Algorithm Performance For
Chessboard Separation Problems

R. Douglas Chatham* Maureen Doylet John J. Miller'?
Amber M. Rogerstt R. Duane Skaggs* Jeffrey A. Ward!

April 23, 2008

Abstract

Chessboard separation problems are modifications to classic chess-
board problems, such as the N Queens Problem, in which obstacles
are placed on the chessboard. This paper focuses on a variation
known as the N + k& Queens Problem, in which k¥ Pawns and N + k&
mutually non-attacking Queens are to be placed on an N-by-N chess-
board. Results are presented from performance studies examining the
efficiency of sequential and parallel programs that count the number
of solutions to the N + k Queens Problem using traditional back-
tracking and dancing links. The use of Stochastic Local Search for
determining existence of solutions is also presented. In addition, pre-
liminary results are given for a similar problem, the N + k& Amazons.

1 Introduction

According to the standard rules of chess, a queen can move any number of
squares in a straight line vertically, horizontally, or diagonally, as long as
no other piece lies in its path. Questions involving various placements of
multiple queens on chessboards were first posed in the mid-19th century. In
1848, Max Bezzel created the 8 Queens Problem, which calls for a placement
of eight queens on an 8 x 8 chessboard so that no two queens “attack” each
other (i.e. no queen lies in another queen’s path) (1].

*Department of Mathematics and Computer Science, Morehead State University,
Morehead, Kentucky 40351 USA
tDepartment of Computer Science, Northern Kentucky University, Highland Heights,
Kentucky 41099 USA
" Undergraduate student

JCMCC 70 (2009), pp. 127-142

The 8 Queens Problem and several variations appear extensively through
the mathematics and computer science literatures. (One such variation is
the "N Queens Problem” which calls for placing N mutually non-attacking
queens on an N x N board.) In mathematics, the problem has been con-
nected to topics such as graph-theoretic domination, integer programming,
and magic squares. In computer science, the problem is used as a model for
backtracking programming techniques (including the dancing links method
popularized by Knuth in [8]), constraint programming, parallel program-
ming, and neural nets. A collection of references to the 8 Queens Problem
can be found in [9]. We also refer the interested reader to [6] and [14].

In January 2004, the Chess Variant Pages [2] proposed a variation of
the traditional 8 Queens Problem. The new problem, posed as part of a
contest on the site, was to place nine queens on an 8 x 8 board by using
the least number of pawns possible in order to block all queens that would
otherwise attack each other. The contest winner was able to place nine
queens with only one pawn, which immediately suggests a generalization
to square boards of arbitrary order N with N + k queens, where k > 1 is
an integer. The “N + k Queens Problem” is the problem of placing N + k
queens and k& pawns on an N x N board so that no two queens attack each
other. It was conjectured in [4] and proven in [3] that for each k > 0, for
large enough N, the N + k Queens Problem has at least one solution. In
this paper we consider algorithms that count the number of solutions to
the N + k Queens Problem for various values of N and k.

We examine and present results for solving the N + k Queens Problem
using recursive backtracking and dancing links using a single processor.
Dancing links is then modified to run on a multiprocessor Beowulf-like
cluster and additional results are presented.

We also discuss two variants of this problem. A Stochastic Local Search
algorithm, and its results, are presented for finding a solution to the N + &
Queens Problem in Section 3.

Finally, we discuss an approach to solving the N + k£ Amazons Problem
and present initial results in Section 4. The N + k& Amazons Problem is a
modification to the N + k Queens Problem where the piece can move as
either a queen or a knight.

2 N+ k Queens

Finding a closed form expression for the number of solutions to either the
N Queens or the N + k Queens Problem seems highly unlikely. Asymp-
totic results have been given for the N Queens Problem [12] and numerous
algorithms have been proposed for counting the number of solutions.

Two different exhaustive search methods, recursive backtracking and

128

dancing links, for solving the N + k& Queens Problem were examined in
[3]. We provide improved versions of these two methods in Section 2.1.
Stochastic Local Search is discussed in Section 3 as an approach to finding
single solutions to the N + k Queens Problem.

2.1 Exhaustive Search

In (3], solutions to the N + k Queens Problem based on traditional recur-
sive backtracking and dancing links were considered and compared, but
not optimized. Backtracking was implemented as a standard backtracking
algorithm, placing a queen in each row and proceeding. Dancing links,
discussed in the following section, was used to solve the N + k chessboard
given a valid pawn placement. However, the valid pawn placements were
computed simply using traditional backtracking as part of the algorithm
initialization. In this paper, we describe a process of using nested dancing
links and optimizations for pawn placement and row selection in order to
improve execution times for both algorithms.

An immediate way to improve execution times for exhaustive searches
is to detect faulty solutions as early as possible. Proposition 13 from (3]
and Corollary 1 provide useful criteria for pruning.

Proposition 13 ([3]) If N + k queens and k pawns are placed on an
Nx N board so that no two queens attack each other, then no pawn can be on
the first or last row, first or last column, or any square adjacent to a corner.

Corollary 1 If N + k queens and k pawns are placed on an N x N
board so that no two queens attack each other, then no two pawns can be
adjacent to each other horizontally or vertically.

Proof. Suppose there is a row or column with p pawns such that two
of the pawns are adjacent. A queen can not be placed between the two
adjacent pawns, therefore the row or column can be divided into at most p
parts.

Suppose there are p queens in a row with p pawns, two of which are
adjacent. There are k—p pawns in the other rows, and at most k—p+N—1
queens can be placed in those rows. For this arrangement, p+k—p+N—1 =
N +k — 1 queens can be placed. This contradicts the given that the board
has N + k queens placed on it. l

2.1.1 Backtracking

Typical backtracking solutions for the N Queens Problem use N recursive
calls, placing & queen in row % for each recursive call i. For the N +k Queens

129

Problem, there are N + 2k recursive calls. The first k calls place k pawns
on the chessboard, dividing the rows and columns of the chessboard into
N + k row segments and N + k column segments. The remaining N + k
calls recursively place a queen on a segment. Figure 1 illustrates the row
segment assignment for a pawn placement when k = 2, N = 5.

RS1

= RS3 —

RSS

RS6

| rs7

Figure 1: N + k Row Segments

The initial backtracking implementation made N + k recursive calls for
each row segment. A queen was placed in each valid column for the row
segment. The row or row segment selection was the it* row or row segment
for the i** recursive call.

The new row selection criteria is a modification of Knuth’s “organ pipe
ordering” defined in {8). Instead of placing a queen in the i** row for
the i** recursive call, each recursive call selects the most constrained row
or column. The most constrained row or column is defined as the row
or column with the fewest squares available for placing a queen. Differing
from Knuth in the case of a tie, both of our implementations of backtracking
and dancing links simply select the first encountered row or column. The
general algorithm is given in Figure 2.

2.1.2 Dancing Links

Dancing links was introduced in 1979 by Hitotumatu and Noshita [7] and
popularized by Knuth in 2000 [8]. Knuth provides an excellent explanation
of the Dancing Links algorithm, which is a technique to implement Knuth’s
Algorithm X to solve exact cover problems. We provide an abbreviated
explanation here for completeness.

130

void backtrack(int i, int totalQueens)

if (i equals totalQueens)
incrementTotalSolutions()
return

if (!constrainedRowFound(row))
return

for (int j = firstCol(row); j <= lastCol(row); j++)
placeQueen(i, j)
backtrack(i+l, totalQueens)
removeQueen(i, j)

Figure 2: N + k Backtracking Algorithm

Dancing links is a technique involving a quadruply linked-list data struc-
ture and an exhaustive search algorithm. When using dancing links to solve
chessboard problems, a header node is connected to 6N — 2 column header
nodes. Each column header node represents a unique row (), column(XN),
lower diagonal(2N — 1) or upper diagonal(2N — 1) from the chessboard.

Each column of the DLX structure contains its column header node and
also one node for each chessboard block in that row, column or diagonal.
Therefore, there are N nodes in the DLX column for the chessboard row
and columns. There are between 1 and N nodes in the columns representing
the diagonals.

Finally, each chessboard block is represented by four horizontally con-
nected nodes, one for the blocks row, one for its column, one for its upper
diagonal and one for its lower diagonal. Figure 3 shows a two-by-two chess-
board and its dancing links data structure.

Knuth defines the algorithm with three methods solve, cover, and un-
cover. The main method, solve, is called recursively, once for each queen
when solving the N Queens Problem. solve chooses a DLX structure col-
umn for placing a queen and iterates through all queen positions (nodes)
available in the column, calling itself recursively for valid queen placements.
The recursion halts and returns when a solution is found, or all positions
have been tried.

Based on the initial success of dancing links in (3], the use of nested danc-
ing links was explored. In [3], N + k Queens was solved by first computing
all valid pawn placements, and then solving the resulting data structure.

Modifications to the dancing links data structure is minimal when ap-

131

3

ANV VARAVATY
10 [¢] 11 [#] 12 HDO 91 Z\i)

Figure 3: 2 x 2 Chessboard and Data Structure

plying it to the NV 4+ k Queens Problem. Each valid pawn placement divides
up to four columns in the DLX structure: a chessboard row, chessboard
column, and up to two diagonal columns. The pawn can not attack, so no
covering nor uncovering of additional nodes is required. Once all k£ pawns
are placed, solve is called to place N + k queens.

The placing of the pawns requires three new methods nkQueens, pla-
cePawn, and removePawn and no changes to existing N Queens code.

The main method, nkQueens, is called with nkQueens(0,k,N, 0, 0) and
is defined in Figure 4. nkQueens is recursively called k times to place the k
pawns. Once the pawns have been placed, this method calls solve to place
the queens. For simplification, this algorithm does not include either of the
pruning criteria established in Section 2.1.

2.2 Results

The parallel results were generated using a 16-node, Pentium D 2.8 GHz
Beowulf-like cluster with gigabit Ethernet. The head node has 2GB of RAM
and the other nodes each have 1GB of RAM. The cluster runs the Fedora
Core 5 operating system and utilizes the Open Source Cluster Application
Resources (OSCAR) software package [11]. The implementation was in
C++ using Message Passing Interface (MPI).

Initial results for comparing backtracking and dancing links were done
using the head node of the cluster.

2.2.1 Sequential

Two sequential approaches were first examined for solving the N +k Queens
Problem. The sequential implementations were run on a single-processor
PC. Table 1 contains the timing results for the N + k Queens problem,
varying N and k, for the two solvers. Each timing result is the average at
least five runs of the algorithm for the specific combination of (N, k). For

132

void nkQueens(int i, int totalPawns, int totalQueens, int row,
int col)
if (i == totalPawns)
solve(0, totalQueens+totalPawns) // calls N Queens solver
return

// Place this pawn
if (col > totalQueens-—1)
increment row by 1

// Consider all additional positions for this pawn
for (col = (col + 1) ¥ totalQueens;
(col < totalQueens) &% (row < totalQueens);
col = (col + 1) % totalQueens)
placePawn(i,row, col)
nkQueens(i+1, totalPawns, totalQueens)
removePawn(row, col, i)
if (col > totalQueens - 1)
increment row by 1

Figure 4: N + k& Queens DLX Solver

run times larger than one second, the fastest average time is highlighted in
bold.

Table 1: Sequential N + k Queens, timing

N/k | Alg 1 2 3 4 5
6 BT | 0.328 0.7486 0.187 0.249 0.166
DLX | 0226 0.488 0.2789 0.109 0.310
7 BT 0.126 0.332 0.141 0.437 0.877
DLX | 0.439 0.176 0.136 0.847 4.237
8 BT 0.557 0.137 0.738 3.780 14.197
DLX | 0.211 0.613 0.553 4.681 32.504
9 BT 0.266 0.693 3.364 21.849 126.586
DLX | 0.726 0.222 1.892 20.634 190.952
10 BT 1.469 4.761 17.999 110.284 813.451
DLX [0.391 0.842 6.228 83.950 975.214
1 BT 8.693 29.503 111.939 595.766 4438.234

DLX | 2.319 5342 27.843 288.883 3931.816

133

Table 1 shows that if both backtracking and DLX use the “organ pipe
ordering” then backtracking is sometimes faster for smaller N. However, as
N increases, the initial overhead required to create the DLX data structure
is not so predominant and the faster algorithm is DLX by an order of
magnitude.

2.2.2 Parallel

As shown in the previous section, DLX is more efficient than backtracking.
As a result of this, only DLX was modified to solve the N 4k Queens Prob-
lem in parallel using a Beowulf-like cluster. The parallel version of DLX
parcels the problem out to different processors based on the positions of the
first pawn. By ordering the chessboard ascending by row then by column,
and enforcing the rule that no pawn is permitted to be placed adjacent to
another pawn horizontally or vertically, we are able to ensure that we do
not duplicate any pawn positions. Each processor is initially assigned one
unique starting pawn position. The first pawn is placed and the algorithm
proceeds solving the N + &k Queens Problem using the sequential algorithm.
Once all possible pawn combinations are tried, given the starting pawn
position, the processor is assigned another starting pawn position.

We examined dividing starting pawn positions by segmenting the chess-
board, but observed for small N that the work was not evenly distributed
among the processors. To mitigate this, a round-robin approach is used
instead. Given P is the total number of processors, p is the processor iden-
tifier, where 0 < p < P, and N is the number of queens, then the starting
row and column (rp(3), ¢p(?)) for each pawn, ¢, is computed by

N (Pxz+ N +p)%(N —2) i even
s (%) {(P*(x-1)+N+(P—p—1)+P)%(N—2) iodd
N (Pxz+N+p)/(N-2) i even
(i) = {(P*(:c—1)+N+(P-—p-1)+P)/(N—2) i odd,

Table 2 presents the total solutions to the N 4k Queens Problem solved.
Fundamental solutiosn are presented in Table 3, where the set of fundamen-
tal solutions of a chessboard problem is the set of solutions such that no
solution is a rotation or reflection of another.

The average execution times for five runs of each (V, k) combination are
shown in Table 4. This parallel implementation has an average speedup of
5.3 and a maximum speedup of 17.5 (N = 11,k = 3). The average speedup
is much less than the ideal speedup of 32 indicating that additional speedup
is possible.

The timing results show, as expected, an almost order-of-magnitude
increase between N and N + 1 holding &k constant when N > 11. Similarly,

134

Table 2: Parallel NV + k Queens, Total Solutions

N/k | 1 2 3 4 5 |
6 16 0 0 0 0
7 20 4 0 0 0
8 128 44 8 0 0
9 396 280 44 8 0
10 2288 1304 528 88 0
11 11152 12452 5976 1688 196
12 65712 10512 77896 30936 7032
13 437848 977664 1052884 627916 225884
14 3118664 9239816 13666360 11546884 6077320
15 23387448

16 183463680

Table 3: Parallel N + k Queens, Fundamental Solutions

| N/ | 1 2 3 4 5
6 2 0 0 0 0
7 3 1 0 0 0
8 16 6 1 0 0
9 52 37 6 1 0
10 286 164 66 11 0
11 1403 1572 751 215 29
12 8216 13133 9737 3871 879
13 54756 122279 131672 78560 28268
14 389833 1155103 1708295 1443461 759665
15 2923757
16 22932960

we observe the same exponential increase between k and k+ 1, when &k > 2
and N > 6.

3 Stochastic Local Search

Stochastic Local Search (SLS) is an approach that is often useful for solving
hard combinatorial problems. In general, SLS involves first constructing an
initia] state in which all of the variables in the problem are assigned values,

135

Table 4: Parallel N + & Queens, timing

N/k 1 2 3 4 5
6 0.801 0.1548 0.103 0.422 0.206
7 0.225 0.268 0.660 0.265 1.457
8 0.489 0.470 0.805 0.641 6.842
9 0.148 0.120 0.259 3.341 44.601
10 0.306 0.787 0.815 7.795 107.795
11 0.133 0.408 1.588 20.447 358.705
12 0.548 2.123 7.630 74.567 1197.706
13 4996 22403 55276 290.448 4900.838
14 22.419 115.352 366.267 1579.269 16757.187
15 215.151

16 2799.529

and then repeatedly modifying the current state into a “nearby” state until
a solution is reached. Some combination of randomization and heuristics is
used at each point in the search in order to determine which state to visit
from the current state. Commonly, SLS algorithms will “restart” from a
new initial state after a certain amount of time if the current search path
has not been fruitful. SLS algorithms are usually incomplete in that they
do not have the capability to report whether a problem is unsolvable, nor
can they enumerate all of the solutions to a problem. However, in many
domains they have the capability to solve large combinatorial problems that
are intractable via complete procedures such as backtracking.

SLS algorithms have been very successful in solving large instances of
the N Queens Problem. For instance, Sosi¢ and Gu [13] present an SLS
algorithm that runs in linear time and is able to find solutions for very
large instances, such as solving the 3,000,000 Queens Problem in under five
seconds on a current workstation.

Sosi¢ and Gu’s algorithm consists of two phases: an Initial_Search phase
which constructs the initial search state, and a Final_Search phase which
attempts to transform the current state into a solution.

The Initial_Search proceeds left to right across the columns of the board.
At each column index, ¢, a trial row index r. is chosen randomly from the
set of rows that are not yet occupied, until a value for r. is found such
that placing a queen at column ¢ and row 7. will not conflict (i.e. along
any diagonal) with a queen that has already been placed. Initial_Search will
perform a total of no more than 3.08N trials across all of the columns of
the board. If the limit of 3.08N trials becomes exhausted at some column

136

c, then the values ry, Ter41, ..., 7y are chosen to be a random permutation
of the remaining available row numbers, regardless of any diagonal conflicts
that may exist with these choices. Sosi¢ and Gu state that an aim of the
Initial_Search procedure is to make ¢’ as close as possible to N, in preparation
for Final_Search. This objective is successfully achieved to a very great
degree, such as a value of ¢/ = 2,999,977 that was obtained when we made
a trial run of their algorithm to solve the 3,000,000 Queens Problem.

Sosi¢ and Gu’s Final_Search method works from left to right across the
remainder of the board, with ¢ = ¢, ..., N. For each value of ¢, a column d
is chosen at random repeatedly until a d is found such that swapping the
row values in columns ¢ and d results in no conflicts for the queens in either
of those columns. Once this has been completed for ¢ = N, then a solution
to the N Queens Problem has been found. If Final_Search considers a total
(across ¢ = ¢/, ..., N of 7000 trial values for d without finding a solution,
then the algorithm restarts, calling Initial_Search to reinitialize the current
state.

An important invariant that is in effect in Sosi¢ and Gu’s algorithm
after the construction of the initial state is that every state that is explored
has exactly one queen in each row and exactly one queen in each column.

In designing an SLS algorithm for the N + k Queens Problem, we used
Sosi¢ and Gu’s idea of having an initialSearch method that seeks to con-
struct an initial state with relatively few conflicts, followed by a finalSearch
method. However, the k pawns present a significant problem in adapt-
ing the remainder of the Sosi¢ and Gu approach. For example, an obvious
counterpart to their invariant would be to maintain an invariant that states
that every column segment and every row segment has exactly one queen
in it. However, then, in the general case, swapping row values between two
columns could break the invariant, both with respect to the column seg-
ments and the row segments. In Sosi¢ and Gu’s algorithm, swapping row
values never breaks the invariant that every row and every column contains
exactly one queen.

The invariant that we chose to maintain is that every column segment
has exactly one queen in it. Thus, our local search method has to deal with
both row conflicts and diagonal conflicts as the search proceeds. Prior to
calling initialSearch, our algorithm randomly places k& pawns on the board
subject to the restrictions that no pawn may be on the edge of the board,
or adjacent to a corner square, and no two pawns may be adjacent to
each other along a column or a row. Our initialSearch method iterates
through the columns from left to right. For each column segment in a
column, we randomly probe up to 10,000 times the row indices that are
available in the segment, keeping track of those row indices that result in
the minimal number of conflicts (i.e. row conflicts plus diagonal conflicts)
with queens that have already been placed. If a probe yields a row position

137

that results in no conflicts, then a queen is immediately placed in the current
column segment, at that row. Otherwise, at the end of the 10,000 probes,
we randomly choose one of the row indicies that resulted in the minimal
number of conflicts, placing a queen in the current column segment at that
row.

finalSearch uses a “hill-climbing” approach that seeks to minimize the
total number of conflicts that exist along row segments and diagonal seg-
ments. finalSearch keeps a conflict list of all column segments that have
queens with at least one conflict. Each move made by finalSearch consists
of moving a single queen to a different square on its column segment. The
selection of a move involves repeatedly traversing the conflict list up to 100
times. Each time that an entry is visited on the list, a random square is
selected from the column segment. If moving to that square would result in
a reduction in the number conflicts for this queen, then the move is made.
If not, then the algorithm notes the amount by which this move increases
the total number of conflicts. (Call this the score of the move, which may
be zero.) If no move has been made after 100 traversals of the conflict
list, then, from the set of moves that were found to have the best (lowest)
scores, a move is randomly chosen and performed. Occasionally, the best
score obtained is positive, in which case the move actually increases the
total number of conflicts. But such moves can serve to move the current
state out of a local minimum.

If, after a finalSearch move, the conflict list has a size of only two (i.e.
there is only one pair of conflicting queens remaining) then finalSearch con-
siders the first queen on the conflict list and performs an exhaustive search
of that queen’s column segment to determine whether there an available
square where that queen could be moved to immediately solve the puzzle.

We have not yet found restarting to be useful for our algorithm, although
this will be an area for future work.

Table 5 shows run times obtained from this SLS algorithm in solving
N + k Queens problems. While the algorithm is not able to enumerate
all solutions to a problem instance, or to determine that a problem has no
solutions, it does extend by orders of magnitude the sizes of N 4 k Queens
problems for which we can obtain a solution.

Table 5: N + k Queens SLS, timing

N/ 1 10 100 1000 |
10000 | 0.43 0.78 538 600.83
100000 | 9.61 1048 54.84 799.20
1000000 | 39.73 54.67 248.98 >3600

138

These runtimes were obtained on a 3GHz Pentium 4 with 1.6GB RAM
running Windows XP.

4 Amazons

In chess, a knight is a piece that can leap from one corner of a 2 x 3 rectangle
to the opposite corner (i.e., two squares vertically or horizontally followed
by one square in an orthogonal direction). In some chess variant games, an
amazon is a piece that can move as either a queen or a knight. We consider
the N + k Amazons Problem - given an N x N board, place & pawns and
N + k mutually nonattacking amazons — since it is an easy variation of the
N + k Queens Problem. Since an amazon can move as a queen, a solution
to the N+k Amazons Problem is also a solution to the corresponding N+k
Queens Problem (just replace the amazons by queens). So, for example, an
N + k Amazons solver can use Proposition 13 and Corollary 1 for pruning
in an exhaustive search.

We conjecture that the N + k Amazons problem has solutions for large
enough boards:

Conjecture 1 For every k > 0, for large enough N, it is possible to
place k pawns and N+k mutually nonattacking amaezons on an N x N board.

As a result of the promising results using DLX for the N + k Queens
Problem, the N + k Queens algorithm was modified to solve for N + k
Amazons. Two additional methods were added: setKnightMove and un-
setKnightMove. When an amazon is placed in solve, setKnightMove is called
to remove the chessboard squares that would be accessible from a knight
move. When the amazon is removed, unsetKnightMove returns the chess-
board squares to the data structure.

Since the amazon solver extends the N + k queens implementation,
nkQueens, it automatically takes advantage of the optimizations imple-
mented for the N + k Queens Problems described in Proposition 13 and
Corollary 1.

The total solutions are given in Table 6 and the timing results for the
Amazons N + k Problem presented in Table 7. These results also demon-
strate that Conjecture 1 is true for at least a finite set of NV and k.

5 Conclusions and Future Work

The use of nesting the dancing links algorithms, applying it first for pawn
placement and then for queen placement, allowed us to obtain additional

139 .

Table 6: Total N -+ k Amazons solutions

N 0 1 2 3 4
9 0 0 0 0 0
10 4 0 0 00
11 4 0 0 0 O
12 156 72 0 0 O
13 1876 412 120 0 O

14 5180 10320 1664
15 32516 71212

16 | 202900

17 | 1330622

Table 7: Parallel N + k Amazons, timing

N 0 1 2 3 1)

10 0.016 0.063 0.594 8.782 132.11
11 0.062 0.281 1.89 25.047 401.456
12 0.312 1.641 8.704 74.969 1208.65
13 1.719 10.954 55.641 302.049 3711.2
14 8.64 80.625 437.003 1956.79

15 | 49.907 597.894

16 | 302.892

17 | 1925.23

solutions for the N+k Queens Problem as compared to the results presented
in [4] and [3]. This solver also provided us a framework to obtain solutions
for the N + k Amazons Problem.

Given the results presented here, there are many possible avenues to
pursue. The authors are interested in exploring what symmetries in the
N +k Queens Problem exist, and how those symmetries impact the solvers.
We also plan to examine the N + k Queens Problem in three dimensions
and consider the N + k Queens Problem on a torus using dancing links.
Future work might also include improving the speedup observed for the
N + k Queens solver and finding additional applications for these solvers.

Finally, constraint programming systems such as ECLiPSe [5) and Oz/Mozart
[10] provide concise, declarative means for expressing problems such as N
Queens. (Furthermore, Oz/Mozart provides built-in support for parallel
processing.) We are interested in exploring the degree to which these high-

140

level languages can support N + & Queens programming solutions which
are both concise and efficient.

6 Acknowledgements

This work was funded by Kentucky NSF EPSCoR grant UKRF 3046884400-
07-419. The authors thank the referee for helpful comments and for indi-
cating potential improvements in the results through the use of ECLiPSe
or Oz/Mozart.

References

[1] M. Bezzel, Berliner Schachzeitung, 3 (1848), 363.

[2] W.H. Bodlaender, http://www.chessvariants.org/problems.dir/9queens.html,
January — March 2004.

[3] R.D. Chatham, M. Doyle, G.H. Fricke, J. Reitmann, R.D. Skaggs,
and M. Wolff, Independence and domination separation on chessboard
graphs, to appear in J. Combin. Math. Combin. Comput. (2008).

[4] R.D. Chatham, G.H. Fricke, and R.D. Skaggs, The queens separation
problem, Util. Math. 69 (2006), 129-141.

(5] ECLiPSe http://eclipse.crosscoreop.com/

[6] C. Erbas, S. Sarkeshik, and M. M. Tanik, Different perspectives
of the N-queens problem, in Proceedings of the ACM 1992 Computer
Science Conference.

[7] H. Hitotumatu and K. Noshita, A technique for implementing back-
track algorithms and its application, Inform. Proc. Lett. 8 (4) (1979),
174-175.

(8] D.E. Knuth, Dancing links, in Millenial Perspectives in Computer Sci-
ence: Proceedings of the 1999 Ozford-Microsoft Symposium in Honour
of Sir Tony Hoare, J. Davies, A.W. Roscoe, and J. Woodcock eds.,
Palgrave (2000).

[9] W. Kosters, hitp://www.liacs.nl/home/kosters/nqueens.html (April
2002).

[10] Mozart Programming System hitp://www.mozart-oz.org/
[11] OSCAR http://oscar.openclustergroup.org/.

141

[12] L. Rivin, I. Vardi, and P. Zimmermann, The n-queens problem, Amer.
Math. Monthly 101 (1994), 629-639.

[13] R. Sosi¢ and J. Gu, Efficient local search with conflict minimization:
A case study of the N-Queens problem, IEEE Transactions on Know!-
edge and Data Engineering 6 (5) (1994), 661-668.

[14] J.J. Watkins, Across the Board: The Mathematics of Chessboard Prob-
lems, Princeton University Press (2004).

142

