Chromatic Polynomials of $C_4 \times P_n$ and

 $C_5 \times P_n$

Amir Barghi

Department of Mathematics
Dartmouth College, Hanover, NH 03755
amir.barghi@dartmouth.edu

Hossein Shahmohamad School of Mathematical Sciences Rochester Institute of Technology Rochester, NY 14623 hxssma@rit.edu

Abstract

The chromatic polynomial of a graph G, $P(G; \lambda)$, is the polynomial in λ which counts the number of distinct proper vertex λ -colorings of G, given λ colors. We compute $P(C_4 \times P_n; \lambda)$ and $P(C_5 \times P_n; \lambda)$ in matrix form and will find the generating function for each of these sequences.

1 Chromatic Polynomial of $C_4 \times P_n$

For more information on chromatic polynomials see [1] and [2]. Let Θ_n denote the graph $C_4 \times P_n$. For $n \geq 1$, by applying deletion-contraction method to Θ_n – more precisely, deleting and contracting the edges linking Θ_{n-1} to last copy of C_4 – one may write chromatic polynomial of this graph in terms of $P(\Theta_{n-1}; \lambda)$ and $P(\Theta'_{n-1}; \lambda)$ where Θ'_n is obtained from Θ_n by linking two non-adjacent vertices in the last copy of C_4 (see Figure 1). Similarly, $P(\Theta'_n; \lambda)$ can be written in terms of chromatic polynomials of Θ_{n-1} and Θ'_{n-1} . We have

$$P(\Theta_{n}; \lambda) = (\lambda^{4} - 8\lambda^{3} + 28\lambda^{2} - 47\lambda + 31)P(\Theta_{n-1}; \lambda) - (4\lambda - 10)P(\Theta'_{n-1}; \lambda),$$

$$P(\Theta'_{n}; \lambda) = (\lambda - 2)(\lambda^{3} - 7\lambda^{2} + 19\lambda - 19)P(\Theta_{n-1}; \lambda) + (\lambda - 5)(\lambda - 3)P(\Theta'_{n-1}; \lambda).$$

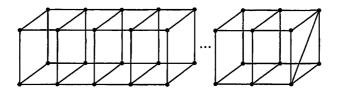


Figure 1: Θ'_n

Let $A = (a_{ij})$ be the matrix of the coefficients of the above recursive relations. Clearly, we have

$$\begin{bmatrix} P(\Theta_n; \lambda) \\ P(\Theta'_n; \lambda) \end{bmatrix} = A^n \begin{bmatrix} P(\Theta_0; \lambda) \\ P(\Theta'_0; \lambda) \end{bmatrix}$$
(1)

By substituting $P(C_4; \lambda) = \lambda(\lambda - 1)(\lambda^2 - 3\lambda + 3)$ and $P(K_4 - e; \lambda) = \lambda(\lambda - 1)(\lambda - 2)^2$ for $P(\Theta_0; \lambda)$ and $P(\Theta_0'; \lambda)$, respectively, we will have $P(\Theta_n; \lambda)$ and $P(\Theta_n'; \lambda)$, for all n.

Now let $f_1(x)$ and $f_2(x)$ be the generating functions for chromatic polynomials of Θ_n and Θ'_n , respectively. Using (1), we have

$$\begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \sum_{n=0}^{\infty} \begin{bmatrix} P(\Theta_n; \lambda) \\ P(\Theta'_n; \lambda) \end{bmatrix} x^n$$

$$=\sum_{n=0}^{\infty}(xA)^n\left[\begin{array}{c}P(\Theta_0;\lambda)\\P(\Theta_0';\lambda)\end{array}\right]=(I-xA)^{-1}\left[\begin{array}{c}P(\Theta_0;\lambda)\\P(\Theta_0';\lambda)\end{array}\right]$$

and after inverting $(I - xA)^{-1}$, we derive

$$\mathfrak{f}_1(x) = \frac{P(\Theta_0; \lambda) + (a_{12}P(\Theta_0'; \lambda) - a_{22}P(\Theta_0; \lambda)) x}{1 - (a_{11} + a_{22}) x + (a_{11}a_{22} - a_{12}a_{21}) x^2},$$

$$\mathfrak{f}_2(x) = \frac{P(\Theta_0'; \lambda) + (a_{21}P(\Theta_0; \lambda) - a_{11}P(\Theta_0'; \lambda)) x}{1 - (a_{11} + a_{22}) x + (a_{11}a_{22} - a_{12}a_{21}) x^2}.$$

2 Chromatic Polynomial of $C_5 \times P_n$

Now let Φ_n denote the graph $C_5 \times P_n$. Similar to the previous example, chromatic polynomial of Φ_n , for $n \geq 1$, can be computed by deleting and contracting the edges linking Φ_{n-1} to last copy of C_5 . With some effort, one may check that chromatic polynomial of this graph can be written in terms of $P(\Phi_{n-1}; \lambda)$, $P(\Phi'_{n-1}; \lambda)$, and $P(\Phi''_{n-1}; \lambda)$ where Φ'_n and Φ''_n are graphs

obtained from Φ_n by linking a vertex in the last copy of C_5 to, respectively, one and two non-adjacent vertices in the same copy of C_5 (see Figure 2). Similarly, $P(\Phi'_n; \lambda)$ can be written in terms of chromatic polynomials of Φ_{n-1} , Φ'_{n-1} , and Φ''_{n-1} . It follows that we have

$$P(\Phi_{n}; \lambda) = (\lambda - 2)^{3} (\lambda^{2} - 4\lambda + 9) P(\Phi_{n-1}; \lambda)$$
$$-(5\lambda^{2} - 28\lambda + 38) P(\Phi'_{n-1}; \lambda) + (\lambda - 6) P(\Phi''_{n-1}; \lambda),$$
$$P(\Phi'_{n}; \lambda) = (\lambda^{5} - 11\lambda^{4} + 53\lambda^{3} - 135\lambda^{2} + 177\lambda - 95) P(\Phi_{n-1}; \lambda)$$
$$+(\lambda - 2)(\lambda - 3)(\lambda - 9) P(\Phi'_{n-1}; \lambda) + (4\lambda - 14) P(\Phi''_{n-1}; \lambda).$$

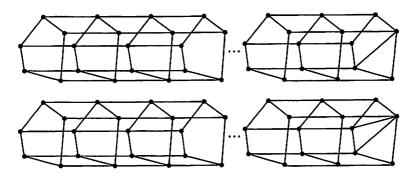


Figure 2: Φ'_n and Φ''_n

On the other hand, one may easily check that $P(\Phi_0; \lambda)$ is equal to $P(\Phi_0'; \lambda) + P(K_3 + e; \lambda)$ and $P(\Phi_0''; \lambda) - P(K_3 + e; \lambda)$ by respectively applying addition-contraction and deletion-contraction. Hence, $P(\Phi_0''; \lambda) = 2P(\Phi_0'; \lambda) - P(\Phi_0; \lambda)$. In a similar fashion, we have $P(\Phi_n''; \lambda) = 2P(\Phi_n'; \lambda) - P(\Phi_n; \lambda)$ using induction. By substituting this back in above recursions, we derive

$$\begin{split} P(\Phi_n;\lambda) &= (\lambda^5 - 10\lambda^4 + 45\lambda^3 - 110\lambda^2 + 139\lambda - 66)P(\Phi_{n-1};\lambda) \\ &- (5\lambda^2 - 30\lambda + 50)P(\Phi'_{n-1};\lambda), \\ P(\Phi'_n;\lambda) &= (\lambda^5 - 11\lambda^4 + 53\lambda^3 - 135\lambda^2 + 173\lambda - 81)P(\Phi_{n-1};\lambda) \\ &+ (\lambda^3 - 14\lambda^2 + 59\lambda - 82)P(\Phi'_{n-1};\lambda). \end{split}$$

By letting $B=(b_{ij})$ to be the matrix of the coefficients of the above recursive relations, we write

$$\begin{bmatrix} P(\Phi_n; \lambda) \\ P(\Phi'_n; \lambda) \end{bmatrix} = B^n \begin{bmatrix} P(\Phi_0; \lambda) \\ P(\Phi'_0; \lambda) \end{bmatrix}$$

where $P(\Phi_0; \lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda^2 - 2\lambda + 2)$ and $P(\Phi_0'; \lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda^2 - 3\lambda + 3)$. This allows us to compute chromatic polynomial of Φ_n and Φ_n' and consecutively, that of Φ_n'' .

Finally, let $\mathfrak{g}_1(x)$, $\mathfrak{g}_2(x)$, and $\mathfrak{g}_3(x)$ denote the generating functions for chromatic polynomials of Φ_n , Φ'_n , and Φ''_n , respectively. Clearly, $\mathfrak{g}_3(x) = 2\mathfrak{g}_2(x) - \mathfrak{g}_1(x)$ while

$$\mathfrak{g}_1(x) = \frac{P(\Phi_0; \lambda) + (b_{12}P(\Phi_0'; \lambda) - b_{22}P(\Phi_0; \lambda)) x}{1 - (b_{11} + b_{22}) x + (b_{11}b_{22} - b_{12}b_{21}) x^2},$$

$$\mathfrak{g}_2(x) = \frac{P(\Phi_0';\lambda) + \left(b_{21}P(\Phi_0;\lambda) - b_{11}P(\Phi_0';\lambda)\right)x}{1 - \left(b_{11} + b_{22}\right)x + \left(b_{11}b_{22} - b_{12}b_{21}\right)x^2}.$$

References

- [1] N. L. Biggs, *Algebraic Graph Theory* (Cambridge University Press, Cambridge, Second Edition 1993).
- [2] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs (World Scientific, Singapore, 2005).