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Abstract

There exist 3 near bowtie systems of order 7, 12 bowtie systems of
order 9, and 1,411,422 balanced bowtie systems of order 13.
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1 Introduction

Let X = (V,E) be the graph with vertex set V = {z,a,b,c,d} and edge
set E = {za,zb, zc, zd, ab, cd}. Such a graph is called a bowtie and will be
represented throughout this paper by the notation ab— x — ed. The vertex
z is called the centre of the bowtie. A decomposition of the complete graph
K, into subgraphs isomorphic to X is called a bowtie system of order n
and denoted by BTS(n). An elementary counting argument gives that a
necessary condition for the existence of a BTS(n) isn = 1 or 9 (mod 12).
In a BTS(n), if every vertex of the complete graph K, occurs the same
number of times as the centre of a bowtie, then the bowtie is said to be
balanced. A necessary condition for the existence of a balanced BTS(n) is
n =1 (mod 12).

It is easy to see that, given a BTS(n), by regarding each of the two
triangles of every bowtie as separate entities, we have a Steiner triple system
STS(n). We call this the associated Steiner triple system of the bowtie
system. Conversely, if n = 1 or 9 (mod 12), it is also true that the triangles
of every STS(n) can be amalgamated to form bowties. This is a consequence
of the fact that the block intersection graph of every Steiner triple system
is Hamiltonian, see for example [1]. If n = 1 (mod 12), there exists a
cyclic STS(n), see also [1], and this system will have an even number of full
orbits. It is then immediate that we can amalgamate triangles from pairs
of orbits to form a balanced BTS(n). Hence the necessary conditions for
both BTS(n) and balanced BTS(n) given above are also sufficient.

If n = 3 or 7 (mod 12), orders for which an STS(n) exists but the number
of triangles is odd, it is still a consequence of the Hamiltonicity of the block
intersection graph that all triangles except one can be amalgamated in
pairs to form bowties. In this case we have a near bowtie system of order
n; denoted by NBTS(n).

In spite of the very close relationship between bowtie and near bowtie
systems on the one hand and Steiner triple systems on the other hand, their
properties can be very different. We explore this further in another paper
dealing with configurations in balanced bowtie systems, [2]. The present
paper is mainly concerned with enumeration results, specifically for non-
isomorphic NBTS(7)s, BTS(9)s, and balanced BTS(13)s. The respective
numbers are 3, 12 and 1,411,422 which contrast sharply with the number
of non-isomorphic STS(7)s, STS(9)s, and STS(13)s, i.e. 1, 1, and 2, see for
example [3]. The enumeration of NBTS(7)s and BTS(9)s is done by hand
but the number of non-isomorphic balanced BTS(13)s requires the use of
a computer. We also discuss the automorphism group of every system. In
order to do this we use the elementary but very useful observation that the
automorphism group of a bowtie or near bowtie system is a subgroup of the
automorphism group of the associated Steiner triple system. Information
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about the automorphism groups of the unique STS(7) and STS(9) and the
two non-isomorphic STS(13)s is taken from (3].

2 Near bowtie systems of order 7
In this section we prove the following theorem.

Theorem 1 There ezist precisely 3 pairwise non-isomorphic NBTS(7)s
with automorphism groups Sy of order 24, K4 of order 4, and C3 of or-
der 3, respectively.

Proof. Represent the associated STS(7) on the base set Z7 as the set of
triangles generated by {0, 1,3} under the action of the mapping i = i + 1
(mod 7). Without loss of generality, choose the triangle 013 (here and in
what follows we will omit set brackets and commas) to be the single trian-
gle in an NBTS(7). Any automorphism of an NBTS(7) must stabilize this
triangle.

The automorphism group of the STS(7) has order 168 and the orbit
length of triangles is 7. Hence the number of elements of the automorphism
group stabilizing a triangle is 168/7 = 24. Those automorphisms which
stabilize the triangle 013 are of the form p;qx where p; is a permutation
on the set {0,1,3} and gx is a permutation on the set {2,4,5,6}. There
are precisely 24 such permutations gi. Now if pigx and pjqx are both
permuta.tions which stabilize the triangle 013 then so does the permutation
Pigre(piqr) ™! = =pip; ~!. But this is a permutation on the set {0, 1,3} which
also collectively ﬁxes all the other triangles of the STS(7) This is not
possible unless p;p;’ ! is the identity permutation, i.e. p; = p;. So the 24
elements of the automorphlsm group that stabilize the tnangle 013 all have
distinct permutations gx, i.e. the group is the symmetric group S;. For
each permutation g, there exists a unique permutation p; such that p;q; is
an element of the automorphism group. In fact we find that the subgroup,
say G = (a, ), which stabilizes 013 is generated by the permutations a =
(013)(246)and B=(13)(2564).

The other 6 triangles of the STS(7) can be amalgamated into 3 bowties
in 15 different ways, which are listed below. Those systems denoted by
letters A, B, and C are non-isomorphic as consideration of the centres of
the bowties shows. Further, under the action of the group G, these systems
can be taken to be the base systems of the 3 orbits, respectively of lengths
1, 6, and 8, into which the 15 near bowtie systems are partitioned. Permu-
tations from the group G which can be applied to obtain the other systems
are given.
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1. 14-2-35 36-4-05 15-6-02 C

2. 14-2~-35 34-6-15 45-0-62 B

3. 14-2-35 34-6-02 04—5-16 apply (13)(45)toC
4. 12-4-36 23-5-04 15-6-02 apply (01)(25)toC
5. 12-4-36 23-5-16 45-0-26 apply (24)(56) to B
6. 12—-4-36 35-2-06 04—5-16 apply (2 4)(56) to C
7. 12-4-05 25-3-46 15-6-02 apply (03)(24) to B
8 12-4-05 23-5-16 34-6-02 apply (25)(46)toC
9. 12-4-05 35-2-06 34—-6-15 apply (01)(46)toC
10. 24-1-56 25-3-—-46 45-0-26 A

11. 24-1-5 23-5-04 34-6-02 apply (01)(25)toB
12. 24-1-56 35-2-06 36—4—05 apply (01)(46) to B
13. 14-2-06 25-3-46 04—5-16 apply (03)(56) to B
14. 14-2-06 23-5-04 34—-6-15 apply (26)(45)toC
15. 14-2-06 23-5-16 36—4—05 apply (03)(56)toC

Thus there are 3 pairwise non-isomorphic NBTS(7)s having automor-
phism groups of order 24/1 = 24, 24/6 = 4, and 24/8 = 3 respectively.
The actual permutations which form the automorphism groups are easily
determined and details of the systems are given below.

System A.

Bowties 24 — 1 — 56, 25 — 3 — 46, 45 — 0 — 26. Triangle 013.
Automorphism group of order 24 ~ S, generated by the permutations o =
(013)(246)and B=(13)(2564).

System B.

Bowties 14 — 2 — 35, 34 — 6 — 15, 45 — 0 — 62. Triangle 013.
Automorphism group of order 4 ~ K, consisting of the identity and the
permutations (2 6)(4 5), (1 3)(4 5), and (1 3)(2 6).

System C.

Bowties 14 — 2 — 35, 36 — 4 — 05, 15 — 6 — 02. Triangle 013.
Automorphism group of order 3 ~ C3 generated by the permutation a =
(013)(246). 0

3 Bowtie systems of order 9
In this section we prove the following theorem.
Theorem 2 There exist precisely 12 pairwise non-isomorphic BTS(9)s of

which 8 have automorphism group Cy of order 4, 8 have automorphism
group C3 of order 3, and 6 have only the trivial automorphism group.
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Proof. Represent the associated STS(9) as the set of triangles

{0,1,2}, {3,4,5}, {6,7,8}, parallel class A;
{0,3,6}, {1,4,7}, {2,5,8}, parallel class B;
{0,4,8}, {1,5,6}, {2,3,7}, nparallel class C;
{0,5,7}, {1,3,8}, {2,4,6}, nparallelclassD.

The automorphism group of the STS(9) has order 432 and acts doubly
transitively on the points of the design.

There are two possibilities for the distribution of the centres of the 6
bowties in a BTS(9):

(a) one point occurs twice and four points occur once, or
(b) six points occur once.

Each possibility is considered in turn. Clearly two BTS(9)s having different
distributions of the centres are non-isomorphic.

(a) There are 9 x 3 = 27 realizations of a pair of bowties having the
same centre. These form a single orbit under the automorphism group of
the STS(9). To see this, note that the automorphism group is transitive on
the points and observe that, for example, the three pairs of bowties having
the point 0 as their centres, namely

(i) 12-0-36 48-0-57
(i) 12-0-48 57-0-36
(i) 12-0-57 36-—-0-—48
are mapped cyclically by the permutation (3 4 5)(6 8 7).

Therefore, without loss of generality, let the pair of bowties having the
same centre be 12—0~36 and 48—0—57. These are stabilized by a subgroup
H of order 432/27 = 16. The reader can easily check that H = (o, 7) where
c=(14672835), = (36)(47)85)and 7o = o>r. Further, since
the automorphism group of any BTS(9), say B, which contains the bowties
12 -0 — 36 and 48 — 0 — 57 must stabilize these, then Aut(B) is a subgroup
of H.

We now consider completions of the above two bowties to a BTS(9). We
adopt the notation that a bowtie is of type XY where X, Y € {A, B, C, D},
X # Y if the two triangles that form the basic bowtie come from parallel
classes X and Y respectively. Noting that the pair of bowties having the
same centre are of types AB and CD and are stabilized by the group H, the
six choices for the types of the remaining four bowties partition into four
cases, each of which is also stabilized by H. We consider each of these cases
in turn and give the results of the calculations to determine the number of
bowtie systems and their automorphism groups. Details of the calculations
are omitted; although they are tedious they are straightforward and involve
applying the elements of the group H to the appropriate bowtie systems.
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Case 1. Bowtie types AB, AB, CD, CD.
There are four possibilities which form a single orbit under the action of
the group H. One of these possibilities is the set of bowties
35-4-17 67-8-25 56—-1—-38 37-—-2-46
which is stabilized by the group Cy generated by the permutation (1 4 2 8)
(3765)=o0r.
Case II. Bowtie types AC, AC, BD, BD and AD, AD, BC, BC.
There are eight possibilities, four of each type, which form two orbits under
the action of the group H. A representative of one of the orbits is the set
of bowties
34—-5-16 68—-7-23 47—-1-38 58-2-46
which is stabilized by the group Cy generated by the permutation (152 7)
(3468)=0o"r.
A representative of the other orbit is the set of bowties
34-5-16 68—7-23 17-4-26 25-8-13
which is stabilized by the group C; generated by the permutation (1 3 2 6)
(4587) =o".
Case III. Bowtie types AB, AC, BD, CD and AB, AD, BC, CD.
There are 32 possibilities, 16 of each type, which form two orbits under the
action of the group H. A representative of one of the orbits is the set of
bowties
35—-4—-17 78-6-15 25-8-13 37-2-46
and a representative of the other orbit is the set of bowties
35-4-17 78-6-15 58-2-46 27-3-18.
Both systems have only the trivial automorphism group.
Case IV. Bowtie types AC, AD, BC, BD.
There are 16 possibilities which form a single orbit under the action of the
group H. One of these is the set of bowties
34—-5-16 67—8-13 14-7-23 58-—2-46.
Again the system has only the trivial automorphism group.
Thus there are six pairwise non-isomorphic BTS(9)s in which one point
occurs twice and four points occur once as the centres of the bowties. We
now consider possibility (b).

(b) Six points occur once as the centres of the bowties. Thus three
points do not occur as the centres of the bowties, and trivially these three
points do not form a triangle of the STS(9). Using the representation of the
STS(9) given at the beginning of the proof, let these three points be 0, 1, and
3. This can be done without loss of generality because the automorphism
group acts transitively on triples which do not form triangles.

Now consider the following 3 x 3 array of bowties containing the trian-
gles 012, 036, and 138.
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01-2-58 03-6-—-78 13—-8—-67
01-2-37 03—-6-15 13-—-8-25
01—2-46 03-6-24 13-8-04
Column 1 Column 2 Column 3

Row P
Row Q
Row R

Any bowtie system must contain precisely one bowtie from each col-
umn. But bowties P2 and P3, P1 and Q3, R1 and R2 contain a com-
mon triangle which leaves 18 possibilities. The automorphism group of a
BTS(9) which contains any of the partial bowtie systems must also stabi-
lize the partial system and hence also the sets {0,1,3}, {2,6,8}, {4,5,7}.
It is then easily shown to be a subgroup of the group K = (A, u) where
A= (013)(2886)(457) and g = (13)(26)(57), which is isomorphic to the
symmetric group Ss of order 6. The 18 partial bowtie systems are listed
below. Under the action of the group K, these partition into 5 orbits con-
sisting respectively of 1, 2, 3, 6, and 6 systems of 3 bowties. Base systems
in each orbit are denoted by I, II, IIT, IV, and V. Permutations from the
group K which can be applied to these base systems in order to obtain the

other systems are also given.

1. 01-2-58 03—-6-78 13-8-04 I

2. 01-2-58 03—6-15 13-8-67 II

3. 01-2-58 03-6-15 13—8-04 III

4, 01-2-58 03-6-24 13-8-67 IV

5. 01-2-58 03—6-24 13—8—04 (031)(268)(475) to II
6. 01—2—37 03—6-78 13—8-25 (13)(26)(57)toII
7. 01—2-37 03-6-78 13—-8-04 (13)(26)(57) toTll
8. 01—-2-37 03—-6-15 13—-8—67 (013)(286)(457) to III
9. 01-2-37 03—-6-15 13-8-25 (03)(28)(47) to Il
10. 01-2-37 03-6—15 13-8-04 V

11. 01-2-37 03—6-24 13-8—67 (013)(286)(457) to II
12. 01—2-37 03-6-24 13—8—25 (031)(268)(475)to I
13. 01—2-37 03-6-24 13-8-04 (031)(268)(475) to III
14. 01—2-46 03—-6-78 13—-8-25 (13)(26)(57) toIV
15. 01—2—46 03—-6-78 13—8—-04 (01)(68)(45)toIl
16. 01—2—46 03—6-15 13—-8—67 (013)(286)(457) to1
17. 01—2—46 03-6-15 13-8-25 (03)(28)(47)toll
18. 01—-2—46 03—6-15 13—8—04 (01)(68)(45)toTII

We now consider completions of each of the five pairwise non-isomorphic
partial bowtie systems to form a BTS(9).
Case 1. The partial bowtie system 01 —2 — 58,03 —6 — 78,13 -8 - 04

is stabilized only by the permutation p and the identity. There are two
completions, namely 26 —4 — 35, 16 —5—07,23 -7 —14 and 26 —4—17,
16 — 5 — 34, 23 — 7 — 05 which are mapped to one another by u. Hence Case
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I gives precisely one BTS(9) having the trivial automorphism group.

Case II. The partial system 01 — 2 — 58, 03 — 6 — 15, 13 — 8 — 67 has the
unique completion 08 — 4 ~ 26, 34 ~ 5 — 07, 14 — 7 — 23 forming a BTS(9)
having the trivial automorphism group.

Case IIL. The partial system 01 — 2 — 58, 03 — 6 — 15, 13 — 8 — 04 also
has a unique completion 23 — 7 — 68, 17— 4 — 26, 07— 5— 34, again forming
a BTS(9) having the trivial automorphism group.

Case IV. The partial system 01 — 2 — 58, 03 — 6 — 24, 13 — 8 — 67 is
stabilized by the cyclic group of order 3 generated by the permutation .
There are two completions, namely 08 —4 — 35, 16 -5 — 07, 23— 7 — 14 and
08 —4-17,16 -5 — 34, 23 — 7 — 05, both of which are also stabilized by
the same group. Hence Case IV gives precisely two BTS(9)s each having
automorphism group Cj of order 3 generated by the permutation A.

Case V. The partial system 01 —2—37, 03 -6 — 15, 13— 8 — 04 is
stabilized by the group K. There are two completions, namely 68 — 7 — 14,
28—5-07,26—~4 — 35 and 68 — 7 — 05, 28 — 5 — 34, 26 — 4 — 17 which
are mapped to one another by u. Hence Case V gives precisely one BTS(9)
having automorphism group Cs of order 3 generated by the permutation ).

Thus there are six pairwise non-isomorphic BTS(9)s in which six distinct
vertices occur once as the centres of the bowties.

For convenience the 12 pairwise non-isomorphic BTS(9)s are collected
together below.

System (a)(I). Bowties 12 — 0 — 36, 48 — 0 — 57, 35 — 4 — 17, 67 — 8 — 25,
56 — 1 — 38, 37 — 2 — 46. Automorphism group of order 4 ~ C; generated
by the permutation (1 4 2 8)(3 7 6 5).

System (a)(II)(i). Bowties 12 —0 — 36, 48 — 0 — 57, 34 — 5 — 16, 68 — 7 — 23,
47 —1— 38, 58 — 2 — 46. Automorphism group of order 4 ~ C; generated
by the permutation (1 5 2 7)(3 4 6 8).

System (a)(II)(ii). Bowties 12 —0— 36,48 —0—57, 34 —5— 16, 68 — 7 — 23,
17 — 4 - 26, 25 — 8 — 13. Automorphism group of order 4 ~ C; generated
by the permutation (1 3 2 6)(4 5 8 7).

System (a)(III)(i). Bowties 12—0~36,48—0—57,35—-4—17, 78— 6~ 15,
25 — 8 — 13, 37 — 2 — 46. Trivial automorphism group.

System (a)(III)(ii). Bowties 12—~0—36,48—0~57,35—-4—17, 78 -6— 15,
58 — 2 — 46, 27 — 3 — 18. Trivial automorphism group.

System (a)(IV). Bowties 12— 0 — 36, 48 — 0 — 57, 34 — 5 — 16, 67 — 8 — 13,
14 -7 — 23, 58 — 2 — 46. Trivial automorphism group.
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System (b)(I). Bowties 01 — 2 — 58, 03 — 6 — 78, 13 — 8 — 04, 26 — 4 — 35,
16 — 5 — 07, 23 — 7 — 14. Trivial automorphism group.

System (b)(II). Bowties 01 — 2 — 58, 03 — 6 — 15, 13 — 8 — 67, 08 — 4 — 26,
34 — 507, 14 — 7 — 23. Trivial automorphism group.

System (b)(III). Bowties 01 — 2 — 58, 03 — 6 — 15, 13 — 8 — 04, 23 — 7 - 68,
17 — 4 — 26, 07 — 5 — 34. Trivial automorphism group.

System (b)(IV)(i). Bowties 01 —2— 58, 03 —6—24,13-8—-67,08—4-35,
16 — 5 — 07, 23 — 7 — 14. Automorphism group of order 3 ~ C3 generated
by the permutation (0 1 3)(2 8 6)(4 5 7).

System (b)(IV)(ii). Bowties 01 —2—58,03—6—24,13—-8-67,08-4-17,
16 — 5 — 34, 23 — 7 — 05. Automorphism group of order 3 ~ C3 generated
by the permutation (0 1 3)(2 8 6)(4 5 7).

System (b)(V). Bowties 01 — 2 — 37, 03 — 6 — 15, 13 - 8 — 04, 68 — 7 — 14,
28 — 5 — 07, 26 — 4 — 35. Automorphism group of order 3 ~ C3 generated
by the permutation (0 1 3)(2 8 6)(4 5 7). O

As an endnote, we remark that a computer search gave 3,348 BTS(9)s
associated with the system STS(9). Since 3,348 = 432(1/4+1/4+1/4+
1414+1+1+1+1+1/3+1/3+1/3), this is precisely the number predicted
by the theorem.

4 Balanced bowtie systems associated with
the cyclic STS(13)

The automorphism group of the cyclic STS(13) is of order 39 and has the
following automorphism types:

(a) a 13-cycle,
(b) a fixed point and four 3-cycles.

No automorphism ¢ of type (b) can stabilize a bowtie system associated
with the cyclic STS(13). Consider a bowtie ab — z — cd whose centre, z, is
the unique fixed point of ¢. Then either

(i) ¢:{a,b} ~ {a,b} and {c,d} — {c,d}, or
(i) ¢:{a,b} — {c,d} and {c,d} — {a,b}.
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In case (i) either ¢(a) = a, which is not possible, or ¢(a) = b and ¢(b) = a
which implies that ¢?(a) = a, which is also not possible. In case (ii) assume,
without loss of generality, that ¢(a) = c and ¢(b) = d. Then either ¢(c) = a
and ¢(d) = b which implies that ¢?(a) = a, not possible, or ¢(c) = b and
#(d) = a which implies that ¢*(a) = d and hence that @ = d.

Represent the cyclic STS(13) on the base set Z,5 as the set of trian-
gles generated by {0,1,4} and {0,2,7} under the action of the mapping
i+ 141 (mod 13). If a balanced bowtie system associated with the cyclic
STS(13) has an automorphism of type (a), (i.e. is invariant under the map-
ping i = ¢+1 (mod 13)), then the two triangles that form the bowtie whose
centre is 0 come from different orbits. Thus there are precisely nine such
systems generated respectively from the following bowties, where 10, 11,
and 12 are represented by T, E, and W respectively.

1. 14-0-27 2. 3W-0-68 3. 9T-0-5E
4 14-0-5E 5 3W-0-27 6. 9T-0-68
7. 14-0-68 8 3W-0-5E 9. 9T-0-27

All other bowtie systems associated with the cyclic STS(13) will be
automorphism-free.

A computer search gives 7,339,770 balanced bowtie systems associated
with the cyclic STS(13), of which 7,339,761 will be automorphism-free.
Each isomorphism class of these will arise 39 times in the search, corre-
sponding to the mappings ¢ + ai + b (mod 13) with a € {1,3,9} and
b€ {0,1,...,12} of the automorphism group of the cyclic STS(13). Thus
there are 7,339,761/39 = 188,199 isomorphism classes of automorphism-free
balanced bowtie systems associated with the cyclic STS(13). The remain-
ing nine systems, numbered 1 to 9 above in this section, fall into three
isomorphism classes. Systems #1, #2, #3 (respectively #4, #5, #6 and
#7, #8, #9) are isomorphic under the mapping i ~ 3i (mod 13). The
results of this section are summarized in the following theorem.

Theorem 3 There exist precisely 188,202 pairwise non-isomorphic bal-
anced BTS(13)s associated with the cyclic STS(18), of which 8 have au-
tomorphism group Ci3 of order 18 and the rest have only the trivial auto-
morphism group.

5 Balanced bowtie systems associated with
the non-cyclic STS(13)

The automorphism group of the non-cyclic STS(13) is of order 6 and has
the following automorphism types:
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(a) three fixed points and five 2-cycles,
(b) a fixed point and four 3-cycles.

No automorphism ¢ of type (a) can stabilize a bowtie system associated
with the non-cyclic STS(13). Let the three fixed points be z, y, and z.
Then {z,y, z} is a triangle of the non-cyclic STS(13) and must appear in
one bowtie. Without loss of generality it may be assumed that z is the
centre. Now each point appears in six triangles of the non-cyclic STS(13).
So consider the triangles containing the point y. One of these appears in
the bowtie above whose centre is z. Two more appear in the bowtie whose
centre is y. All other bowties with a triangle containing the point y appear
in pairs by — a — cd and ¢(b)y — ¢(a) — ¢(c)é(d). Thus triangles containing
the point y appear an odd number of times; a contradiction. Further, by
the same argument as used in the previous section, no automorphism ¢
of type (b) can stabilize a bowtie system associated with the non-cyclic
STS(13) and hence all such bowtie systems are automorphism-free.

A computer search gives 7,339,320 balanced bowtie systems associated
with the non-cyclic STS(13). Since these are all automorphism-free, each
isomorphism class will arise 6 times in the search and hence after dividing
7,339,320 by 6, the following theorem can be stated.

Theorem 4 There exist precisely 1,223,220 pairwise non-isomorphic bal-
anced BTS(13)s associated with the non-cyclic STS(13), all of which have
only the trivial automorphism group.
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