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Abstract
In this paper, it is shown that the graph obtained by overlapping
the cycle Cm (m > 3) and the complete bipartite graph K3,3 at an
edge is uniquely determined by its chromatic polynomial.

Let G be a finite graph with neither loops nor multiple edges and let
P(G; \) denote its chromatic polynomial. Then G is said to be chromat-
ically unique if it is uniquely determined by its chromatic polynomial. A
graph is vertez-transitive (respectively edge-transitive) if its group of auto-
morphisms acts transitively on the vertex-set (respectively edge-set).

Let K, denote a complete graph on n vertices. Suppose G and G are
two graphs where each contains a complete subgraph K,. Let G1 U, G2
denote any graph obtained by overlapping G; and G2 at K,. The graph
G4 Uy G5 is sometimes referred to as the edge-gluing of G; and Ga. Notice
that different choices of X,, might give non-isomorphic graphs. Two non-
isomorphic graphs for G, Uy Cy4 are shown in Figure 1(b) and (c). More
about the properties of G U, G2 can be found in [3].

A graph G is quasi-separable if it contains a complete subgraph K, such
that G — K, is disconnected (see [1], p. 61). A quasi-block Q of G is a
maximal subgraph of G that is not quasi-separable.
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Theorem 1 (/3], [10])

Let G be a graph consisting of two quasi-blocks Q; and Q2 with Q, N
Q2 = K». Suppose G is chromatically unique. Then

(i) at least one of Q, or Q2 is triangle-free;

(ii) Q1 and Q2 are chromatically unique;

(#i) Q1 and Q2 are edge-transitive. Further, at least one of Q; or Q2
is vertez-transitive.

Question 5 in [4] asks whether the converse of Theorem 1 is true. In
this paper, we show that K3 3 Us Cy, is chromatically unique for all m > 3.
This result forms part of the continuing effort in supporting the fact that
the answer to Question 5 asked in [4] could be true. Earlier, in [5], it was
shown that K3 ; Us Cr, is chromatically unique for all s > 1 and all m > 3,
while in [6], it was shown that K322 U Cp, is chromatically unique for
all m > 3. Here, K., ,,..r, denote the complete t-partite graph whose ¢
partite sets have ry,7s,...,r; vertices.

(a) Gy (b) G Uy Cy (C) GLUz Cy

Figure 1: The graph G; and two non-isomorphic graphs for G; U C;4

On occasion we will make use of the following theorem. By a K-
homeomorph we mean a subdivision of Kj.

Theorem 2 (f2]) Let G be a connected graph and let P(G;\) = () -
1)T(G; A). Then

(1) IT(G;1)| = 1 if and only if G is a 2-connected graph and contains
no Ky-homeomorph as a subgraph, and
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(#3) |T(G;1)| > 2 if and only if G is a 2-connected graph and contains
at least one K4-homeomorph as a subgraph.

Let G be a graph and let A be a subgraph in G. Let n(A, G) denote
the number of subgraphs A in G. Let C}, denote a chordless cycle on m
vertices (m > 3). The following lemma is a consequence of Theorems 1 and
2 of 7).

Lemma 1 Let G and Y be two graphs such that P(G;)) = P(Y; X). Then
G and Y have the same number of vertices, edges and triangles. Moreover,
in the event that G has at most one triangle, then n(C;,G) = n(C3,Y)
and

—n(C”g, G) + n(Kz,s, G) = —n(Cg, Y) + 'n(Kz,s, Y).

Let G be a connected graph with vertex set V(G) and edge set E(G).
Then the cyclomatic number of G is |[E(G)| - |V(G)| + 1.

Lemma 2 ([5]) Let G be a connected graph with cyclomatic number c.
Then the number of Ka3 in G is at most (°31).

Let G be a graph and let e be an edge of G. Let G — e denote the graph
obtained by deleting the edge e from G. Also, let G-e be the graph obtained
from G by identifying the two end-vertices of this edge e and removing any
loop and all but one of the multiple edges, if they arise. Then, the chromatic
polynomial of G can be obtained by using the following reduction formula

P(G;)) = P(G - ;) — P(G - ¢;\) (1)

Let bx(G) denote the coefficient of w* in Q(G;w) = P(G;\) where
w = A —1. By Theorem 1 of {11}, G contains a cut-vertex if and only if
h(G) =0.

Let H be a non-complete graph and let R (respectively T') be any graph
obtained by identifying the end-vertices of a path P, (m > 3) with two
adjacent (respectively non-adjacent) vertices z and y of H. That is, R =
H Uy Cy,. Also, let H - (z,y) be the graph obtained from H by identifying
the two end-vertices = and y (regardless of whether they are adjacent or
- not).

Lemma 3 (/9))
QT;w) = Q(R;w) + (-1)™"'Q(H - (z,y); w)-

Let S(s, a,b) denote the set of all graphs obtained in the following way.
Identify the end-vertices of a paths (not necessary of the same length) with
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any two non-adjacent degree-2 vertices (not necessary of the same pair) of
K34, s > 3. Call each of the a paths an a-path. We require that each a-
path to have length at least 2. Also, overlap b cycles (not necessary of the
same length) at any edge (not necessary of the same edge) of K> ;. Figure
2 depicts an example of a graph in S(s,3,1). Notice that the subgraph
K3, is shown by the dark vertices and thicker lines and that the two paths
with end vertices ; and 3 (so is the path with end vertices z» and z3)
are o-paths. '

Figure 2: A graph in 8(s, 3,1)

Lemma 4 Let G € S8(s,a,b). Then
(i) 11(G)|<a+1ifs=3and0<a<?2,
(i) |6:(G)| <4 if s=83 and a > 3,
(iii) |b1(G)] < 2° if s > 4.

Proof: It follows from Theorem 1 that |b;(G)| =1 if G € §(3,0,b).

Suppose @ > 1. We shall apply Lemma 3. Here T is the graph G,
H € S(s,a — 1,b) is obtained from G by removing all edges and vertices
(except the end-vertices) of an a-path P whose end-vertices are z and y,
R e S(s,a~1,b+1) is obtained from H by identifying the end-vertices of
P with any two adjacent vertices.of Ko ,.
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Notice that, in this case, H - (z,y) contains a cut-vertex if and only if
there is another a-path in G with z and y as end-vertices. In the event that
H - (z,y) does not contain a cut-vertex, then H - (z,y) € S(s —1,a - 1,b).
In any case, we see that |b1(H - (z,¥))] < 1if s =3.

By Lemma 3, we have
61(G)] < |b1(R) £ b1(H - (z,9))].

The proof for (i) then follow by induction on a.

For (ii), we observe that if a > 4, then there exist two a-paths with
same end-vertices in K> , (because s = 3), in which case, H - (z, y) contains
a cut-vertex and R € S(s,a — 1,b+ 1) when Lemma 3 is applied to G with
respect to one of these a-paths. Consequently, |b1(G)| = |b1(R)|.

Repeat the same argument to the graph R and in a finite number of
steps, we have |b;(G)| = |b1(R1)| where R, € S(s,d, f) for some d < 3 and
some f > b+ 1.

If 0 < d < 2, then [b;(R;1)| < 4 by the result in (i). So assume that
d = 3 and that no two a-paths-have the same end-vertices in Ko ,.

Apply Lemma 3 to R; with respect to any of the a-paths, we have
b1(R1)| < b1(Rz2) £ bi(H - (z,9))]

where Ry € S(3,2,f + 1) and H - (z,y) € S(2,2,f) contains no Kjy-
homeomorphs. By the result in (i), |[b1(R2)] < 3 and |b1(H - (z,¥))| = 1.
This finishes the proof for (ii).

Note that (i) and (ii) imply that |b1(G)| < 2° where G € S(3,a,b) and
a > 0. We can then use this fact to prove (iii) by using the same inequality
above and by induction on a. O

Lemma 5 ([2]) Let G be a 2-connected graph. If H is a 2-connected sub-
graph of G, then |b1(G)| = [b1(H)|-

Let S,.(s) denote the graph obtained by identifying the end-vertices of
a path P, with two non-adjacent degree-3 vertices of K3, where s > 3 and
m2>3.

Lemma 6 Let G denote the graph K3 s U Cp, where s,m > 3. Then
[b1(G)| # |b1(Sm(8))| end hence Q(G;w) # Q(Sm(s);w).

Proof: By applying Lemma 3 to the graph S;,(s), we have R =G, H =
K3’3 and

QSm(s);iw) = QG;w) + (~1)™ 1Q(Ks 51 )
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and the lemma follows by noting that b;(Kss-1) # 0 (because K341
contains no cut-vertices). O

Lemma 7 Suppose G* is a homeomorph of the graph G. Then |b(G*)| =
b1(G)|. :

Proof: Let P be a path in G* which is the result of subdividing an edge of
G. Let e be an edge on P. Apply the reduction formula (1) to G* on the
edge e, we see that G* — e contains a cut-vertex so that |b;(G* —e)| =0
and hence |b1(G*)| = |b,(G* - €)|-

Repeat the same argument to the graph G*-e for every edge on P and for
every such path until we reach the graph G. Therefore |b;(G*)| = |b1(G).
O

Let X (respectively Y') be a graph containing a subgraph of the form
K3, (respectively K3;) for some I > 2. Let = be a vertex in X — Ky,
(respectively Y — K3;). Then z is called a t-vertez to Ko (respectively a t*-
vertez to K3,) if z is adjacent to precisely two vertices of K3, (respectively
three vertices of K3;) so that the resulting graph KU {z} (respectively
K3, U {z}) is isomorphic to K241 (respectively K3;41), [ > 2.

Suppose J is a tree. Let G denote the set of all 2-connected graphs
G obtained by joining four new edges from J to the graph K3 with the
following properties:

(i) there are no t*-vertices from J to Ko 3,
(ii) G has at most one triangle, and
(iii) n(K2,3,G) = 5.

Lemma 8 Suppose G € G. Then either G is a homeomorph of the graph
S3(3) or else |b1(G)| < 4.

Proof: Let u;, ug, ug denote the vertices of degree 2in K = Kz 3 and vy, v;
those of degree 3. There are two cases to consider.

Case(1): J contains no t-vertex to K.

Since n(K>,3,G) > 5, there exist two vertices x and y in J that are
adjacent to the same two degree-2 vertices in K, say u; and ug (so that
u1,u2,v1,v2, %,y form a Ka4). Since J is joined to K by exactly 4 edges, J
is a path (because G is 2-connected) with end-vertices z and y. Evidently
G € §(4,2,0) and we have |b;(G)| < 4 by Lemma 4.

Case(2): J contains a t-vertex to K.

Let zg € J denote a t-vertex to K. Let 2z; be a vertex in J — 2o such
that z; is adjacent to some vertices in K.

122



Suppose z; is adjacent to two vertices of K. Then J is a path with 2o
and 2) as its end-vertices (because G is 2-connected). If z; is a t-vertex
to K, then G € §(5,1,0) and we have |b;(G)] < 4 by Lemma 4. If 2, is
adjacent to any two distinct vertices u; and u;, then G is a homeomorph
of the graph S3(3). If 2, is adjacent to v, and u, for some r and s, then
n(Ka,3,G) < 5, in which case, G ¢ G.

Hence we assume that 2; is adjacent to only one vertex in K. Then
there exists a vertex z; in J — {20, 21} such that z; is also adjacent to only
one vertex in K. Since n(Ks,3,G) > 5, there is an 1 < 7 < 2 such that
d(z0,2) = 1 and 2; is adjacent to a degree-2 vertex of K. Without loss
of generality, we may assume that 2; is adjacent to 29 and u;. Since G
is 2-connected, J is a path. Since 23 is in J — {20, z1}, there is a path P
connecting zp and z;.

Subcase (2.1): P contains z;

(In this case 29 and z; are end-vertices of P.) If z; is adjacent to v; or
vg, then G € S(3,3,0). If 2 is adjacent to u;, then G € 5(3,2,1). In either
case, we have |b;(G)| < 4 by Lemma 4. Hence 2; is adjacent to either uy
or u3. But then G is a homeomorph of the graph S3(3).

Subcase (2.2): P does not contain 2;

(In this case z; and z; are end-vertices of P.) If z; is adjacent to v;,
then G € S(4,1,1). If 2, is adjacent to u;, then G € §(4,2,0). In either
case, we have |b1(G)| < 4 by Lemma 4.

This completes the proof. a

Theorem 3 For any m > 3, the graph K3 3Us Cr, is chromatically unique.

Proof: Let G = K33 Uz Cp,. Suppose Y is such that P(Y;X) = P(G; ).
Then Y is a 2-connected graph on m + 4 vertices and m + 8 edges and
contains at most one triangle. Note that n(K>23,G) = 6. By Lemma 1,
n(Kz3,Y) > 6 if m # 5 and n(K2,3,Y) > 5 if m = 5. In either case, we
see that Y contains a subgraph K3 3. Let K denote this subgraph.

Let J be the graph Y — K and assume that there are o edges joining
K to J. Now note that J has m — 1 vertices and m + 2 — o edges and so

B -V(Dl=3-a

Let Ji,..., Jk be the connected components of J, k > 1. Suppose there
are a; edges joining K and J;, ¢ = 1,...,k. Let ¢; denote the cyclomatic
number of J;, i =1,...,k. Then Zi;l ¢ = 3 — a+ k > 0. Consequently,
a < 3+ k. Since o > 2k, it follows that 1 <k < 3.
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Note that [b1(Y)| = |b1(G)| = 5. The cyclomatic numbers of G and Y
are both equal to 5. We make the following observations.

O(1) : Y is neither the graph S,,(3) nor its homeomorph, where m > 3.
This follows from Lemmas 6 and 7.

O(2) : Y is neither the graph in S(s, a,b) nor its homeomorph, where
s+a+b<6ands>3.

This follows from Lemmas 4 and 7 by noting that otherwise |b;(Y)| < 4.
Case(1): J contains no t*-vertex to K.

Supposea,—2forallz-—1 k. Thenz 16 =3-2k+k=
3-k<2.If E;—1 ¢; = 0, then each J is a tree (and hence a path because
Y is 2-connected) and Y is a graph in 8(3 + 1, 29, 23) or its homeomorph
where z1,%2,23 > 0 and z; + z2 + z3 < 3 (because k¥ < 3). Therefore
(83+z1) + x2 + z3 < 6. However this is impossible by O(2). If 2?:1 =1,
then k = 2. Further, one of the components of J is a path and the other
a umcychc graph. It is not difficult to check that n(K>3,Y) < 5 in this
case. Ifz —1C = 2, then'k = 1 and we have n(K53,Y) <1+ (c‘“) <5
by Lemma 2.

Now suppose ¢; > 3 forsome 1 < ¢ < k. Then 2k+1 < E:-;l a=a<
k + 3 and this implies that k£ < 2. We claim that no J; contains a Ky 3 as
subgraph, j = 1,...,k. This is because otherwise 2 < Z 1CG=3—a+k
and this implies that 2k+1<a<k+1l,a contradlctlon

If k=1, then 3 < & < 4. Suppose o = 3. Then J is unicyclic. Since
n(K23,Y) > 5, J contains a t-vertex v to K. Moreover there exists a
vertex u in J such that u is adjacent to v and a degree-2 vertex w of K (so
that u,v,w and the two degree-3 vertices of K form another K53 of Y).
But then, in this case, J is a cycle (because Y is 2-connected) and we have
Y € 5(3,2,1) in which case, |b;(Y)| < 4 by Lemma 4. Hence a =4 and J
is a tree. By Lemma 8, either |b;(Y)] < 4 or else Y is homeomorph of the
graph S3(3). The latter case contradicts O(1).

If k = 2, then a« = 5 and Z:;l ¢; = 0, and hence the components of J
are trees. Without loss of generality, assume that o; = 2 and as = 3. Let
w;, wo, w3 denote the degree-2 vertices of K.

Subcase(1.1): J contains no t-vertex to K.

Since n(K33,Y) > 5, each J; contains one vertex that is adjacent to the
same two degree-2 vertices (say we and ws) of K. This implies that J; is
an isolated vertex and J; is a path (because Y is 2-connected). If the other
end-vertex of J is adjacent to a degree-3 vertex of K, then Y € §(4,2,0).
If the other end-vertex of J; is adjacent to wp or ws, then Y € §(4,1,1).
In either case, we have |b1(Y)| < 4 by Lemma 4. Hence the other end-
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vertex of Jp is adjacent to w;. But then Y is a homeomorph of S3(3), a
contradiction to O(1).

Subcase(1.2): J contains a t-vertex to K.

Because n(K>,3,Y) > 5, we see that J contains either another ¢-vertex
to K or a vertex that is adjacent to two degree-2 vertices of K. Whatever
the case is, J; is a path because Y is 2-connected. Let z denote an end-
vertex of J, that is neither a t-vertex to K nor a vertex that is adjacent to
two degree-2 vertices of K.

Subease (1 2.1 ): Ji contains a t-vertex to K.
Then J; is an isolated vertex.

Suppose J> contains a t-vertex to K. If z is adjacent to a degree-3
vertex of K, then Y € (5,0, 1). If z is adjacent to a degree-2 vertex of K,
then Y € §(5,1,0). In either case, we have |b;(Y)| < 4 by Lemma 4.

Now suppose J; contains a vertex that is adjacent to wp and ws. If z
is adjacent to a degree-3 vertex of K, then Y € §(3,3,0). If 2 is adjacent
to wy or ws, then Y € S(3,2,1). In either case, we have |b;(Y)| < 4 by
Lemma 4. Hence z is adjacent to w;. But then Y is a homeomorph of
S3(3), a contradiction to O(1).

Subcase (1.2.2): Jy contains no t-vertex to K.

Then J> must contain a t-vertex to K. As remarked earlier, J; is then
an isolated vertex and is adjacent to two degree-2 vertices of K. If z is
adjacent to a degree-3 vertex of K, then Y € §(4,1,1). If z is adjacent
to a degree-2 vertex of K, then Y € §(4,2,0). In either case, we have
[61(Y)| < 4 by Lemma 4. '

Case(2): J contains a t*-vertex to K.

Note that J contains exactly one t*-vertex to K. This is because oth-
erwise the cyclomatic number of Y would be more than 5. Since J con-
tains a t*-vertex to K, we have a; > 3 for some i and this implies that
2%k+1<a<38+kandthat k <2 If k=1, then a =4 (otherwise . = 3
and this results in Y having a cut-vertex). Consequently, 3 5_, ¢; = 0 and
J is a path with one end-vertex being a #*-vertex. By O(1), the other end-
vertex u of J is not adjacent to a degree-3 vertex of K. Hence u is adjacent
to a degree-2 vertex of K and the resulting graph is isomorphic to G.

If k = 2, then o = 5. Here, J must contain an isolated vertex which is
a t*-vertex to K. The other component of J is a path whose end-vertices
cannot be adjacent to two non-adjacent vertices of X by O(1). Hence the
resulting graph is isomorphic to G. 0

Combining Theorem 3 with those results known previously, we have the
following.
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Corollary 1 Let H be an edge-transitive graph on at most 6 vertices. If
H is chromatically unique, then so is the graph H Up Cy,, for any m > 3.
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