {0,1,...,n — 1} such that (m,n) = 1 and
m # m~1, append an edge mm~!. (We may think of appending self-loops
at all m satisfying either (m,n) > 1 or m = m™1, but these loops will not
effect connectivity.) Denote the resulting graph by Z,. For completeness
we may allow Z; and Z; to be the complete graphs on 1 and 2 vertices,
respectively.

Proposition 5.1.

hmsup Z ’(Zy) < < —- < 3.

m—l

In this sense, among many others, the graphs Z, for p prime are excep-
tional.

n

Proof. Seeking an upper bound for Z F(Z.m), we lose nothing in as-

n

m=1
suming that for any given m, all of Z,,’s vertices of degree 3 are in a single
chord component. That is, for any m € N,

2(("3%) +(m - $)¢) +3(9)
(%) ’
where ¢ = ¢(m) is the Euler totient, glvmg the number of positive integers

less than m relatively prime to m.
Expanding the binomial coefficients and simplifying, we obtain

£ 9
m(m—-1) m(m-1)

R(Zm) <

R(Zm) <2+

Thus

1 n n ¢
— K < - —_—.
nZK' Zm) < (2n+zm(m 1) Z m(m—l))
m=1 m=1 m=1

The second sum here has limit ?(155 log(n) = ;62- log(n) with very small

error (see exercise 3.6 of [1]), and so contributes nothing to the limit after
dividing by n. The first sum, on the other hand is easily evaluated more

directly, after applying the estimate mg_—ls = %; for m large. Using the
divisor-sum formula for ¢, we have

2
n ¢2 n P'(d
— % =~ (d =3
2w =D Zmﬁ(%ﬁ ’d) m(% )

m=1

13



where u is the M6bius function. However, the inside sum can be replaced

. -1 . ‘s .
with the product P, = H P » over all primes dividing m. When m is
plm
even, P, < 1,50 P2 < 1. In any case, and so in particular when m is odd,
P2 < 1. Applying these facts to inequality given above, we have

142
n+ +4=2+l' 5n 44 2_1

1 n
l’ 1 _ < . —_— = .
im sup — > R(Zm) <2+ Am —— ntoo8n+d 8

m=1

Remark. Experimental evidence suggests

B IR
lim ;';Pm ~ 0.428,

significantly smaller than the % used in the above proof, which can be

improved to arbitrary precision in the obvious manner.
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